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Abstract.  How can an automated tutor assess children’s spoken responses 

despite imperfect speech recognition?  We address this challenge in the context 

of tutoring children in explicit strategies for reading comprehension.  We report 

initial progress on collecting, annotating, and mining their spoken responses. 

Collection and annotation yield authentic but sparse data, which we use to 

synthesize additional realistic data.  We train and evaluate a classifier to 

estimate the probability that a response mentions a given target. 

1 Introduction 

Speech is the easiest, most natural way for students to respond to tutors.  Speech is faster 

than typing on a keyboard and more expressive than clicking on a menu item.  Speech is 

especially useful for young children because they type slowly and spell poorly.  Ideally 

an intelligent tutor for children would understand their spoken responses to its prompts. 

Unfortunately, current technology for speech recognition and language understanding has 

poor accuracy – especially for children’s spontaneous speech, which can be difficult even 

for adults to understand.  An intelligent tutor that relies on accurate transcription and 

interpretation of children’s unconstrained speech appears infeasible for years to come. 

Consequently, the rare intelligent tutors that recognize children’s speech constrain it.  For 

example, Project LISTEN’s Reading Tutor operates on oral reading of a known text [1].   

Thus methods for intelligent tutors to respond effectively to children’s unconstrained 

speech despite imperfect speech understanding could be very useful.  We report here on 

progress toward this goal in the context of a project to teach children explicit strategies 

for reading comprehension.  This project is extending Project LISTEN’s Reading Tutor, 

which listens to children read aloud, so that it also listens to children think aloud.  This 

work builds on previous ideas for word spotting (e.g. [2]), confidence annotation in 

spoken dialogue systems (e.g. [3] ), and generating synthetic data (e.g. [4]).  This 

endeavor is relevant to educational data mining in a number of ways.  We describe an 

efficient way to collect authentic student responses with expert tutorial labels.  We show 

how to augment sparse training data by using it to generate realistic synthetic data.  

Finally, we present empirical evaluations of classifiers trained on this data. 
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2 Collecting authentic student and tutor responses 

To mine children’s spoken responses to automated tutoring on comprehension strategies, 

we must first collect a goodly amount of data.  An obvious approach is to record 

children’s responses to a human tutor.  However, this approach suffers from two 

shortcomings.  First, the process is labor-intensive.  Second, children respond differently 

to a human tutor than to an automated tutor, for example because they have a different 

social relationship to an adult than to a computer.  This difference is problematic because 

our purpose is to enable an automated tutor to assess children’s spoken responses.  A 

Wizard of Oz simulation mitigates the social relationship issue, but not the labor-

intensiveness. 

Instead, we took a different approach.  We extended the Reading Tutor by implementing 

comprehension strategy instruction that prompts and records spoken responses without 

analyzing them.  Children use the Reading Tutor simultaneously on multiple computers, 

which can record them at the same time, unlike a human tutor or Wizard of Oz limited to 

tutoring one child at a time.  The spoken responses are logged to a database and 

transcribed by hand. 

The instruction itself is scripted by an expert reading researcher and practitioner based on 

their experience in teaching comprehension strategies to children.  They carefully select 

texts conducive to tutoring particular strategies.  Tutorial sequences in the instruction 

consist of a few basic step types:  assisted oral reading by the student; reading aloud by 

the tutor to the student; multiple choice questions answered by clicking on a menu item; 

short-answer fill-in questions answered by keyboard input; and prompts for free-form 

spoken responses. 

Our reading experts’ involvement did not end with scripting instruction.  Once 299 

spoken responses to 33 prompts were recorded and transcribed, our expert practitioner 

annotated each student utterance with how she would have replied to it, and why.  An 

example of a short-answer prompt was What do you think the fifth sense is?  The 

expected answer is touching.  The expert’s recommendation for the student responses 

touching, seeing, or use our nose to smell was to say nothing in reply, since “This 

question is a "what do you think" question,” so any reasonable answer is acceptable.  In 

contrast, the recommended reply to the response uh, apples? was Think about the senses 

that we already talked about in this text…try again, because “Apples is not a sense.” 

Thus our data consists of tutorial prompts, transcribed spoken responses to them, expert 

annotations that recommend how to reply, and rationales for those recommendations in 

terms of features of the student responses.  The purpose of this data is to train a decision 

function that uses those features to classify future responses by how the tutor should reply 

to them.  In the examples above, the recommended reply to the student’s spoken response 

depends on whether it mentions a target concept.  This type of decision problem is a 

simple but useful case of the general problem of classifying responses by how the tutor 

should reply, and applies to many of our expert’s annotations.  The remainder of this 

paper focuses on this problem. 



3 Detecting a target 

We first address how to determine whether a spoken response mentions a given target, 

which for now we define as a word or phrase plus its variant forms.  For example, our 

target for touch includes the forms touches and touching.  We include variant forms 

because we care if the response mentions the concept, but not which specific word it 

uses.  For the same reason, we plan in future to include synonyms for the context-

appropriate word meaning.  For example, feel and feeling are synonyms for touch as a 

sense, but not for the colloquial meaning of touch as “ask for money.”  We also care 

about our confidence in whether a response mentions a given concept.  More precisely, 

our challenge is to learn the probability that a given response mentions a given target. 

3.1 Stretching sparse training data 

A difficult learning task requires as much training data as possible.  A training example 

for our task includes an utterance, a target, and a label classifying the utterance by 

whether it mentions the target.  To expand our limited set of authentic data, we generate a 

much larger set of synthetic data – in fact, so much larger that we hold out authentic data 

to use for testing.  This held-out set consists of the 64 recorded responses to 5 questions 

where the expected target is clear, e.g. What do you think the fifth sense is? (touch). 

Each authentic datum is an annotated utterance labeled as a positive or negative example 

of mentioning an expected target concept.  For example, the utterances touching and uh, 

apples? serve respectively as authentic positive and negative examples for the target 

concept touch.  We have only a limited amount of such data.  To generate a large set of 

training examples, we reuse the transcribed free-form responses many times as synthetic 

positive and negative examples of mentioning other concepts.  These 471 utterances 

include 172 free-form responses previously recorded and transcribed but not annotated.  

The idea is to pretend that each utterance has a different target that it does or does not 

mention.  Thus each utterance generates multiple training examples, one for each 

hypothetical target.  The utterances in the synthetic data are actually authentic; only their 

labels are not.  Thus the utterances touching and uh, apples? also serve as synthetic 

examples of mentioning (or not mentioning) hypothetical targets, such as butterfly.  As 

this example suggests, the synthetic data is heavily skewed toward negative examples. 

As targets for the synthetic data we use the 21 words that occur more than 10 times in the 

transcribed responses, such as butterfly, and include their variants, such as butterflies.  

We exclude the most frequent 100 words of English, such as the, because they might 

differ systematically from authentic target words in how they are spoken.  For example, 

function words tend to have reduced pronunciations.  The resulting synthetic data set has 

471 × 21 = 9891 examples. 

3.2 Configuring the speech recognizer 

To decide whether an utterance contains a given target, an obvious solution is to use 

automatic speech recognition (ASR) to decode the utterance, and see if the ASR output 

contains any of the target words.  However, children’s free-form speech is too 



unpredictable for ASR to transcribe accurately, in contrast to oral reading of known text.  

How can we configure the ASR to increase its accuracy on this target-spotting task? 

A key point here is that if we care only about a specific target, we do not need to know 

what else the student said.  We therefore configure the ASR to listen only for the target 

words and to insert arbitrary phoneme sequences to model other words.  We penalize 

such insertions to make the ASR prefer target words unless they match the speech poorly. 

If this configuration detected the target perfectly, our problem would be solved.  

However, there are still many cases where the ASR errs.  Fortunately, our ASR 

(http://sourceforge.net/projects/cmusphinx) reports not only which words are recognized, 

but also an acoustic confidence score for each recognized word.  We compute the 

acoustic confidence for a target concept, e.g., touch, as the maximum score in the ASR 

output of any of the target words, e.g., touch, touches, touching.  To decide whether the 

utterance mentions the target, the tutor can test whether this score exceeds some threshold 

that determines the tradeoff between false negatives and false positives.  But can it do 

better? 

3.3 Using a logistic regression model to combine various evidence 

The simple acoustic confidence threshold model ignores some relevant factors.  A single 

threshold may not be appropriate for different targets.  For example, the larger the set of 

words or phrases comprising the target, the higher their maximum confidence score may 

tend to be.  If longer words or phrases tend to score lower than shorter ones, the threshold 

should decrease with target length.  Conversely, the longer the utterance, the likelier that 

it will randomly contain a good match to the target, so the threshold should increase with 

utterance length.  To take these factors into account, we use predictors derived from the 

utterance and ASR output and listed in Table 1. 

Table 1:  Predictors used in the logistic regression model 

# Predictor Description 

1 MaxConf Maximum confidence score of all target words 

2 TargetSize Number of target words (words that belong to the target) 

3 WordLen # of letters in the top-scored target word; if none, 0; if there’s a tie, their average 

4 HypLen Length of the ASR output, measured by number of words 

5 UttDur Duration of the utterance, measured by the size of its audio file in kilobytes 

 

To combine this information, we use binomial (or binary) logistic regression, which 

estimates the probability of an event Y as a logistic function of a set of input predictors 

X1, X2, …, Xn . In our case, Y = 1 iff a target occurs in an utterance, and X1, …, X5 are the 

five predictor variables in Table 1. The logit (i.e., the logarithm of the odds) of the target 

occurring is modeled as a linear function of the Xi, as shown in Equation 1: 

http://sourceforge.net/projects/cmusphinx
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Here Pr(occur) is the probability that the target occurs in the utterance, 0 is the intercept, 

and 1 , …, 5 are the respective regression coefficients for the predictors in Table 1.  The 

regression coefficient for each predictor describes the change in the logit associated with 

a unit change in that predictor.  A positive (negative) β means that an increase in the 

predictor will increase (decrease) the probability of the outcome. To make different β’s 

comparable, we first normalize the input predictors to range from 0 to 1, so that the 

absolute value of β measures the impact of that predictor compared to the others.  Given 

Pr(occur) for a target, we decide whether the target occurs by comparing Pr(occur) to a 

threshold, e.g. 0.5.  We decide yes if it’s larger than the threshold, otherwise no. 

We use a logistic regression model for several reasons.  First, it’s compact to represent, 

fast to compute, and easy to interpret.  Second, unlike linear regression it does not assume 

normally distributed variables.  Third, rather than a binary judgment as to whether the 

target occurs, it outputs a probability that a tutor could use to decide more judiciously 

which feedback to provide.  For example, if the tutor thinks the student said the target but 

is not very confident, it should hedge its reply rather than praise an answer that may well 

be wrong.  Finally, logistic regression outperformed the alternatives we compared it to.  

In cross-validation tests, it achieved higher precision, recall, and AUC (described in 

Section 4) than a Naïve Bayes classifier or a J48 decision tree. 

We used Weka 3.5.7 (from weka.sourceforge.net) to train the logistic regression model 

on the 9891 synthetic examples. As noted earlier, the class distribution on synthetic 

training data is skewed, with 9547 negative examples but only 344 positive examples for 

the 21 targets defined.  In contrast, the 64 held-out authentic utterances are more 

balanced, comprising 30 positive instances and 34 negative instances.   Differences in 

class distribution between training data and test data can hurt classifier performance, for 

instance by biasing the classifier against a class rare in the training set but common in the 

test set.  To address this problem, we used Weka’s cost-sensitive classification 

mechanism to balance the training data, so that its distribution of positive and negative 

instances resembles the distribution on authentic data.  Table 2 shows the resulting β 

parameter estimates for our five predictors. 

 Table 2:  Parameter estimates of the logistic regression model  

Predictor MaxConf TargetSize WordLen HypLen UttDur 

β value 9.8659 0.5802 1.5780 2.7986 0.2606 

 

As Table 2 shows, all predictors are positively correlated with the odds that the target 

occurs, but acoustic confidence is the strongest predictor.  Although one might expect 

long responses to be likelier to contain the target than short responses, the UttDur 

predictor is very weak, probably because we measured it by the size of the audio 

http://weka.sourceforge.net/


recording.   This recording includes the tutor prompt in the background, so its size 

reflects the combined duration of the prompt and the student’s utterance. 

4 Evaluation 

We tested our logistic regression model on both synthetic and authentic data.  We used 

10-fold cross validation on the synthetic training data.   We also evaluated the model on 

the 64 authentically labeled utterances we used as held-out test data.  We compared 

against a majority class baseline model, which simply predicts the most common class for 

all instances. Table 3 compares the model performance on both data sets. 

We evaluate the classifiers on several metrics.  Overall accuracy is the fraction of cases 

classified correctly, i.e. (# TP (true positive) + # TN (true negative)) / # total cases, so it 

reflects the class distribution.  The TP rate, also called sensitivity or recall, is the fraction 

# TP / (# TP + # FN) of actual positive cases correctly classified as positive.  The FP 

(false positive) rate is the fraction # FP / (# TN + # FP) of actual negative cases 

misclassified as positive.  Its complement, called specificity, measures what fraction of 

actual negative cases is classified correctly as negative.  All these metrics depend on the 

probability threshold for classifying a case as positive – namely 0.5 for our model. 

Cross validation of the majority class baseline shows very high accuracy and zero FP rate 

because the synthetic data is highly skewed toward negative examples; its accuracy is 

much lower on the authentic data.  More importantly, such a classifier is useless because 

it cannot detect any mention of the target:  its TP Rate is 0.  In contrast, the logistic 

regression model is much more sensitive to positive examples.   

Table 3:  Model performance under different testing options 

Testing method Classifier Accuracy TP Rate    FP Rate  AUC 

10-fold cross 

validation  

Majority class 96.52 % 0 0 0.496 

Logistic  80.15 % 0.765 0.197 0.867 

Test on 

authentic data 

Majority class 54.67 % 0 0 0.5 

Logistic 75.00 % 0.552 0.086 0.796 

In practice, for the probabilistic output of logistic regression model Pr(occur) to be 

useful, we need to turn the probabilities into discrete decisions so as to provide tutorial 

feedback accordingly. For example, if the tutor is very sure that the target didn’t occur, it 

should give corrective feedback; but if it’s not sure, then a hedged reply is probably 

preferable. With this intuition, we decide on a preliminary division of Pr(occur) into 3 

disjoint regions, based on two threshold values th and tl (0 < tl < th <1): 

 Yes:  confident that the target occurred in the utterance (Pr(occur) ≥ th);  

 No:  confident that the target didn’t occur in the utterance (Pr(occur) ≤ tl);  

 Unsure:  neither (tl < Pr(occur) < th).  



These thresholds control the tradeoff between coverage and precision. The higher the 

value of th, the fewer Yes decisions the tutor will make, but the more confident it can be 

of these decisions (assuming we have a reasonable model).  On the other hand, the tutor 

will hedge more of its feedback, presumably making it less helpful to students. 

To describe this tradeoff, Table 4 shows model coverage and precision on the set of 64 

authentic responses for various threshold values. In the table, Pr(Yes) and Pr(No ) mean 

the probability of outputting a Yes and a No decision, respectively. Precision is the 

proportion of Yes (No) decisions that are in fact correct, i.e., positive (negative) 

examples.  For example, with high_threshold = 0.9 the tutor will decide only about 14% 

of the time that Yes, the student mentioned the target – but roughly 89% of these 

decisions will be correct. By dropping this threshold to 0.5, it can decide Yes more than 

twice as often – almost 30% of responses – and still be right about 84% of them. 

Table 4:  Model coverage and precision with different threshold values 

Deciding Yes Deciding No 

high_threshold Pr(Yes) Precision low_threshold Pr(No) Precision 

0.5 0.2969 0.8421 0.5 0.7031 0.7111 

0.6 0.2500 0.8750 0.4 0.5938 0.7105 

0.7  0.1875 0.8333 0.3 0.4688 0.7667 

0.8 0.1719 0.8182 0.2 0.2500 0.8125 

0.9 0.1406 0.8889 0.1 0.1094 1.0000 

Table 4 provides guidance both about where to set the threshold values, and about how 

definitively to phrase tutor feedback.  For example, it indicates that precision for Yes 

decisions is roughly the same (81%-89%) for thresholds from 0.5 to 0.9, so the tutor may 

as well set high_threshold at 0.5 (possibly even lower) in order to decide Yes more often, 

but its feedback must reflect that the student response probably contains the target but 

may well not.  For example, the tutor might refrain from confirming the answer as 

correct, but still treat it as correct in updating its student model.  In contrast, precision for 

No decisions is much more sensitive, ranging from 71% to 100% as low_threshold varies 

from 0.5 down to 0.1 – but with coverage ranging from over 70% to below 11%.  So the 

tradeoff between coverage and precision differs for the No case.  If our authentic training 

data is representative, setting low_threshold to 0.1 will avoid any false rejections, 

allowing definitively phrased corrective feedback.  However, at this threshold value, the 

tutor will decide No less than 11% of the time, even though the target will be absent 

about half the time.  On the other hand, a value of 0.5 will let the tutor decide No for 70% 

of student responses, but only 71% of these decisions will be correct.  In this case, tutor 

feedback must be phrased to avoid characterizing the student response as wrong. 

5 Contributions and future work 

This paper formulates the general problem of extracting reliable, tutorially useful 

information from children’s free-form spoken responses despite imperfect speech 

recognition, so as to assess their comprehension and select appropriate tutor feedback.  



We focus on the simpler but common and useful case of estimating the probability that an 

utterance mentions a given target concept. 

We describe efficient methods to collect authentic student data labeled by expert tutors, 

and to expand it into a much larger set of synthetic yet realistic data.  We present a 

logistical regression model to estimate the probability of a target by combining features 

of the target and utterance with the acoustic confidence output by a speech recognizer.  

We cross-validate the accuracy of the resulting probability estimates on synthetic data, 

and evaluate it on a smaller held-out set of authentic data. 

Concept mention is just one useful feature for tutors to detect.  We need to extend it to 

handle synonyms, but we have already extended it (in work omitted here to save space) 

from the single-target problem addressed in this paper to the multiple-target problem of 

deciding whether an utterance mentions any, all, or none of N given targets.  Another 

useful feature is the distinction between confident and tentative responses [6, 7].  Other 

distinctions in our expert tutor’s annotations include correct vs. incorrect, vague vs. 

detailed, and answered easily vs. with difficulty.  Future work includes using these 

distinctions to update student models and guide tutor decisions. 
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