
Towards Using EEG to Improve ASR Accuracy 

 

 

Yun-Nung Chen, Kai-Min Chang, and Jack Mostow 
Project LISTEN (http://www.cs.cmu.edu/~listen) 

School of Computer Science, Carnegie Mellon University 

Forbes Avenue, Pittsburgh, PA 15213-3891, USA 
{yvchen,kkchang,mostow}@cs.cmu.edu 

 

 

 

 

 
 

Abstract 

We report on a pilot experiment to improve 

the performance of an automatic speech re-

cognizer (ASR) by using a single-channel 

EEG signal to classify the speaker’s mental 

state as reading easy or hard text.  We use a 

previously published method (Mostow et al., 

2011) to train the EEG classifier.  We use its 

probabilistic output to control weighted inter-

polation of separate language models for easy 

and difficult reading. The EEG-adapted ASR 

achieves higher accuracy than two baselines.  

We analyze how its performance depends on 

EEG classification accuracy. This pilot result 

is a step towards improving ASR more gener-

ally by using EEG to distinguish mental states. 

1 Introduction 

Humans use speech to communicate what’s on their 

mind. However, until now, automatic speech recogniz-

ers (ASR) and dialogue systems have had no direct way 

to take into account what is going on in a speaker’s 

mind. Some work has attempted to infer cognitive states 

from volume and speaking rate to adapt language mod-

eling (Ward & Vega, 2009), or from query click logs 

(Hakkani-Tür et al., 2011) to detect new domains. A 

new way to address this limitation is to infer mental 

states from electroencephalogram (EEG) signals. 

EEG is a voltage signal that can be measured on the 

surface of the scalp, arising from large areas of coordi-

nated neural activity. This neural activity varies as a 

function of development, mental state, and cognitive 

activity, and EEG can measurably detect such variation. 

Recently, a few companies have scaled back medical 

grade EEG technology to create portable EEG headsets 

that are commercially available and simple to use. The 

NeuroSky Mindset™ (2009), for example, is an audio 

headset equipped with a single-channel EEG sensor. It 

measures the voltage between an electrode that rests on 

the forehead and electrodes in contact with the ear. Un-

like the multi-channel electrode nets worn in labs, the 

sensor requires no gel or saline for recording, and re-

quires no expertise to wear. Even with the limitations of 

recording from only a single sensor and working with 

untrained users, Mostow et al. (2011) used its output 

signal to distinguish easy from difficult reading, achiev-

ing above-chance accuracy. Here we build on that work 

by using the output of such classifiers to adapt language 

models for ASR and thereby improve recognition accu-

racy. 

The most similar work is Jou and Schultz’s (2008) 

use of electromyographic (EMG) signals generated by 

human articulatory muscles in producing speech. They 

showed that augmenting acoustic features with these 

EMG features can achieve rudimentary silent speech 

detection. Pasley et al. (2012) used electrocorticograph-

ic (ECoG) recordings from nonprimary auditory cortex 

in the human superior temporal gyrus to reconstruct 

acoustic information in speech sounds. Our work differs 

from these efforts in that we use a consumer-grade sin-

gle-channel EEG sensor measuring frontal lobe activi-

ties, and that we use the detected mental state just to 

help improve ASR performance rather than to dictate or 

reconstruct speech, which are much harder tasks. 

Section 2 describes how we use machine learning to 

distinguish mental states associated with easy and diffi-

cult reading. Section 3 describes how we use EEG clas-

sifier output to adapt ASR language models. Section 4 

uses an oracle simulation to predict how increasing EEG 

classifier accuracy will affect ASR accuracy. Section 5 

concludes. 



2 Mental State Classification Using EEG 

We use training and test data from Mostow et al.’s 

(2011) experiment, which presented text passages, one 

sentence at a time, to 10 adults and 11 nine- to ten-year-

olds wearing a Neurosky Mindset™ . They read three 

easy and three difficult texts aloud, in alternating order. 

The “easy” passages were from texts classified by the 

Common Core Standards
1
 at the K-1 level. The “diffi-

cult” passages were from practice materials for the 

Graduate Record Exam
2
 and the ACE GED test

3
. Across 

the reading conditions, passages ranged from 62 to 83 

words long. Although instructed to read the text aloud, 

the readers (especially children) did not always read 

correctly or follow the displayed sentences. 

Following Mostow et al. (2011), we trained binary 

logistic regression classifiers to estimate the probability 

that an EEG signal is associated with reading an easy 

(or difficult) sentence. As features for logistic regression 

we used the streams of values logged by the MindSet:   

1. The raw EEG signal, sampled at 512 Hz  

2. A filtered version of the raw signal, also sampled at 

512 Hz, which is a raw signal smoothed over a 

window of 2 seconds. 

3. Proprietary “attention” and “meditation” measures, 

reported at 1 Hz  

4. A power spectrum of 1Hz bands from 1-256 Hz, 

reported at 8 Hz  

5. An indicator of signal quality, reported at 1 Hz  

Head movement or system instability led to missing 

or poor-quality EEG data for some utterances, which we 

excluded in order to focus on improving ASR accuracy 

on utterances with clear acoustic and EEG signals. The 

features for each utterance consisted of measures 1-4, 

averaged over the utterance, excluding the 15% of ob-

servations where measure 5 reported poor signals. After 

filtering, the data includes 269 utterances from adults 

and 243 utterances from children, where 327 utterances 

are for the easy passages and 185 utterances are for the 

difficult passages. To balance the classes, we used the 

undersampling method for training. 

We trained a reader-specific classifier on each read-

er’s data from all but one text passage, tested it on each 

sentence in the held-out passage, performed this proce-

dure for each passage, and averaged the results to cross-

validate accuracy within readers. 

We computed classification accuracy as the percen-

tage of utterances classified correctly. Classification 

accuracy for adults’, children’s, and total oral reading 

was 71.49%, 58.74%, and 65.45% respectively. A one-

                                                           
1
 http://www.corestandards.org 

2
 http://majortests.com/gre/reading_comprehension.php 

3
 http://college.cengage.com:80/devenglish/resources/reading_ace/ 

students 

tailed t-test, with classification accuracy on an utterance 

as the random variable, showed that EEG classification 

was significantly better than chance. 

3 Language Model Adaptation for ASR 

Traditional ASR decodes a word sequence W from lan-

guage model and acoustic model as follows: 
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To incorporate EEG, we include mental state N as an 

additional observation in the decoding procedure: 
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The six passages use a vocabulary of 430 distinct 

words. To evaluate the impact on ASR accuracy of us-

ing EEG to adapt language models, we needed acoustic 

models appropriate for the speakers. For adult speech, 

we used the US English HUB4 Acoustic Model from 

CMU Sphinx. For children’s speech, we used Project 

LISTEN’s acoustic models trained on children’s oral 

reading. 

We use separate trigram language models (with bi-

gram and unigram backoff) for easy and difficult text – 

EasyLM, trained on the three easy passages, and Diffi-

cultLM, trained on the three difficult passages. Both 

language models use the same lexicon, consisting of the 

430 words in the six target passages. All experiments 

used the same ASR parameter values. 

As a gold standard, all utterances were manually 

transcribed by a native English speaker. To measure 

ASR performance, we compute Word Accuracy 

(WACC) as the number of words recognized correctly 

minus insertions divided by number of words in the 

reference transcripts for each reader, and average them. 

Then we can adapt the language model to estimate 

)|( NWP  using mental state information. Using the 

EEG classifier output described in Section 2, we adapt 

the language model separately for each utterance, using 

three types of language model adaptation:  hard selec-

tion, soft selection, and combination with ASR output. 



3.1 Hard Selection of Language Models 

Given the probabilistic estimate that an utterance was 

easy or difficult ( )(
E

NS  and )(
D

NS ), hard selection 

simply picks EasyLM if it was likelier to be easy, or 

DifficultLM otherwise: 
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 if )()(
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WP  and 

)(
D

WP  are the probability of word W in EasyLM and 

DifficultLM, respectively. For comparison, the Random 

Pick baseline randomly picks either EasyLM or Diffi-

cultLM: 
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Here
R

I  is randomly set to 0 or 1. 

3.2 Soft Selection of Language Models 

Mental state classification based on EEG is imperfect, 

and using only the corresponding language model (Ea-

syLM or DifficultLM) to decode the target utterance is 

liable to perform worse when the classifier is wrong. 

Soft selection uses the classifier’s probabilistic estimate 

that the sentence is easy (or difficult) as interpolation 

weights to linearly combine EasyLM and DifficultLM. 
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Here )(
E

N and )(
D

N  are from the classifier output. 
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Additionally, we can adjust the range of weights by 

smoothing the probability outputted by the EEG clas-

sifier: 
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Here )(
E

NS  (or )(
D

NS ) is the classifier’s probabilis-

tic estimate that the sentence is easy (or difficult) and   

is the smoothing weight, which we set to 0.5. After 

smoothing the probabilities, )(
E

N  and )(
D

N  each 

lie within the interval [0.25, 0.75], and 

 1)()(
DE

 NN  . That is, Soft Selection with 

smoothing interpolates the two language models, but 

assigns a weight of at least 0.25 to each one to reduce 

the impact of EEG classifier errors. Notice that 0  is 

equivalent to EEG Soft Selection without smoothing. 

For comparison, Equal Weight interpolates EasyLM 

and DifficultLM with equal weights: 
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3.3 Combination with ASR Output 

Given the ASR results from the Equal Weight baseline, 

we can derive )('
E

NS  as below:  
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Here we can estimate )('
E

NS  based on the classifier’s 

output and the probability of the recognized words 
0

W  

in EasyLM. We can derive )('
D

NS  in the same way. 

Then we can re-decode the utterances using the weights. 

Here   is a linear interpolation weight, where we set to 

0.5 to give equal weight to ASR output and EEG. For 

comparison, the ASR baseline uses weights from only 

the ASR results, where 0 . Notice that the case of 

1  is equivalent to EEG Soft Selection with smooth-

ing. 

3.4 Results of Proposed Approaches  

Table 1 shows the performance of our proposed ap-

proaches and corresponding baselines, as measured by 

WACC. According to one-tailed t-tests with word accu-

racy of an utterance as the random variable, the results 

in boldface are significantly better than their respective 

baselines ( 05.0p ). 

Hard Selection (row b) outperforms the Random Pick 

baseline (row a). Soft Selection without smoothing (row 

d) has similar results as Hard Selection because the 

classifier often outputs probability estimates that are 

either 1 or 0. However, Soft Selection with smoothing 

(row e) outperforms the Equal Weight baseline (row c). 

The Weight from ASR baseline (row f) is better than the 

other baselines. Weight from ASR and EEG (row g) can 

further improve performance, but it’s not better than 

Soft Selection with smoothing (row e) – evidence that 

EEG gives good estimation for choosing language mod-

els. In short, Table 1 shows that using EEG to choose 

between EasyLM and DifficultLM achieves higher ASR 

accuracy than the baselines that do not use EEG.  

Comparing the first two baselines, the Equal Weight 

baseline (row c) outperforms the Random Pick baseline 

(row a) in every column, because the loss in ASR accu-

racy from picking the wrong language model outweighs 

the improvement from picking the right one. Similarly, 

EEG-based Soft Selection with smoothing (row e) out-

performs EEG-based Hard Selection (row b) in every 



WACC (%) 
Adult Child 

Easy Difficult All Easy Difficult All 

(a) Baseline 1:  Random Pick 54.5 51.2 53.8 32.8 14.7 30.6 

(b) EEG-based:  Hard Selection 57.6 49.4 52.7 36.4 17.0 32.8 

(c) Baseline 2:  Equal Weight 63.2 59.9 56.5 37.3 19.5 33.4 

(d) EEG-based:  Soft Selection w/o smoothing 57.2 48.8 52.4 35.8 17.2 32.5 

(e) EEG-based:  Soft Selection w/ smoothing 66.0 62.3 64.2 39.8 22.7 36.2 

(f) Baseline 3:  Weight from ASR ( 0 ) 63.8 60.6 61.5 39.2 20.0 35.0 

(g) Weight from ASR and EEG ( 5.0 ) 64.5 63.4 63.5 39.2 21.9 36.0 

 
column because the interpolated language model is 

more robust to EEG classification error. The third base-

line, Weight from ASR (row f) depends solely on ASR 

results to estimate weights; it performs better than other 

baselines, but not as well as EEG-based Soft Selection 

with smoothing (row e).  That is, using EEG alone can 

weight the two language models better than ASR alone. 

4 Oracle Simulation  

To explore the relationship between EEG classifier ac-

curacy and the effect of EEG-based adaptation on ASR 

accuracy, we simulate different classification accuracies 

and used Hard Selection to predict the resulting ASR 

accuracy by selecting between the ASR output from 

EasyLM and DifficultLM according to the simulated 

classifier accuracy. We use the resulting Word Accura-

cy to predict ASR performance at that level of EEG 

classifier accuracy. 

As expected, the predicted ASR accuracy increases 

as EEG classification accuracy increases, for both 

groups (adults and children) and both levels of difficulty 

(easy and difficult). Predicted Word Accuracy from 

100% classification accuracy achieves 64.5% and 

35.6% for adults’ and children’s speech respectively. 

However, predicted WACC is much lower for children 

than for adults, especially on difficult utterances, where 

even 100% simulated EEG classifier accuracy achieves 

barely 20% WACC. One explanation is that on difficult 

sentences, children produced reading mistakes and/or 

off-task speech. In contrast, adults read better and 

stayed on task. Not only is predicted ASR accuracy 

higher on adults’ reading, it improves substantially as 

simulated EEG classifier accuracy increases. 

5 Conclusion 

This paper shows that classifying EEG signals from an 

inexpensive single-channel device can help adapt lan-

guage models to significantly improve ASR perfor-

mance. An interpolated language model smoothed to 

compensate for classification errors yielded the best 

performance. ASR performance depended on the accu-

racy of mental state classification. Future work includes 

improving EEG classification accuracy, detecting other 

relevant mental states, such as emotion, and improving 

ASR by using word-level EEG classification. A neuro-

logically-informed ASR may better capture what people 

intend to communicate, and augment acoustic input with 

non-verbal cues to ASR or dialogue systems. 
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