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Abstract. Knowledge tracing (KT) is widely used in Intelligent Tu-
toring Systems (ITS) to measure student learning. Inexpensive portable
electroencephalography (EEG) devices are viable as a way to help detect
a number of student mental states relevant to learning, e.g. engagement
or attention. In this paper, we combine such EEG measures with KT to
improve estimates of the students’ hidden knowledge state. We propose
two approaches to insert the EEG measured mental states into KT as
a way of fitting parameters learn, forget, guess and slip specifically for
the different mental states. Both approaches improve the original KT
prediction, and one of them outperforms KT significantly.
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1 Introduction

Knowledge tracing (KT) is widely used in Intelligent Tutoring Systems (ITS) to
measure student learning. In this paper, we improve KT’s estimates of students’
hidden knowledge states by incorporating input from inexpensive EEG devices.
EEG sensors record brainwaves, which result from coordinated neural activity.
Patterns in these recorded brainwaves have been shown to correlate with a num-
ber of mental states relevant to learning, e.g. workload [1], associate learning
[2], reading difficulty [3], and emotion [4]. Importantly, cost-effective, portable
EEG devices (like those used in this work) allow us to collect longitudinal data,
tracking student performance over months of learning.

Prior work on adding extra information in KT includes using student help re-
quests as an additional source of input [5] and individualizing student knowledge
[6]. Thus for the first time, students’ longitudinal EEG signals can be directly
used as input to dynamic Bayes nets to help trace their knowledge of different
skills. An EEG-enhanced student model allows direct assessment to be performed
unobtrusively in real time. The ability to detect learning while it occurs instead
of waiting to observe future performance could accelerate teaching dramatically.
Current EEG is much too noisy to detect learning reliably on its own. However,
as we show in this paper, combining EEG with KT allows us to detect learning
significantly better than using KT alone.



2 Approach

KT is a type of Hidden Markov Model, which uses a binary latent variable
(K(i)) to model whether a student knows a skill at step i. It estimates the
hidden variable from a sequence of observations (C(i)’s) of whether the student
has applied the skill correctly up to step i. In this paper, KT is used to capture
the changes in knowledge state of a word over time (e.g., the school year), based
on observations of whether or not the student read the word fluently (defined in
more detail in Section 3). Standard KT usually has 4 (sometimes 5) parameters:
initial knowledge (L0), learning rate (t), forgetting rate (f) (usually set to zero,
but not in this paper), guessing rate (g), and slipping rate (s). We add another
observed variable (E(i)), representing the EEG measured mental state that is
extracted from EEG signals and is time-aligned to the student’s performance
at step i. We present two approaches to insert this variable into KT so that
the student’s hidden knowledge is inferred not only from the observed student’s
performance but also from the student’s mental state measured by EEG.
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Fig. 1: Add EEG measures into KT

Approach I: Insert 1-dimensional binary EEG measure into KT
(EEG-KT). EEG-derived signals are often described as a type of measure for
human mental states. For example, NeuroSky uses EEG signal to derive pro-
prietary attention and meditation measures that indicate focus and calmness in
students [7]. By adding a binary EEG input into KT, we hypothesize that a
student can have a higher learning rate t given that the student is focusing at
that step. Thus EEG-KT, shown in Figure 1a, extends KT by adding a binary
variable E(i) computed from EEG input. We started with a binary (vs. contin-
uous) EEG input for ease of implementation. This approach is reported in [8].

Approach II: Combine multi-dimensional continuous EEG mea-
sures in KT (EEG-LRKT). We also try an m-dimensional continuous variable
E(i), denoting m EEG measures extracted from the raw EEG signal at step i. Xu



and Mostow [9] proposed a method that uses logistic regression to trace multiple
subskills in a Dynamic Bayes Net (LR-DBN). Without exploding the conditional
probability tables in a DBN, LR-DBN combines the multi-dimensional inputs
via a sigmoid function, which increases the number of parameters linearly (in
number of inputs) instead of exponentially. This combination function was used
in tracing multiple subskills [10]. Similarly, EEG-LRKT uses logistic regression
to combine continuous EEG measures in KT. Figure 1b shows the graphical
representation of EEG-LRKT, where circle nodes denote continuous variables.
Hidden knowledge states are now determined by various EEG inputs. KT pa-
rameters te and fe are computed by logistic regression over all m EEG measures.

3 Evaluation and Results

3.1 Data sets

Our EEG data comes from children 6-8 years old who used Project LISTEN’s
Reading Tutor at their primary school during the 2013-2014 school year [11]. We
model the growth of students’ oral reading fluency, by labeling a word as fluent
if it was 1) accepted by the automatic speech recognizer (ASR) [12], as read 2)
with no hesitation (the latency determined by ASR is less than 0.05s), and 3)
without the student clicking on a word for help from the tutor.

EEG raw signals are captured by NeuroSky’s BrainBand device at 512 Hz,
and are denoised as in [11]. We use NeuroSky’s proprietary algorithms to gener-
ate 4 channels: signal quality, attention, meditation, and rawwave. We then use
Fast Fourier Transform to generate 5 additional channels from rawwave: delta,
theta, alpha, beta, and gamma. We break EEG data into 1-second long seg-
ments, and filter out any segment with a poor EEG signal quality score (cutting
off at 100 on the 0 to 200 signal quality scale provided by Neurosky). We then re-
move any observation for which more than 50% of its corresponding EEG signal
is filtered out. We remove every word encounter whose next encounter (by the
same student) has poor EEG signal quality, e.g. the first encounter of “cat” by
a student is removed because the second encounter of “cat” by the same student
has bad EEG quality. We keep only encounters whose next encounter had good
signal quality, which reduces our data size by 1/3.

The original data set includes 16 students who read 600 distinct words. We
discard 4 students who have fewer than 100 observations, resulting in 6,313
observations from 12 students. To maintain enough data for EM estimations of
the parameters, however, we keep 4 students who have many more than 500
observations in the training data and cross validate the other 8 students.

3.2 Train classifiers as an extra EEG measure

We train Gaussian Naive Bayes classifiers to predict fluency. We compute the
average and variance of the values of each of the 8 channels (excluding signal
quality) over the duration of each word according to ASR as the classifier fea-
tures (16 features in total). The validation is between-subject (i.e. training on



all but one subject and testing on that remaining subject). Because the large
majority class in this dataset will create overpowering priors, we pre-balance
our data using under-sampling. This classifier uses a similar training pipeline
as [11] with a few notable differences: 1) no feature selection due to the large
training set; 2) to account for individual differences, we normalize every feature
by converting features to z-scores over the distribution of that feature for that
subject. Normalization is done before we train our classifier.

The classifier has a prediction accuracy of 61.8%. We evaluate it against a
50:50 chance classifier since we train the classifier on pre-balanced data. Our
classifier performs significantly above chance on a Chi-squared test (p < 0.05).
Finally, in Eq. 1, we compute a confidence-of-fluency (Fconf) metric as our 9th
EEG measure and use it in the same way as the above 8 EEG scalar features:

Fconf = Pr(fluent|2× 8 features)− Pr(disfluent|2× 8 features) (1)

3.3 Model fit with cross validation

We compare EEG-KT and EEG-LRKT to KT on a real data set. We normalize
each EEG measure within student by subtracting the measure’s mean and divid-
ing by the measure’s standard deviation across each student’s observations. As
EEG-KT requires, we discretize each measure as a binary variable: TRUE if the
value is above zero; FALSE otherwise. We individually insert each of the binary
EEG measures into KT and obtain in total 9 EEG-KT models: ATT(ention)-
KT, MED(itation)-KT, RAW-KT, Delta-KT, Theta-KT, Alpha-KT, Beta-KT,
Gamma-KT, and Fconf-KT. EEG-LRKT directly combines the 8 normalized
EEG measures (excluding Fconf). Besides, we fit Rand-KT and Rand-LRKT,
which replace EEG with randomly generated values from Bernoulli and stan-
dard Normal distributions respectively. We use EM algorithms to estimate the
parameters, and implement the models in Matlab Bayesian Net Toolkit for Stu-
dent Modeling (BNT-SM) [13, 10].

We conduct a leave-one-student-out cross validation (CV), which trains word
specific models on 11 out of 12 students and tests on the remaining single student.
We use receiver operating characteristic (ROC) curve and area under the curve
(AUC) to assess the performance of model prediction (i.e., binary classification)
since we have an unbalanced data with 83% labeled as fluent. Since we do not
change the parameter of initial knowledge (L0) in EEG-KT or EEG-LRKT,
we clamp L0 to 0.4 in our experiments in order to assess only the effect of
those modified KT parameters. To test the statistical significance of differences
between the proposed models and KT, we do two-tailed paired t-tests on AUC
scores across the 8 students. EEG-LRKT significantly outperforms KT; the other
8 EEG measures and Rand-KT do not differ significantly from KT. Rand-LRKT
seems to have a high AUC, but lacks results for half of the tested skills because
of rank deficiency when fitting random values with logistic regression in DBN.
Figure 2a shows a ROC graph with only the models that have significantly better
AUC scores than KT with 8-fold CV; Table 2b shows a full list of AUC scores.
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EEG−LRKT AUC = 0.7665
Rand−LRKT* AUC = 0.7255
KT AUC = 0.6479
Rand−KT AUC = 0.6146
Majority AUC = 0.5000

(a) ROC curves

the parameters, and implement the models in Matlab Byesian Net 
Toolkit for Student Modeling (BNT-SM) [12, 13]. 

We compare model fit with cross validation in Section 5.1, 
present the KT parameters differentiated by EEG in Section 5.2. 

5.1 Model fit with cross validation 
We conduct a leave-one student-out cross validation (CV), which 
trains word specific models on 11 out of 12 students and tests on 
the remaining single student. The original data set includes 16 
students who read 600 distinct words. We discard 4 students who 
have much less than 100 observations, and finally result at 6,313 
observations from 12 students. In order to maintain enough data 
for EM estimations of the parameters, however, we constantly 
keep 4 students who have many more than 500 observations in the 
training data and cross validate the other 8 students. 

We use receiver operating characteristic (ROC) curve and 
area under the curve (AUC) to assess the performance of model 
prediction (i.e., binary classification) since we have an unbalanced 
data with 83% labeled as fluent. ROC plots the true positive rate 
(TPR) vs. false positive rate (FPR) at different thresholds for 
cutting off the predicted probabilities. TPR (also known as Recall) 
is the percentage that a positive instance (e.g., a fluently reading 
word) is correctly classified as positive; FPR (also known as the 
Fall-out) is the percentage that a negative instance (e.g. a not 
fluently reading word) is incorrectly classified as positive. So the 
curve shows a trade-off between the Recall (benefits) and Fall-out 
(costs). AUC calculates the area under the ROC curve, which is 
also insensitive to an unbalanced dataset. A perfect classification 
model would reach the top left corner in ROC space, and yield an 
AUC score of 1, while a majority vote model (probability of 1 to 
predict a word as fluent and 0 to predict as disfluent) would show 
a diagonal line from the bottom left to the top right corner in ROC 
space, and get an AUC score of 0.5. 

Since we do not change the parameter of initial knowledge 
(L0) in EEG-KT nor EEG-LRKT comparing to the original KT, so 
we clamp L0 as 0.4 in our experiments in order to only assess the 
effect of those modified KT parameters. 
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EEG−LRKT AUC = 0.7665
Rand−LRKT AUC = 0.7255
Fconf−KT AUC = 0.6613
Theta−KT AUC = 0.6568
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Figure 3. ROC curves of EEG-LRKT vs. EEG-KT vs. KT  

by 8-fold CV 
 

Table 1. AUC scores by 8-fold CV 

(Underlined if P-Value <0.05 in paired T-test with KT; AUC 
for Rand-LRKT (starred*) is based on incomplete test data) 

Models AUC Models AUC 

EEG-LRKT 0.7665 Beta-KT 0.6355 

Rand-LRKT* 0.7255 Gamma-KT 0.6317 

Fconf-KT 0.6613 RAW-KT 0.6275 

Theta-KT 0.6568 MED-KT 0.6230 

KT 0.6479 Delta-KT 0.6224 

ATT-KT 0.6435 Rand-KT 0.6146 

Alpha-KT 0.6429   

 

Table 1 gives a complete list of AUC scores for all the 
models. To test the statistical significance of the difference 
between the proposed models (EEG-KT and EEG-LRKT) and KT, 
we do two-tailed paired t-test on AUC scores across the 8 students. 
We see that EEG-LRKT significantly outperforms KT. Fconf-KT 
beats KT for 6 out of 8 students; Theta-KT beats KT for 5 out of 8 
students. ATT-, Alpha-, and Beta-KT are close to KT with no 
significant difference. The other 4 EEG measures actually hurt 
KT’ model fit, but still better than Rand-KT. Rand-LRKT seems 
having a high AUC, however, about half of the tested skills don’t 
have fitted parameters due to the rank deficiency by EM algorithm. 
So the AUC of Rand-KT is computed only based on roughly half 
of the test data. Figure 3 shows a visible ROC graph with only the 
models that have better AUC scores than KT by 8-fold CV. 

So far, we have shown that the EEG signals from a simple 
portable device can help KT predictions, even with possible 
random noise. Now we want to infer the amount of noise in the 
EEG signals. We say an EEG-KT model predicts perfectly if the 
binary EEG variable agrees with the true label of reading a word 
fluently or not. The model fit starts to decline when some values 
of the variable disagree with the true labels (like labels being 
flipped), and the noise level increases as the flips increase. Thus 
we generate a set of binary variables by randomly flipping the true 
labels of fluent from 0% (perfect, named as F100%) up to 50% 
(random, as F50%). We insert each of these simulated random 
variables into KT as new EEG-KT models, and compare them 
with the real EEG measured model Fconf-KT. Recall Fconf 
denotes the confidence score of using all the EEG measures to 
predict the true label of fluent. The goal is to see what position 
Fconf-KT would locate among the F100% ~ F50%-KT models, so 
that we can approximate EEG’s noise level as what extend Fconf-
KT can help KT to recover the true labels.  

(b) AUC scores

Fig. 2: Model fit comparison by 8-fold CV (Underlined if p-value <0.05 in paired
T-test with KT; Rand-LRKT (starred*) is based on incomplete test data)

4 Conclusion and Future Directions

In this paper, we combine EEG measures with KT to improve estimates of
the student’s hidden knowledge state. Estimating Pr(K) enables us to predict
performance (e.g. fluency) more accurately than estimating performance directly
since the estimate of Pr(K) is conditioned on all observations so far. We present
two approaches: 1) EEG-KT adds one binary EEG measure into KT, and 2)
EEG-LRKT uses logistic regression on various continuous EEG measures in KT.
Both approaches outperform the original KT, significantly for EEG-LRKT in
terms of ROC and AUC, when predicting an unseen student’s reading fluency on
words in the Reading Tutor. For the first time, EEG measures are directly used
to help model students’ knowledge. Though not all the single-channel measures
(like Theta) from EEG can help knowledge tracing, the combined EEG measure
significantly improves KT predictions.

EEG studies in the neuroscience literature have better instrumentation but
not longitudinal data like we have. EEG-based information (especially using a
single sensor like NeuroSky’s BrainBand) is noisy and is by no means a reliable,
precise measure of a meaningful brain state. However, as demonstrated in this
paper, longitudinal EEG does provide measurable improvement in predictive
accuracy anyway.

In this paper, we focus on reading (specifically, fluency development), which
is good for studying EEG-enriched KT thanks to density of sensing (many words
per minute). The framework that we proposed is also applicable to other types
of learning. Another future direction is to analyze the practical significance of
the result in terms of impact on learning. As Beck and Gong [14] pointed out,
tiny improvements in predictive accuracy don’t matter - actionable intelligence
does. We want to estimate the possible speedup in learning as a result of being
able to use EEG to detect learning while it occurs (instead of waiting to observe
future performance).
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