

K. Yacef et al. (Eds.): AIED 2013, LNAI 7926, pp. 161–170, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Comparing Student Models in Different Formalisms
by Predicting Their Impact on Help Success

Sébastien Lallé1,2,3, Jack Mostow3, Vanda Luengo1, and Nathalie Guin2

1 LIG METAH, Joseph Fourier University, Grenoble, France
2 LIRIS, University of Lyon 1, CNRS, Lyon, France

3 Carnegie Mellon University, Pittsburgh PA, United States of America
{sebastien.lalle,vanda.luengo}@imag.fr, mostow@cs.cmu.edu,

Nathalie.Guin@liris.univ-lyon1.fr

Abstract. We describe a method to evaluate how student models affect ITS de-
cision quality – their raison d’être. Given logs of randomized tutorial decisions
and ensuing student performance, we train a classifier to predict tutor decision
outcomes (success or failure) based on situation features, such as student and
task. We define a decision policy that selects whichever tutor action the trained
classifier predicts in the current situation is likeliest to lead to a successful out-
come. The ideal but costly way to evaluate such a policy is to implement it in
the tutor and collect new data, which may require months of tutor use by hun-
dreds of students. Instead, we use historical data to simulate a policy by extra-
polating its effects from the subset of randomized decisions that happened to
follow the policy. We then compare policies based on alternative student mod-
els by their simulated impact on the success rate of tutorial decisions. We test
the method on data logged by Project LISTEN’s Reading Tutor, which chooses
randomly which type of help to give on a word. We report the cross-validated
accuracy of predictions based on four types of student models, and compare the
resulting policies’ expected success and coverage. The method provides a utili-
ty-relevant metric to compare student models expressed in different formalisms.

Keywords: Student models, knowledge tracing, classification, help policy.

1 Introduction

A challenge in the field of Intelligent Tutoring Systems (ITS) is to evaluate student
models by their impact on the success of an ITS’s decisions – in particular, about
which type of help to give students. Individualized help can have a strong impact on
learning [1]. The better the tutor adapts its help to the student and situation, the li-
kelier the student will learn from it.

This paper shows how to use logged tutor data and a student model to learn what
help to provide in a given situation, and how to compare alternative student models
based on the resulting help policies. The paper is organized as follows. Section 2 re-
views prior work on learning help policies. Section 3 describes the student models we
used in the study. Section 4 discusses the data. Section 5 presents the algorithm for
learning a help policy. Section 6 reports results. Section 7 concludes.

162 S. Lallé et al.

2 Relation to Prior Work

Several papers report positive results from learning individualized help policies.
Andes [7] used a Bayesian network to adapt hints to the student, the problem, and

the context, but required human-designed sequences of hint templates; we do not.
ADVISOR [4] and later work [2, 6, 7] used reinforcement learning to adapt a pe-

dagogical agent to optimize student performance metrics such as the time to solve
problems. The agent could give hints or to select the next exercise. ADVISOR used
only one student model; in contrast, we compare alternative student models. Only Chi
et al. [6] included features of system behavior, which they found affected feedback
success more than task or student features. Barnes and Stamper [2, 7] derived poli-
cies from effects of student decisions; in contrast, we learn from tutor decisions.

Project LISTEN’s Reading Tutor [19] chose randomly among different types of
help on a word. Heiner et al. [13] compared their success rates based on how often the
student read a word acceptably at the next encounter. We use this and other informa-
tion plus a student model to train a policy, not just compare overall success rates.

Razzaq and Heffernan [22] compared two types of feedback, namely scaffolds and
hints, and found that students who got scaffolds learned more than students who got
hints with pre and post tests, although the difference was not statistically significant.
Like Heiner, they compared rates, but between groups rather than within-subject.

Recommender systems can be used to recommend suitable learning resources to a
given student in an ITS or web-based learning. Verbert et al. [26] predicted the suc-
cess of recommendations (in terms of student satisfaction) from student activities. In
contrast, we predict the success of help (in terms of student performance) from stu-
dent traits, task features, help type, and a student model of estimated skills.

Table 1. Summary of prior work on help or hint selection, in terms of features and evaluation

Work Features used to select
help or hints Methodology to validate learned policy

Gertner et
al. [11]

Problem goal + current problem
state + context + student’s mas-
tery of skills

Experiments (pre and post tests)

Beck et al.
[4]

Student model + current problem
state

Simulation (check if probability of success
increases with the help) and experiments

Heiner et
al. [13]

Student level + word difficulty
Use historical data (expected increase in
success for unseen students)

Barnes,
Stamper et
al. [3, 23]

Student model + current problem
state

Experiments (number of solved problems,
errors, and number of hints given with the
generated policy vs. default policy)

Chi et al.
[6]

Student features + domain fea-
tures + system behavior features

Experiments (pre and post test)

This paper
Student features + domain fea-
tures + system behavior features

Use historical data (expected increase in
success for unseen students)

Table 1 summarizes all this work in terms of the features used in the help or hint
policy, and how it was evaluated using on-line experiments or off-line simulation.

 Comparing Student Models in Different Formalisms 163

Prior research has explored various ways to compare student models [17]. Several
papers [5, 12, 21, 27] compare different knowledge tracing models based on goodness
of fit. That work frames student modeling as a prediction problem, where the goal is
to predict the next observation of student performance (correct or incorrect). Other
papers compared the accuracy of models based on constraint-based modeling [14] or
Item Response Theory [9]. Results depend on the domain, the datasets, and the mod-
el-fitting method. For instance, Pavlik et al. found that Performance Factor Models
(PFM) beat Bayesian Knowledge Tracing [21], but Gong et al. found the opposite,
leaving uncertain the reason for this divergence in results [12]. Moreover, we know of
no prior quantitative comparisons of different types of student models.

3 Student Models

We now describe the three types of student models we compare in this paper.
Knowledge Tracing [8] is based on a cognitive model, which specifies the skills

underlying students’ successive observable actions. Knowledge tracing uses these
observations to update estimated probabilities of the student knowing the skills, based
on the knew probability of having a skill beforehand, the learn probability of acquir-
ing the skill at any given step, the guess probability of responding correctly without
knowing a skill, and the slip probability of responding incorrectly despite knowing it.
Knowledge Tracing uses a Bayesian update, while the Performance Factor Model
(PFM) [21] uses a linear combination of skill difficulty, student proficiency, and past
performance (number of previous successes and failures on a given skill).

Constraint-based modeling [20] has no cognitive model of skills underlying steps.
Instead, it represents domain constraints whose violation reveals missing knowledge
or misconceptions that call for corrective feedback. A constraint-based model
represents domain knowledge as a set of constraints (Cr, Cs), where Cr specifies the
situations where the constraint is relevant, and Cs specifies the correct answer in those
situations. The constraint-based model can infer student knowledge from students’
observed actions as the probability of satisfying a constraint when it is relevant.

Finally, the Control-based Approach [16] (based on cKc [2]) represents domain
knowledge as a set of problems, operators for solving the problems, indicators of how
a problem or operator is represented (e.g. as proof vs. diagram in geometry), and
skills for deciding whether an answer or action is correct, represented as nodes in a
Dynamic Bayesian Network. The Control-based Approach uses observed student
actions to update the conditional probability of knowing the skill given the problem,
the representation indicators, the operator used, and whether the action is correct.

4 Experimental Data

We use data from Project LISTEN’s Reading Tutor [19], which displays text and
listens to a child to read it aloud. The Reading Tutor uses automatic speech recogni-
tion (ASR) to classify each text word as read correctly or not, and to measure the
latency before reading each word. We label a word as fluent if the Reading Tutor
recognized it as read correctly without help or hesitation. The Reading Tutor can give

164 S. Lallé et al.

several types of help on a w
cat), or sound out its succes
infeasible or infelicitous on
syllabifying a one-syllable
The Reading Tutor chooses

Each such decision gene
help helped the child learn t
child read the same word fl
ing recency and scaffolding
its outcome is the first enc
Our data for this paper con
the 2002-2003 school year
analysis, we omitted trials w

Fig. 1. Help type H on word

5 Method for Trai

We train a help policy as
from a student model. The
word length) that affect he
logged trials, student mode
Finally, derive a policy from

5.1 Using Student Mod

Knowledge diagnosis is th
student interactions with an
niques: Performance Facto
straint-based modeling [18]
2). These techniques are g
Diagnosis techniques use v
sian inference or logistic r
estimated probability of kn
mance (such as correct or
predict future performance

word, such as say it, give a rhyming hint (e.g., rhymes w
ssive phonemes (/K/ /AE/ /T/) [13]. Some types of help
n some words, such as rhyming hints for rhymeless wor

word, or sounding out a word longer than 4 phonem
s randomly among types of help suitable for a given wor
erates one randomized controlled trial. To test whether
the word, we define the outcome of the trial as whether
luently at the next encounter on a later day, thereby excl
g effects. Thus if a student gets help on word W on da
ounter of word W on day j where j>i, as Figure 1 sho

nsist of 30,838 such trials logged by the Reading Tuto
r, from 96 students and 1078 distinct words. To simp
where a child got help on word W more than once on day

W on day i succeeds if W is fluent at the first encounter on day

ining a Help Policy

follows. First annotate the logged trials with informat
en select a set of features (such as student reading leve
elp success, according to a linear model. Next, use
el, and selected features to learn when help will succe
m the learned classifier to choose help likeliest to succee

dels to Annotate Logged Trials

he process of inferring or updating a student model fr
n ITS [25]. We considered four knowledge diagnosis te
or Modeling [21], Bayesian Knowledge Tracing [8], c
], and a Control-based model based on cKc [16] (see Ta
generic, so that it is possible to use them on our dom
arious methods to update the student model, such as Ba

regression. Updating a student model means updating
owing different skills, based on students’ observed perf

r incorrect answers). These estimates make it possible
on those skills.

with
are

rds,
mes.
rd.
the
the

lud-
ay i,
ows.
r in

plify
y i.

y j

tion
el or

the
eed.
ed.

rom
ech-
con-
able

main.
aye-
the

for-
e to

 Comparing Student Models in Different Formalisms 165

Table 2. Summary of the four types of student models used in this work

Type of student model Update method Output (prediction) Ref
Performance Factor
Model

Linear regression Probability of answering correctly [21]

Bayesian Knowledge
Tracing

Hidden Markov
Model

Probability of answering correctly [8]

Constraint-based Constraints Probability of violating constraints [18]
Control-based Dynamic Bayesian

Network
Probability of using skills or not,
correctly or not

[16]

Constraint-based models are typically updated at the end of exercises. To update them
online instead, we associate a power law function with each constraint (knowledge), fit
these functions to observed student performance so far, and use them to predict subse-
quent performance. Another difficulty in our data is that the skills are not directly observ-
able. Our model of oral reading represents a skill as mapping a grapheme to a phoneme.
For instance, the word chemist maps ch→/K/, e→/EH/, m→/M/, i→/IH/, s→/S/, and
t→/T/. However, our speech recognizer only recognizes words. Thus, we used a
multiskill approach, meaning that a single observed step (reading a word) may require
multiple skills . We estimate each skill independently, predict performance conjunc-
tively (i.e. multiply the estimates of all the skills used in a step), and update each skill
separately as if assigning it sole responsibility for the step’s success or failure [27].

To fit models that maximize data likelihood, we use EM for Bayesian Knowledge
Tracing and Control-based models, and R’s stats and igraph packages for Perfor-
mance Factors Models and Constraint-based models.

5.2 Selecting Features

Help type H on word W on day i succeeds if W is fluent at the first encounter on day j.
To find which features best predict success, we use stepwise linear regression with
success as response variable and features as predictors, and optimize AIC, defined as:

 AIC = 2 × k – 2 × ln(L)

Here k is the number of parameters of the model and L the data likelihood. A one-way
ANOVA tests if the features significantly (p<0.01) explain success. The initial fea-
tures were all selected: student’s reading level, student proficiency (% of words ac-
cepted as fluent when first seen each day), story’s difficulty level, word length, word
frequency in English, word position in the story, the number of prior encounters of the
word, and the word class, defined by which Reading Tutor interventions apply to it.

5.3 Learning Classifiers to Predict Help Success

To predict based on the student model, the selected features, and the type of help
whether help will succeed, i.e. lead to reading the word fluently at the next encounter
(cf. Figure 1), we trained three types of classifiers – two based on rules (Part [10] and
JRip [7]) and one on random trees, using Weka1. Here is an example of a learned rule:

1 http://www.cs.waikato.ac.nz/ml/weka

166 S. Lallé et al.

1) Word = c145
2) AND Story_Level = B
3) AND Student_Model_Prediction > 0.6
4) AND Help_Type = ”SayWord”

 Fluent (22/22)

Clause 1 specifies that the rule applies to words in the class “c145,” for which the
feasible help types (described in [13]) are 1 (“Autophonics”), 4 (“Recue”), and 5
(“RhymesWith”). Clause 2 specifies that the story is at a grade 2 level. Clause 3
specifies that based on prior data, the student model estimates probability over 0.6
that the student will read the word fluently. Clause 4 specifies help type. We compute
confidence in a rule as the frequency of success in the training instances to which the
rule applies. The rule here predicts with confidence 22/22 that “SayWord” help will
succeed. We prune rules with confidence below 0.75 (Weka’s default).

5.4 Using a Predictor of Help Success as a Decision Policy for What Help to Pick

The decision policy based on the trained classifier works as follows: Choose the type
of help specified by whichever rule applies to the current situation and has the highest
confidence according to the training data. If there is more than one such rule, pick
randomly among them. An alternative is to train a separate model to predict success
for each type of help, and pick a type with the maximum probability of success.

6 Experimental Results

We evaluated our method on Reading Tutor data (cf. section 4). To split the data into
two sets, one to train a student model and one to train and test a success predictor, we
first sorted the data alphabetically by student initials, and used the first 60% to train a
student model. Then we used the remaining 40% to train and test success predictors
using 10-fold cross-validation. That is, we partitioned the students into 10 disjoint
folds, pooled 9 of them to train a predictor, and tested it on the remaining fold. We
repeated this procedure for each fold, and averaged the results. To test how well a
student model fit the data, we used it to predict each time the Reading Tutor gave help
on a word whether the student read the word fluently at the next encounter of it.

We measure model accuracy as percentage of correct predictions, which Table 3
lists from highest to lowest. We score a probabilistic prediction as correct if it rates
the true outcome of the next encounter as likelier than 50%. Varying this probability
threshold trades off false positive and false negative errors along an ROC curve. The
area under the ROC Curve (AUC) measures the probability that given a fluent and
non-fluent instance, the model will correctly identify which is which. AUC of 1
means the model is perfect; AUC of 0.5 means the model is no better than chance.

AIC (defined in section 5.2) measures the goodness of fit to training data based on
data likelihood, penalized by the number of parameters k. Here k is the number of
model parameters multiplied by the number of skills and the number of students.

 Comparing Student Models in Different Formalisms 167

Table 3. Predictive accuracy of each student model, and of help success prediction based on it

Type of student
model

Predictiveness of student models Predictors of help success
Accuracy AUC AIC Coverage Accuracy

Bayesian
Knowledge Tracing

84%
(± 2.6%)

0.68 5.1 E+4 32%
75%

(± 4.1%)

Control-based
model

83%
(± 2.9%)

0.67 7.2 E+4 34%
73%

(± 4.4%)
Performance Factor

model
81%

(± 3%)
0.65 5.5 E+4 26%

68%
(± 4.4%)

Constraint-based
model

80%
(± 2.8%)

0.65 5.6 E+4 25%
65%

(± 4.3%)

Significance on McNemar’s test: ** 0.01 < p < 0.05; *** p ≤ 0.01

All 4 diagnostic techniques beat the majority class (76% fluent words in our data).
These results are consistent with a previous evaluation of Knowledge Tracing [27] on
a different set of Reading Tutor data, which found accuracies ranging from 72% to
87%, but below 35% on non-fluent instances – which might explain why AUC, which
measures a model’s accuracy in distinguishing positive from negative instances [24],
was 0.68 or worse in our data. AIC rated Bayesian Knowledge Tracing highest, pena-
lizing the control-based model because it has more parameters than the other models.

Table 3 evaluates each success predictor by its cross-validated accuracy on help
given to held-out students. We show results only from JRip, because it beat the other
two classifier methods (by less than 2%). Bayesian Knowledge Tracing did best.
Coverage is the proportion of words in the test set to which a rule of a policy applies.

Predictors of help success were less accurate than the student models they used.
Evidently, predicting whether a student will read a word fluently at the next encounter
is easier than predicting whether help on that word will succeed. A possible reason is
data sparseness: we predict success of each help type from the training instances
where the Reading Tutor happened to give that type, which may be very few.

To test the statistical reliability of accuracy differences between predictors of help
success rate, we used McNemar’s test, which checks for significant differences be-
tween two classifiers C1 and C2 on the same data using this formula:

 χ² = (d1 − d2)² / (d1 + d2)

Here d1 is the number of instances classified as positive by C1 but negative by C2,
and d2 is the number of instances classified as positive by C2 but negative by C1. The
sum d1 + d2 exceeds 80 in our data, well over the minimum of 10 specified by
McNemar [15], so this test can be approximated as a Chi-squared distribution. Each
two consecutive predictors in Table 3 differ significantly (p<0.025), assuming neglig-
ible effects of statistical dependencies among trials with the same student or word.

Finally, we computed the expected percentage of words read fluently at the next
encounter after help based on each learned policy. The difference between expected
and actual percentages represents the simulated increase in help success, shown in
Table 4. (Simulated means based on historical data rather than on new experiments.)
The last row shows results when solely picking types of help with the highest success
rate in the training set. We compute the expected help success rate E:

 **

168 S. Lallé et al.

| ݐ݊݁ݑ݈ܨሺܧ ,כ݄ ܵ, ሻܨ

Here S is the student model, F is the set of student and domain features, and h* is the
type of help with the highest estimated probability of success in that situation:

כ݄ ൌ argmax ,݄ | ݐ݊݁ݑ݈ܨሺܧ ܵ, ሻܨ

Table 4. Expected absolute percentage increase in (simulated) help success

Diagnosis technique
(type of student model)

Expected increase in
help success

Coverage (% of test set
covered by rules)

Bayesian Knowledge Tracing 5.2% 32%
Control-based model 5.1% 34%

Performance Factor Model 4.7% 26%
Constraint-based model 4.5% 25%

Average success in the training set 2.4%

7 Conclusion

This paper presents new methods to compare student models and induce help policies.
Prior work compared the predictive accuracy of student models expressed in the same
formalism, e.g. cognitive modeling or Item Response Theory. In contrast, we compare
the impact of student models on expected success of tutorial decisions based on them,
a measure more directly relevant to utility than predictive accuracy is. We believe
quantitative comparison of student models across different formalisms is novel.

We described a method to learn a policy for picking which type of help to give in a
given situation, based on types of help, student features, domain features, and a stu-
dent model, by using this information to learn the probability that help will succeed,
and then picking the type of help likeliest to succeed in a given situation. Using data
from Project LISTEN’s Reading Tutor, we showed that success predictors differ sig-
nificantly, depending on the student model used. All four learned policies improved
the Reading Tutor’s expected success compared to its original randomized decisions.
A 5.2% increase despite only 32% coverage implies 16.3% increase on the covered
test instances; thus better-generalized policies could potentially triple help success.

Our approach has several limitations. It applies only to tutors that decide among
multiple types of applicable help. It assumes that the logged decisions were rando-
mized, and that their outcomes can be computed from the ensuing tutorial interac-
tions. The learned policy’s coverage and accuracy in predicting whether a given type
of help will succeed in a given situation are limited by the number of observations in
the logged training data of the tutor giving that type of help in that situation. Thus the
method can only learn policies followed sufficiently often in the data to estimate their
success. The learned policy is therefore vulnerable to under-covering and over-
fitting. The accuracy of the cross-validated estimate of the learned policy’s expected
success is similarly limited by the number of observations of each situation-decision
pair in the held-out test data. Both the policy and the estimate of its success assume
that the outcomes of the held-out logged instances are representative of future unseen
cases. This inductive leap is the price we pay for evaluating the policy based on its

 Comparing Student Models in Different Formalisms 169

simulated rather than actual success. Future work includes trying more accurate stu-
dent models such as LR-DBN [26], more powerful classifiers such as Support Vector
Machines (SVM) or Random Forests, analysis of how student model accuracy affects
the accuracy of predicting the success of help, learning more general policies to in-
crease coverage and reduce overfitting, and experiments to test how accurately ex-
pected success predicts actual success in practice.

Acknowledgements. This work was supported by the first author’s PhD scholarship
and travel grant from the Rhône-Alpes Region in France, and by the Institute of Edu-
cation Sciences, U.S. Department of Education, through Grant R305A080628 to Car-
negie Mellon University. The opinions expressed are those of the authors and do not
necessarily represent the views of the Institute or U.S. Department of Education. We
thank the children, schools, and LISTENers who generated, collected, and organized
Reading Tutor data.

References

1. Anderson, J.R., Gluck, K.: What role do cognitive architectures play in intelligent tutoring sys-
tems. In: Cognition and Instruction: Twenty-Five Years of Progress, pp. 227–262. Lawrence
Erlbaum, Mahwah (2001)

2. Balacheff, N., Gaudin, N.: Students conceptions: an introduction to a formal characteriza-
tion. Cahier Leibniz 65, 1–21 (2002)

3. Barnes, T., Stamper, J., Lehman, L., Croy, M.: A pilot study on logic proof tutoring using
hints generated from historical student data. In: Procs. of the 1st International Conference
on Educational Data Mining, Montréal, Canada, pp. 552–557 (2008)

4. Beck, J.E., Woolf, B.P., Beal, C.R.: ADVISOR: a machine-learning architecture for intel-
ligent tutor construction. In: Procs. of the 17th AAAI Conference on Artificial Intelligence,
Boston, MA, pp. 552–557 (2000)

5. Cen, H., Koedinger, K., Junker, B.: Comparing two IRT models for conjunctive skills.
In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091,
pp. 796–798. Springer, Heidelberg (2008)

6. Chi, M., VanLehn, K., Litman, D., Jordan, P.: Inducing effective pedagogical strategies us-
ing learning context features. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010.
LNCS, vol. 6075, pp. 147–158. Springer, Heidelberg (2010)

7. Cohen, W.W.: Fast Effective Rule Induction. In: Procs. of the 12th International Confe-
rence on Machine Learning, Tahoe City, CA, pp. 115–123 (1995)

8. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural
knowledge. User Modelling and User-Adapted Interaction 4, 253–278 (1995)

9. Desmarais, M.C.: Performance comparison of item-to-item skills models with the IRT sin-
gle latent trait model. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP
2011. LNCS, vol. 6787, pp. 75–86. Springer, Heidelberg (2011)

10. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: Procs. of
the 15th International Conference on Machine Learning, Madison, WI, pp. 144–151 (1998)

11. Gertner, A.S., Conati, C., VanLehn, K.: Procedural help in Andes: Generating hints using
a Bayesian network student model. In: Procs. of the 15th National Conference on Artificial
Intelligence, Madison, WI, pp. 106–111 (1998)

170 S. Lallé et al.

12. Gong, Y., Beck, J.E., Heffernan, N.T.: How to Construct More Accurate Student Models:
Comparing and Optimizing Knowledge Tracing and Performance Factor Analysis. Interna-
tional Journal of Artificial Intelligence in Education 21(1), 27–46 (2011)

13. Heiner, C., Beck, J., Mostow, J.: Improving the help selection policy in a Reading Tutor
that listens. In: Procs. of the InSTIL/ICALL 2004 Symposium on NLP and Speech Tech-
nologies in Advanced Language Learning Systems, Venice, Italy, pp. 195–198 (2004)

14. Le, N.-T., Pinkwart, N.: Can Soft Computing Techniques Enhance the Error Diagnosis
Accuracy for Intelligent Tutors? In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panour-
gia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 320–329. Springer, Heidelberg (2012)

15. McNemar, Q.: Note on the sampling error of the difference between correlated proportions
or percentages. Psychometrika 12(2), 153–157 (1947)

16. Minh Chieu, V., Luengo, V., Vadcard, L., Tonetti, J.: Student modeling in complex do-
mains: Exploiting symbiosis between temporal Bayesian networks and fine-grained didac-
tical analysis. International Journal of Artificial Intelligence in Education 20(3), 269–301
(2010)

17. Mitrovic, A., Koedinger, K., Martin, B.: A comparative analysis of cognitive tutoring and
constraint-based modeling. In: Procs. of the 9th International Conference on User Model-
ing, Johnstown, PA, pp. 313–322 (2003)

18. Mitrovic, A., Ohlsson, S.: Evaluation of a Constraint-Based Tutor for a Database. Interna-
tional Journal of Artificial Intelligence in Education 10(3-4), 238–256 (1999)

19. Mostow, J., Aist, G.: Evaluating tutors that listen: An overview of Project LISTEN.
In: Smart Machines in Education: The Coming Revolution in Educational Technology,
pp. 169–234. MIT/AAAI Press, Cambridge, MA (2001)

20. Ohlsson, S.: Constraint-based student modeling. NATO ASI Series F Computer and Sys-
tems Sciences, vol. 125, pp. 167–189 (1994)

21. Pavlik, P.I., Cen, H., Koedinger, K.: Performance Factors Analysis–A New Alternative to
Knowledge Tracing. In: Procs. of the 15th International Conference on Artificial Intelli-
gence in Education, Auckland, New Zealand, pp. 531–538 (2009)

22. Razzaq, L., Heffernan, N.T.: Scaffolding vs. Hints in the Assistment System. In: Ikeda,
M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 635–644. Springer,
Heidelberg (2006)

23. Stamper, J., Barnes, T., Lehmann, L., Croy, M.: The hint factory: Automatic generation of
contextualized help for existing computer aided instruction. In: Procs. of the International
9th Conference on Intelligent Tutoring Systems Young Researchers Track, Montréal, Can-
ada, pp. 71–78 (2008)

24. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293
(1988)

25. VanLehn, K.: Student modeling. In: Foundations of Intelligent Tutoring Systems, pp. 55–78.
Lawrence Erlbaum, Mahwah (1988)

26. Verbert, K., Drachsler, H., Manouselis, N., Wolpers, M., Vuorikari, R., Duval, E.: Dataset-
driven research for improving recommender systems for learning. In: Procs. of the 1st In-
ternational Conference on Learning Analytics and Knowledge, Banff, Canada, pp. 44–53
(2011)

27. Xu, Y., Mostow, J.: Comparison of methods to trace multiple subskills: Is LR-DBN best?
In: Procs. of the 5th International Conference on Educational Data Mining, Chania,
Greece, pp. 41–48 (2012)

