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Abstract 
This paper describes an effort to measure the effectiveness 
of tutor help in an intelligent tutoring system.  Conventional 
pre- and post- test experimental methods can determine 
whether help is effective but are expensive to conduct.  
Furthermore, a pre and post- test methodology ignores a 
source of information: students request help about words 
they do not know.  Therefore, we propose a dynamic Bayes 
net (which we call the help model) that models tutor help 
and student knowledge in one coherent framework.  The 
help model distinguishes two different effects of help: 
scaffolding immediate performance vs. teaching persistent 
knowledge that improves long term performance.  We train 
the help model to fit the student performance data gathered 
from usage of Reading Tutor.  The parameters of the trained 
model suggest that students benefit from both the 
scaffolding and teaching effects of help.  Thus, our 
framework is able to distinguish two types of influence that 
help has on the student, and can determine whether help 
helps learning without an explicit controlled study. 

Introduction   
An important property of an Intelligent Tutoring System 
(ITS) is its ability to help students.  Thus, a basic question 
in ITS is to measure the effectiveness of its help.  Does 
help help?  Does one type of help work better (Heiner, 
Beck et al. 2004)?  Even though the tentative answer is yes 
by most ITS researchers, (otherwise, why include help at 
all in the tutor?), answering such questions is surprisingly 
difficult.  Furthermore, the question of “does help help?” is 
ill-defined; what does it mean to help students?  This paper 
describes an effort to specify how help impacts student and 
measure the effectiveness of an ITS’s help.  
 
Ideally, we would like to set up a controlled pre- and post-
test experiment to measure the effectiveness of tutor help.  
A typical experimental setup works as follows: in the pre-
test, we assess student performance before using the ITS.  
Then, we will randomly assign students into two groups.  
The experimental group uses one version of ITS with the 
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tutor help that we’re evaluating, whereas the control group 
uses another version of ITS without the particular tutor 
help.  After students use the ITS for some time, we assess 
student performance of the two groups again in the post-
test.  Finally, we test the hypothesis that the performance 
improvement in the experimental group is significantly 
different than the control group.  Although this 
experimental design is sound and reliable, a controlled 
experiment takes a long time to conduct and is often too 
expensive to conduct although exceptions exist (e.g. 
Arroyo, Beck et al. 2001). 
 
Given that the ideal pre- and post-test experimental studies 
are often impractical, there are several other approaches to 
measure the effectiveness of tutor help.  For example, we 
may want to conduct user case studies and directly ask the 
students whether they find the tutor help effective.  
Unfortunately, while user case studies provide valuable 
qualitative feedback, they lack the ability to draw 
conclusive causal-relationships.  Alternatively, we can try 
to infer tutor help efficacy from the data.  For instance, one 
might claim that a tutor help is effective if student 
performance improves when they receive help, compared 
to when they do not receive help.  However, this approach 
raises the question of when to assess student performance.  
Immediate performance is prone to scaffolding effects 
where tutor help merely provides a short-term performance 
boost.  For example, some help types provide students the 
answer; if students simply mimic the help, should we count 
that as learning? 
 
To measure the effect of help on persistent knowledge 
learning, we can use delayed performance.  Since what we 
care about is not just the effect of tutor help on student 
performance, but rather its effect on student knowledge.  In 
an ITS, student knowledge is often modeled by a student 
model that describes the learner’s proficiencies at various 
skills.  Indeed, tutor help and student model are two tightly 
coupled components in an ITS.  For example, tutor help is 
mostly provided where the student has the least 
knowledge.  Despite the close relationship between student 
model and tutor help, the two components are often 
evaluated and modeled independently (e.g. Heiner, Beck et 
al. 2004; Beck, Jia et al. 2004). 



 
In this paper, we describe a methodology to model both 
tutor help and the student’s knowledge in one coherent 
framework.  This configuration allows us to tease apart the 
effect of help into 1) scaffolding immediate performance 
and 2) teaching persistent knowledge that improves long 
term performance.  First, we first describe prior work on 
assessing student knowledge using Knowledge Tracing and 
dynamic Bayes nets.  Then, we demonstrate how dynamic 
Bayes nets can be used to simultaneously model the 
effectiveness of tutor help and student knowledge.  We 
evaluate the proposed framework with student performance 
data in Reading Tutor.  Finally, we conclude with 
contributions and future work. 

Prior Work on Assessing Student Knowledge 

Knowledge Tracing 
Knowledge Tracing (KT) (Corbett and Anderson 1995) is 
an established technique for student modeling and was first 
used in the ACT Programming Languages Tutor.  The goal 
of knowledge tracing is to estimate student's knowledge 
from their observed actions.  Prior work in this area (Beck 
and Sison 2004) has shown that KT is an effective 
approach for ITS that use ASR output to model students. 
 
As illustrated in Figure 1 and Equation 1, KT maintains 
four constant parameters for each skill.  Notice, KT 
assumes there is no forgetting, so the forget parameter is 
set to 0.  Two parameters, already know and learn, are 
called learning parameters and refer to the student's initial 
knowledge and to the probability of learning a skill given 
an opportunity to apply it, respectively.  Two other 
parameters, guess and slip, are called performance 
parameters and account for student performance not being 
a perfect reflection of his underlying knowledge.  The 
guess parameter is the probability that a student who has 
not mastered the skill can generate a correct response.  The 
slip parameter is used to account for even knowledgeable 
students making an occasional mistake. 
 
At each successive opportunity to apply a skill, KT updates 
its estimated probability that the student knows the skill, 
based on the skill-specific learning and performance 
parameters and the observed student performance 
(evidence). 
 

 
Figure 1 Graphical representation of 

Knowledge Tracing 
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Equation 1 Parameters of Knowledge Tracing 

Dynamic Bayes Net 
Dynamic Bayes Nets (DBNs; Dean 1989) are another 
technique that have been applied to model student 
knowledge in ITS (Conati, Gertner et al. 2002).  Reye 
(Reye 2004) showed that KT is special case of a DBN. 
 
In previous research, we implemented a generic Bayes net 
toolkit (BNT-SM; Chang, Beck et al. 2006) for student 
modeling.  BNT-SM inputs a data set and a compact XML 
specification of a DBN model hypothesized by a researcher 
to describe causal relationships among student knowledge 
and observed behavior.  It generates and executes the code 
to train and test the model using the Bayes Net Toolbox 
(Murphy 1998).  BNT-SM allows researchers to easily 
explore different hypothesis with respect to the knowledge 
representation in a student model.  We show how to use 
BNT-SM to construct a DBN that models the effectiveness 
of tutor help on student knowledge in the next section. 

Using DBN to Assess Effect of Help on 
Student Knowledge 

 
Students often receive help on skills where they have the 
least knowledge.  Despite the close relationship between 
student knowledge and tutor help, the two components are 
often modeled independently.  In this section, we describe 
how to use DBNs to model both tutor help and the 
student’s knowledge simultaneously. 
 
The DBN that we propose here extends KT to include an 
additional help node, representing whether or not the 
student receives tutor help while performing a skill.  We 
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call this network the help model.  By modeling the tutor 
help and student knowledge simultaneously, the help 
model allows us to tease apart two different effects of tutor 
help: 1) scaffolding and 2) teaching.  Whereas the effect of 
scaffolding is immediate (helping student to perform 
correctly in the current attempt), the effect of teaching is 
persistent (helping student to learn the knowledge and 
perform better on future problems).  Figure 2 depicts the 
two effects of tutor help.  Notice that Figure 2 is identical 
to Figure 1, with the addition of the new help node and the 
teach and scaffold links. 
 
Equation 2 shows how the learning and performance 
parameters are computed in the help model.  Notice how 
the KT model and the help model represent these 
parameters differently.  For example, whereas the KT 
model models a single learn parameter through Pr(learn), 
the help model models 2 learn parameters through 
Pr(learn|help) and Pr(learn|no help).  The help model 
conditions the parameters on whether or not tutor help is 
provided. 

 
Figure 2 Graphical representation of the Help model 
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Equation 2 Parameters of the Help model 

Evaluate the Effect of Help 
Given the proposed help model, we now train the model to 
fit the student performance data gathered from usage of 
Reading Tutor.  The trained model parameters will allow 
us to evaluate the effectiveness of tutor help by seeing 
whether help impacts the learn parameters (teach) or the 
guess parameters (scaffold).  Moreover, we also train the 
original KT model to compare how the two models fit 
student performance data. 

Data Collection 
Our data came from 360 children between six and eight 
years old who used Project LISTEN’s Reading Tutor 
(Mostow and Aist 2001) in the 2002-2003 school year.  
Over the course of the school year, these students read 
approximately 1.95 million words (as heard by the 
automatic speech recognizer).  On average, students used 
the tutor for 8.5 hours.  During a session with the Reading 
Tutor, the tutor presented one sentence (or fragment) at a 
time for the student to read aloud.  The student’s speech 
was segmented into utterances delimited by silences.  Each 
utterance was processed by the Automatic Speech 
Recognizer (ASR) and aligned against the sentence.  This 
alignment scored each word of the sentence as either 
accepted (thought by the ASR to be read correctly) or 
rejected (thought to be misread or omitted).  For modeling 
purposes, this paper treats each English word as a separate 
skill. 

Parameter Estimation 
We first separated the training and testing set by splitting 
the students into two groups.  The split was done by sorting 
the students according to their amount of Reading Tutor 
usage and alternately assigning students to the two sets.  
We used the Expectation Maximization (EM) algorithm to 
optimize the data likelihood (i.e.  the probability of 
observing our student performance data).  EM is the 
standard algorithm used in the machine learning 
community to estimate DBN parameters when the structure 
is known and there exist latent variables.  EM is 
guaranteed to converge to a local maximum on the 
likelihood surface.  We used the junction tree algorithm for 
exact inference.  We train two DBNs: one models the 
traditional KT model and the other one model the help 
model which models the effect of tutor intervention on 
student performance. 

Evaluation of Student Model 
Since student knowledge is a latent variable that cannot be 
directly observed, we have no gold standard to compare 
against.  Instead, we used the trained student model to 
predict whether the ASR would accept or reject a student’s 
next attempt of the problem.  That is, we observe reading 
item by item and the task is to predict whether next word 
will be read correctly (in unseen test data).  An ROC 
(Receiver Operating Characteristic) curve measures the 
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performance of a binary classifier by plotting the true 
positive rate against the false positive rate for varying 
decision thresholds.  The area under the ROC curve (AUC) 
is a reasonable performance metric for classifier systems, 
assuming no knowledge of the true ratio of 
misclassification costs (Hand, Mannila et al. 2001). 
 
To evaluate the accuracy of our model’s internal estimate 
of student knowledge, we compare both the AUC and the 
correlation between its estimates and student performance 
(as scored by the ASR) on the held out test data. 

 
As Table 1 shows, the simpler KT model outperforms the 
help model on both the correlation and the AUC evaluation 
metrics.  Although the two correlation coefficients are 
reliably different at p < 0.01, their values are quite 
comparable.  The values of model fit appear low because 
we are predicting individual student performance data 
rather than aggregated performance.  It is difficult to 
predict a student’s individual responses.  We performed a 
cheating experiment to determine the best correlation with 
student performance that a student model could 
achieve.  The cheating experiment allowed the student 
model to peak at future data before making a 
prediction.  However, the cheating model was limited in 
that it had to make the same prediction for the current item 
as it made for the prior item, unless its last estimate was 
incorrect.  Another way of thinking of this model is that it 
is monotonic.  That is, if it predicts a student will get an 
item correct and he gets it correct, the model cannot then 
backtrack and predict he will get the next item incorrect.  It 
must first receive evidence that it has over- or under-
estimated the student's knowledge before changing its 
prediction.  The cheating experiment revealed that the 
maximum correlation of any model that obeyed 
monotonicity constraints was only 0.5. Note that this 
maximum performance requires peeking at the data to be 
predicted and is not necessarily attainable by any actual 
model. 
 

Table 1. Comparing the model fit of the KT model 
and the help model on held out test data. 

 Correlation AUC 
KT 0.144 0.615 
Help 0.135 0.612 

Evaluation of the Effectiveness of Tutor Help 
To evaluate the effectiveness of tutor help, we now 
compare the model parameters estimated by both the KT 
model and the help model. 
 
Table 2 shows the parameters estimated for the KT model 
and the help model, respectively.  Notice, the KT model 
does not consider the help information, whereas the help 
model models the parameters conditioned on whether or 
not tutor help is given or not.  Thus, even though the help 
model has worse model fit to the KT model, the help 
model is more informative than the KT model.  Notice, 

model informativeness is sometimes at odd with model fit.  
For example, structural equation models usually do not fit 
data as well as simple regression, but are more 
interpretable and lend themselves to create new hypothesis 
(Cohen 1995).  In this case, the informativeness outweighs 
the slight decrease in model fit. 
 
As seen in the Help model of Table 2, the probability of 
already know is much higher when there is no help than 
when there is help.  This suggests that tutor helps are more 
likely to be provided to harder words – a positive finding.  
Also, the probability of learning is higher when there is 
help than when there is no help.  Even though the 
difference is small, it is at least in the right direction, 
suggesting that tutor helps do have an effect on long term 
learning. 
 

Table 2. Comparing the parameters estimated by the 
KT model and the help model. 

Help model  KT model 
No Help 
Given 

Help 
Given 

Already 
Know 

0.618 0.660 0.278 

Learn 0.077 0.083 0.088 
Guess 0.689 0.655 0.944 
Slip 0.056 0.058 0.009 

 
Also seen in the Help model in Table 2, the probability of 
guess is higher when there is help than when there is no 
help on the first encounter and that the probability of slip is 
higher when there is no help than when there is help.  Both 
the learning and scaffolding effects are statistically reliable 
at p<0.05 (paired samples t-test, weighted by number of 
observations for each skill), suggesting that tutor help does 
have an effect on student performance. 

Contribution 
In this paper, we have proposed a methodology to infer the 
efficacy of help from observational data rather than 
experimental data.  One question that we are interested to 
explore is how this framework compares to the pre- and 
post- test experimental design (Arroyo, Beck et al. 2001).  
Do they draw similar conclusions, despite the fact that an 
experimental design is usually more expensive to conduct 
than data fitting with DBNs?  Moreover, what kind of 
causal relationship can we conclude with Bayes nets? 
 
The second contribution this paper makes is on 
simultaneous representation of tutor help and the student 
model.  Previous approaches addressed these problems 
separately by ignoring one to solve the other (Heiner, Beck 
et al. 2004; Beck, Jia et al. 2004).  Specifically, KT ignored 
help, and most embedded experiments (Mostow and Aist 
2001) ignored student knowledge, or how it changed over 
time – e.g. our statistical analyses of tutorial interventions 



included student identity as a factor or pretest score as a 
covariate item. 
  
The third contribution this paper makes is on 
distinguishing between two effects of help: scaffolding 
immediate performance (scaffolding) vs. boosting 
persistent learning (learning) of help.  Prior work assumed 
help has no direct impact on student learning (Conati, 
Gertner et al. 2002).  Moreover, because we model tutor 
help and student model in one coherent framework, we can 
estimate the scaffolding and learning effect.  This 
separation of immediate vs. persistent effect of help allows 
researchers to understand what the tutor intervention is 
really doing.  For instance, it is possible to investigate 
whether some tutor interventions help persistent learning 
while others mainly help immediate performance.  

Future Work and Conclusions 
Currently, due to limitations in BNT-SM, we could only 
test models with discrete, binary variables.  For example, 
in the help model, we only answer the question of does 
help helps at all.  A more interesting question to ask is 
which type of help helps better and when.  Thus, a future 
study is to extend BNT-SM to handle multi-nominal or 
even continuous variables, which allows modeling of 
different help types. 
 
Another question that bothers us is why doesn’t the help 
model fit the student performance data better then the KT 
model which ignores the tutor intervention data?  We 
suggest a hypothesis that the help model has more 
parameter to estimate (8 parameters per skill and there are 
roughly 3000 skills) than the KT model (4 parameters per 
skill) and that the EM procedure may over fit the training 
set.  Future study is needed to avoid this over fitting issue.  
One solution to this problem is to construct a hierarchical 
model where help has same impact on words. 
 
Although our study has been mainly focused on modeling 
tutor help, our methodology can be applied to any kind of 
tutor intervention in general.  Our work focuses on item 
level help (largely student initiated) because that is where 
we have the most data.  This work is a challenging data 
mining problem because it requires a huge amount of data 
to estimate the model parameters reliably. 
 
This paper describes an effort to measure the effectiveness 
of tutor help in an intelligent tutoring system.  We propose 
a dynamic Bayes net to model tutor helps and student 
knowledge in one coherent framework.  Even though the 
additional information in the help model does not yield a 
superior model fit, its informativeness outweighs the slight 
decrease in model fit.  That is, the help model allows us to 
test evaluate the effectiveness of tutor intervention, which 
is essential to estimate the effectiveness of an ITS.  
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