
Does Help Help?
A Bayes Net Approach to Modeling Tutor Interventions

Kai-min Chang, Joseph E. Beck, Jack Mostow, and Albert Corbett

Project LISTEN, School of Computer Science
Carnegie Mellon University, Pittsburgh PA, 15213, USA

kkchang@cs.cmu.edu

Abstract
This paper describes an effort to measure the effectiveness
of tutor help in an intelligent tutoring system. Conventional
pre- and post- test experimental methods can determine
whether help is effective but are expensive to conduct.
Furthermore, a pre and post- test methodology ignores a
source of information: students request help about words
they do not know. Therefore, we propose a dynamic Bayes
net (which we call the help model) that models tutor help
and student knowledge in one coherent framework. The
help model distinguishes two different effects of help:
scaffolding immediate performance vs. teaching persistent
knowledge that improves long term performance. We train
the help model to fit the student performance data gathered
from usage of Reading Tutor. The parameters of the trained
model suggest that students benefit from both the
scaffolding and teaching effects of help. Thus, our
framework is able to distinguish two types of influence that
help has on the student, and can determine whether help
helps learning without an explicit controlled study.

Introduction
An important property of an Intelligent Tutoring System
(ITS) is its ability to help students. Thus, a basic question
in ITS is to measure the effectiveness of its help. Does
help help? Does one type of help work better (Heiner,
Beck et al. 2004)? Even though the tentative answer is yes
by most ITS researchers, (otherwise, why include help at
all in the tutor?), answering such questions is surprisingly
difficult. Furthermore, the question of “does help help?” is
ill-defined; what does it mean to help students? This paper
describes an effort to specify how help impacts student and
measure the effectiveness of an ITS’s help.

Ideally, we would like to set up a controlled pre- and post-
test experiment to measure the effectiveness of tutor help.
A typical experimental setup works as follows: in the pre-
test, we assess student performance before using the ITS.
Then, we will randomly assign students into two groups.
The experimental group uses one version of ITS with the

Compilation copyright © 2006, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

tutor help that we’re evaluating, whereas the control group
uses another version of ITS without the particular tutor
help. After students use the ITS for some time, we assess
student performance of the two groups again in the post-
test. Finally, we test the hypothesis that the performance
improvement in the experimental group is significantly
different than the control group. Although this
experimental design is sound and reliable, a controlled
experiment takes a long time to conduct and is often too
expensive to conduct although exceptions exist (e.g.
Arroyo, Beck et al. 2001).

Given that the ideal pre- and post-test experimental studies
are often impractical, there are several other approaches to
measure the effectiveness of tutor help. For example, we
may want to conduct user case studies and directly ask the
students whether they find the tutor help effective.
Unfortunately, while user case studies provide valuable
qualitative feedback, they lack the ability to draw
conclusive causal-relationships. Alternatively, we can try
to infer tutor help efficacy from the data. For instance, one
might claim that a tutor help is effective if student
performance improves when they receive help, compared
to when they do not receive help. However, this approach
raises the question of when to assess student performance.
Immediate performance is prone to scaffolding effects
where tutor help merely provides a short-term performance
boost. For example, some help types provide students the
answer; if students simply mimic the help, should we count
that as learning?

To measure the effect of help on persistent knowledge
learning, we can use delayed performance. Since what we
care about is not just the effect of tutor help on student
performance, but rather its effect on student knowledge. In
an ITS, student knowledge is often modeled by a student
model that describes the learner’s proficiencies at various
skills. Indeed, tutor help and student model are two tightly
coupled components in an ITS. For example, tutor help is
mostly provided where the student has the least
knowledge. Despite the close relationship between student
model and tutor help, the two components are often
evaluated and modeled independently (e.g. Heiner, Beck et
al. 2004; Beck, Jia et al. 2004).

In this paper, we describe a methodology to model both
tutor help and the student’s knowledge in one coherent
framework. This configuration allows us to tease apart the
effect of help into 1) scaffolding immediate performance
and 2) teaching persistent knowledge that improves long
term performance. First, we first describe prior work on
assessing student knowledge using Knowledge Tracing and
dynamic Bayes nets. Then, we demonstrate how dynamic
Bayes nets can be used to simultaneously model the
effectiveness of tutor help and student knowledge. We
evaluate the proposed framework with student performance
data in Reading Tutor. Finally, we conclude with
contributions and future work.

Prior Work on Assessing Student Knowledge

Knowledge Tracing
Knowledge Tracing (KT) (Corbett and Anderson 1995) is
an established technique for student modeling and was first
used in the ACT Programming Languages Tutor. The goal
of knowledge tracing is to estimate student's knowledge
from their observed actions. Prior work in this area (Beck
and Sison 2004) has shown that KT is an effective
approach for ITS that use ASR output to model students.

As illustrated in Figure 1 and Equation 1, KT maintains
four constant parameters for each skill. Notice, KT
assumes there is no forgetting, so the forget parameter is
set to 0. Two parameters, already know and learn, are
called learning parameters and refer to the student's initial
knowledge and to the probability of learning a skill given
an opportunity to apply it, respectively. Two other
parameters, guess and slip, are called performance
parameters and account for student performance not being
a perfect reflection of his underlying knowledge. The
guess parameter is the probability that a student who has
not mastered the skill can generate a correct response. The
slip parameter is used to account for even knowledgeable
students making an occasional mistake.

At each successive opportunity to apply a skill, KT updates
its estimated probability that the student knows the skill,
based on the skill-specific learning and performance
parameters and the observed student performance
(evidence).

Figure 1 Graphical representation of

Knowledge Tracing

()
()
()
()
()trueKfalseCslip

falseKtrueCguess
trueKfalseKforget

falseKtrueKlearn
trueKknowalready

nn

nn

nn

nn

===
===

====
===

==

−

−

|Pr:
|Pr:

0|Pr:
|Pr:

Pr:

1

1

0

Equation 1 Parameters of Knowledge Tracing

Dynamic Bayes Net
Dynamic Bayes Nets (DBNs; Dean 1989) are another
technique that have been applied to model student
knowledge in ITS (Conati, Gertner et al. 2002). Reye
(Reye 2004) showed that KT is special case of a DBN.

In previous research, we implemented a generic Bayes net
toolkit (BNT-SM; Chang, Beck et al. 2006) for student
modeling. BNT-SM inputs a data set and a compact XML
specification of a DBN model hypothesized by a researcher
to describe causal relationships among student knowledge
and observed behavior. It generates and executes the code
to train and test the model using the Bayes Net Toolbox
(Murphy 1998). BNT-SM allows researchers to easily
explore different hypothesis with respect to the knowledge
representation in a student model. We show how to use
BNT-SM to construct a DBN that models the effectiveness
of tutor help on student knowledge in the next section.

Using DBN to Assess Effect of Help on
Student Knowledge

Students often receive help on skills where they have the
least knowledge. Despite the close relationship between
student knowledge and tutor help, the two components are
often modeled independently. In this section, we describe
how to use DBNs to model both tutor help and the
student’s knowledge simultaneously.

The DBN that we propose here extends KT to include an
additional help node, representing whether or not the
student receives tutor help while performing a skill. We

guess &
slip

already
know

learn &
forget Student

Knowledge
(K0)

Student
Knowledge

(Kn)

Student
Performance

(C0)

Student
Performance

(Cn)

call this network the help model. By modeling the tutor
help and student knowledge simultaneously, the help
model allows us to tease apart two different effects of tutor
help: 1) scaffolding and 2) teaching. Whereas the effect of
scaffolding is immediate (helping student to perform
correctly in the current attempt), the effect of teaching is
persistent (helping student to learn the knowledge and
perform better on future problems). Figure 2 depicts the
two effects of tutor help. Notice that Figure 2 is identical
to Figure 1, with the addition of the new help node and the
teach and scaffold links.

Equation 2 shows how the learning and performance
parameters are computed in the help model. Notice how
the KT model and the help model represent these
parameters differently. For example, whereas the KT
model models a single learn parameter through Pr(learn),
the help model models 2 learn parameters through
Pr(learn|help) and Pr(learn|no help). The help model
conditions the parameters on whether or not tutor help is
provided.

Figure 2 Graphical representation of the Help model

()

()

()
()

()
()

()
()

()
()falseHtrueKfalseChelpnoslip

trueHtrueKfalseChelpslip

falseHfalseKtrueChelpnoguess
trueHfalseKtrueChelpguess

falseHtrueKfalseKhelpnoforget
trueHtrueKfalseKhelpforget

falseHfalseKtrueKhelpnolearn
trueHfalseKtrueKhelplearn

falseHtrueKhelpnoknowalready
trueHtrueKhelpknowalready

nnn

nnn

nnn

nnn

nnn

nnn

nnn

nnn

====
====

====
====

====
====

====
====

===
===

−

−

−

−

,|Pr:|
,|Pr:|

,|Pr:|
,|Pr:|

,|Pr:|
,|Pr:|

,|Pr:|
,|Pr:|

|,Pr:|
|,Pr:|

1

1

1

1

00

00

Equation 2 Parameters of the Help model

Evaluate the Effect of Help
Given the proposed help model, we now train the model to
fit the student performance data gathered from usage of
Reading Tutor. The trained model parameters will allow
us to evaluate the effectiveness of tutor help by seeing
whether help impacts the learn parameters (teach) or the
guess parameters (scaffold). Moreover, we also train the
original KT model to compare how the two models fit
student performance data.

Data Collection
Our data came from 360 children between six and eight
years old who used Project LISTEN’s Reading Tutor
(Mostow and Aist 2001) in the 2002-2003 school year.
Over the course of the school year, these students read
approximately 1.95 million words (as heard by the
automatic speech recognizer). On average, students used
the tutor for 8.5 hours. During a session with the Reading
Tutor, the tutor presented one sentence (or fragment) at a
time for the student to read aloud. The student’s speech
was segmented into utterances delimited by silences. Each
utterance was processed by the Automatic Speech
Recognizer (ASR) and aligned against the sentence. This
alignment scored each word of the sentence as either
accepted (thought by the ASR to be read correctly) or
rejected (thought to be misread or omitted). For modeling
purposes, this paper treats each English word as a separate
skill.

Parameter Estimation
We first separated the training and testing set by splitting
the students into two groups. The split was done by sorting
the students according to their amount of Reading Tutor
usage and alternately assigning students to the two sets.
We used the Expectation Maximization (EM) algorithm to
optimize the data likelihood (i.e. the probability of
observing our student performance data). EM is the
standard algorithm used in the machine learning
community to estimate DBN parameters when the structure
is known and there exist latent variables. EM is
guaranteed to converge to a local maximum on the
likelihood surface. We used the junction tree algorithm for
exact inference. We train two DBNs: one models the
traditional KT model and the other one model the help
model which models the effect of tutor intervention on
student performance.

Evaluation of Student Model
Since student knowledge is a latent variable that cannot be
directly observed, we have no gold standard to compare
against. Instead, we used the trained student model to
predict whether the ASR would accept or reject a student’s
next attempt of the problem. That is, we observe reading
item by item and the task is to predict whether next word
will be read correctly (in unseen test data). An ROC
(Receiver Operating Characteristic) curve measures the

scaffold

teach

guess &
slip

already
know

learn &
forget Student

Knowledge
(K0)

Student
Knowledge

(Kn)

Student
Performance

(C0)

Student
Performance

(Cn)

Tutor Help
(H0)

Tutor
Help (Hn)

performance of a binary classifier by plotting the true
positive rate against the false positive rate for varying
decision thresholds. The area under the ROC curve (AUC)
is a reasonable performance metric for classifier systems,
assuming no knowledge of the true ratio of
misclassification costs (Hand, Mannila et al. 2001).

To evaluate the accuracy of our model’s internal estimate
of student knowledge, we compare both the AUC and the
correlation between its estimates and student performance
(as scored by the ASR) on the held out test data.

As Table 1 shows, the simpler KT model outperforms the
help model on both the correlation and the AUC evaluation
metrics. Although the two correlation coefficients are
reliably different at p < 0.01, their values are quite
comparable. The values of model fit appear low because
we are predicting individual student performance data
rather than aggregated performance. It is difficult to
predict a student’s individual responses. We performed a
cheating experiment to determine the best correlation with
student performance that a student model could
achieve. The cheating experiment allowed the student
model to peak at future data before making a
prediction. However, the cheating model was limited in
that it had to make the same prediction for the current item
as it made for the prior item, unless its last estimate was
incorrect. Another way of thinking of this model is that it
is monotonic. That is, if it predicts a student will get an
item correct and he gets it correct, the model cannot then
backtrack and predict he will get the next item incorrect. It
must first receive evidence that it has over- or under-
estimated the student's knowledge before changing its
prediction. The cheating experiment revealed that the
maximum correlation of any model that obeyed
monotonicity constraints was only 0.5. Note that this
maximum performance requires peeking at the data to be
predicted and is not necessarily attainable by any actual
model.

Table 1. Comparing the model fit of the KT model
and the help model on held out test data.

 Correlation AUC
KT 0.144 0.615
Help 0.135 0.612

Evaluation of the Effectiveness of Tutor Help
To evaluate the effectiveness of tutor help, we now
compare the model parameters estimated by both the KT
model and the help model.

Table 2 shows the parameters estimated for the KT model
and the help model, respectively. Notice, the KT model
does not consider the help information, whereas the help
model models the parameters conditioned on whether or
not tutor help is given or not. Thus, even though the help
model has worse model fit to the KT model, the help
model is more informative than the KT model. Notice,

model informativeness is sometimes at odd with model fit.
For example, structural equation models usually do not fit
data as well as simple regression, but are more
interpretable and lend themselves to create new hypothesis
(Cohen 1995). In this case, the informativeness outweighs
the slight decrease in model fit.

As seen in the Help model of Table 2, the probability of
already know is much higher when there is no help than
when there is help. This suggests that tutor helps are more
likely to be provided to harder words – a positive finding.
Also, the probability of learning is higher when there is
help than when there is no help. Even though the
difference is small, it is at least in the right direction,
suggesting that tutor helps do have an effect on long term
learning.

Table 2. Comparing the parameters estimated by the
KT model and the help model.

Help model KT model
No Help
Given

Help
Given

Already
Know

0.618 0.660 0.278

Learn 0.077 0.083 0.088
Guess 0.689 0.655 0.944
Slip 0.056 0.058 0.009

Also seen in the Help model in Table 2, the probability of
guess is higher when there is help than when there is no
help on the first encounter and that the probability of slip is
higher when there is no help than when there is help. Both
the learning and scaffolding effects are statistically reliable
at p<0.05 (paired samples t-test, weighted by number of
observations for each skill), suggesting that tutor help does
have an effect on student performance.

Contribution
In this paper, we have proposed a methodology to infer the
efficacy of help from observational data rather than
experimental data. One question that we are interested to
explore is how this framework compares to the pre- and
post- test experimental design (Arroyo, Beck et al. 2001).
Do they draw similar conclusions, despite the fact that an
experimental design is usually more expensive to conduct
than data fitting with DBNs? Moreover, what kind of
causal relationship can we conclude with Bayes nets?

The second contribution this paper makes is on
simultaneous representation of tutor help and the student
model. Previous approaches addressed these problems
separately by ignoring one to solve the other (Heiner, Beck
et al. 2004; Beck, Jia et al. 2004). Specifically, KT ignored
help, and most embedded experiments (Mostow and Aist
2001) ignored student knowledge, or how it changed over
time – e.g. our statistical analyses of tutorial interventions

included student identity as a factor or pretest score as a
covariate item.

The third contribution this paper makes is on
distinguishing between two effects of help: scaffolding
immediate performance (scaffolding) vs. boosting
persistent learning (learning) of help. Prior work assumed
help has no direct impact on student learning (Conati,
Gertner et al. 2002). Moreover, because we model tutor
help and student model in one coherent framework, we can
estimate the scaffolding and learning effect. This
separation of immediate vs. persistent effect of help allows
researchers to understand what the tutor intervention is
really doing. For instance, it is possible to investigate
whether some tutor interventions help persistent learning
while others mainly help immediate performance.

Future Work and Conclusions
Currently, due to limitations in BNT-SM, we could only
test models with discrete, binary variables. For example,
in the help model, we only answer the question of does
help helps at all. A more interesting question to ask is
which type of help helps better and when. Thus, a future
study is to extend BNT-SM to handle multi-nominal or
even continuous variables, which allows modeling of
different help types.

Another question that bothers us is why doesn’t the help
model fit the student performance data better then the KT
model which ignores the tutor intervention data? We
suggest a hypothesis that the help model has more
parameter to estimate (8 parameters per skill and there are
roughly 3000 skills) than the KT model (4 parameters per
skill) and that the EM procedure may over fit the training
set. Future study is needed to avoid this over fitting issue.
One solution to this problem is to construct a hierarchical
model where help has same impact on words.

Although our study has been mainly focused on modeling
tutor help, our methodology can be applied to any kind of
tutor intervention in general. Our work focuses on item
level help (largely student initiated) because that is where
we have the most data. This work is a challenging data
mining problem because it requires a huge amount of data
to estimate the model parameters reliably.

This paper describes an effort to measure the effectiveness
of tutor help in an intelligent tutoring system. We propose
a dynamic Bayes net to model tutor helps and student
knowledge in one coherent framework. Even though the
additional information in the help model does not yield a
superior model fit, its informativeness outweighs the slight
decrease in model fit. That is, the help model allows us to
test evaluate the effectiveness of tutor intervention, which
is essential to estimate the effectiveness of an ITS.

Acknowledgement
This work was supported by the National Science
Foundation, ITR/IERI Grant No. REC-0326153. Any
opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science
Foundation or the official policies, either expressed or
implied, of the sponsors or of the United States
Government. We also acknowledge members of Project
LISTEN who contributed to the design and development of
the Reading Tutor, and the schools that used the tutor.

References
Arroyo, I., J. E. Beck, C. R. Beal, R. E. Wing and B. P.

Woolf (2001). Analyzing students' response to
help provision in an elementary mathematics
Intelligent Tutoring System. Help Provision and
Help Seeking in Interactive Learning
Environments. Workshop at the Tenth
International Conference on Artificial Intelligence
in Education., San Antonio, TX.

Beck, J. E., P. Jia and J. Mostow (2004). "Automatically
assessing oral reading fluency in a computer tutor
that listens." Technology, Instruction, Cognition
and Learning 2: 61-81.

Beck, J. E. and J. Sison (2004). Using knowledge tracing
to measure student reading proficiencies.
Proceedings of the 7th International Conference
on Intelligent Tutoring Systems, Maceio, Brazil.

Chang, K., Beck, J. E., Mostow, J. and Corbett, A. (2006).
A Bayes Net Toolkit for Student Modeling in
Intelligent Tutoring Systems. Intelligent Tutoring
Systems.

Cohen, P. R. (1995). Empirical Methods for Artificial
Intelligence. Cambridge, Massachusetts, MIT
Press.

Conati, C., A. Gertner and K. VanLehn (2002). "Using
Bayesian Networks to Manage Uncertainty in
Student Modeling." User Modeling and User-
Adapted Interaction 12(4): 371-417.

Corbett, A. and J. Anderson (1995). "Knowledge tracing:
Modeling the acquisition of procedural
knowledge." User modeling and user-adapted
interaction 4: 253-278.

Dean, T., Kanazawa, K. (1989). "A model for reasoning
about persistence and causation." International
Journal of Computational Intelligence 5: 142-150.

Hand, D., H. Mannila and P. Smyth (2001). Principles of
Data Mining. Cambridge, Massachusetts, MIT
Press.

Heiner, C., J. E. Beck and J. Mostow (2004). Improving
the Help Selection Policy in a Reading Tutor that
Listens. Proceedings of the InSTIL/ICALL
Symposium on NLP and Speech Technologies in

Advanced Language Learning Systems, Venice,
Italy.

Mostow, J. and G. Aist (2001). Evaluating tutors that
listen: An overview of Project LISTEN. Smart
Machines in Education. P. Feltovich. Menlo Park,
CA, MIT/AAAI Press: 169-234.

Murphy, K. (1998). Bayes Net Toolbox for Matlab. 2006.
Reye, J. (2004). "Student modeling based on belief

networks." International Journal of Artificial
Intelligence in Education 14: 1-33.

