
Natural Language Engineering 12 (2): 195–208. c© 2006 Cambridge University Press

doi:10.1017/S1351324906004153 Printed in the United Kingdom

195

Some useful tactics to modify, map and mine data

from intelligent tutors

J A C K M O S T O W and J O S E P H B E C K
Project LISTEN, School of Computer Science, Carnegie Mellon University,

RI-NSH 4213, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA

e-mail: mostow@cs.cmu.edu,joseph.beck@gmail.com

(Received 1 May 2005; revised 17 November 2005 )

Abstract

Mining data logged by intelligent tutoring systems has the potential to discover information

of value to students, teachers, authors, developers, researchers, and the tutors themselves –

information that could make education dramatically more efficient, effective, and responsive

to individual needs. We factor this discovery process into tactics to modify tutors, map

heterogeneous event streams into tabular data sets, and mine them. This model and the

tactics identified mark out a roadmap for the emerging area of tutorial data mining, and may

provide a useful vocabulary and framework for characterizing past, current, and future work

in this area. We illustrate this framework using experiments that tested interventions by an

automated reading tutor to help children decode words and comprehend stories.

1 Introduction

The ability of intelligent tutoring systems to log and pool detailed, longitudinal

interactions with large numbers of students could create a gold mine of educational

data (Beck 2004). For example, during the 2003–2004 school year, some 200

computers running Project LISTEN’s Reading Tutor (Mostow and Aist 2001) at

nine elementary schools logged 54,138 sessions, 162,031 story readings, 1,634,660

sentences, 3,555,487 utterances, and 10,575,571 words of children’s oral reading.

What information is worth extracting from this gold mine? Faculty, students,

administrators, technical support staff, content authors, software developers, re-

searchers, and the tutor itself differ in what content and form of information

they are interested in and can understand. Faculty may need simple summaries

of student usage and progress; administrators need evidence of tutor effectiveness;

technical support staff need problem alerts; content authors need usability indicators;

developers need accurate bug reports; researchers need detailed examples and

informative analyses; and the tutor needs parameters it can use, rules it can

interpret, or knowledge it can exploit. Such informational goals are typically not

clear at the outset, instead emerging from and in turn guiding successively refined

instrumentation and analyses.



196 J. Mostow and J. Beck

An important goal of educational data mining is to discover what helps –

specifically, which tutor and student actions help which students learn which

skills in which contexts. This goal poses a credit assignment challenge complicated

by student variability, the duration, richness, uniqueness, and irreproducibility of

tutorial interaction, and the fact that changes in students’ knowledge are not directly

observable and can be estimated only indirectly and imperfectly from their observed

behavior.

Controlled studies of students’ pre- to post-test gains can evaluate a tutor

compared to various alternatives, including independent practice (Mostow, Aist,

Bey, Burkhead, Cuneo, Junker, Rossbach, Tobin, Valeri and Wilson 2002b; Poulson

2004), classroom instruction (Mostow, Aist, Huang, Junker, Kennedy, Lan, Latimer,

O’Connor, Tassone, Tobin and Wierman, in press), and human tutors (Mostow,

Aist, Burkhead, Corbett, Cuneo, Eitelman, Huang, Junker, Sklar and Tobin 2003).

However, such comparisons tell only how well the tutor works overall. To understand

and improve the tutor’s effectiveness requires finer-grained analyses. How, then, can

we use data from intelligent tutors to pursue this goal?

We outline an emerging approach based on experience in analyzing data from

various tutors. This approach consists of modifying the tutor to obtain useful data,

mapping heterogeneous streams of logged events into tabular data, and mining that

data. Sections 2–4 describe these three phases. Section 5 illustrates them, and section

6 concludes the paper.

2 Modify tutor instrumentation

The types of tutor data available to analyze depend on which activities are

instrumented in machine-analyzable form. But what makes such data mineable?

How can the tutor be modified to capture usefully mineable data?

2.1 Log tutorial events

Learning by doing is essential in education, and takes multiple forms and names,

such as homework, practice, problems, exercises, labs, simulations, and explorations.

The products of such student work can be useful to analyze. But the process of task

performance can be even more useful to instrument. A tutor can record whatever

student activities it involves, such as reading, writing, taking tests, performing various

tasks in real or virtual environments, even communicating with peers. Logged input

may include mouse clicks, typing, and speech. Logged output may include text,

graphical actions, and audio. Logged tutorial decisions may include not only actions

chosen but alternatives rejected. For example, logging not only tutorial prompts

but also decisions to skip them made it possible to analyze their effect on student

behavior (Mostow and Aist 2001).

The level at which events are logged constrains their analysis. For example, logging

a mouse click by its x and y coordinates may help analyze the student’s motor skills.

In contrast, logging the menu item clicked on may allow scoring of the student’s

reply to a multiple choice question. Likewise, logging tutor audio output ‘kuh ae



Towards automated educational discovery 197

tuh’ may allow a human to infer what the tutor did, but the higher-level description

‘SoundOut cat’ allows machine analysis.

The granularity of logged events also affects analysis. For example, measuring the

usage of a reading tutor requires data about the duration and frequency of student

sessions. In contrast, data at the level of individual read words is useful for much

finer-grained analyses. Logging data at multiple grain sizes supports viewing and

analyzing tutor data at different levels of detail (Mostow, Beck, Chalasani, Cuneo

and Jia 2002c).

2.2 Time events

Timestamping when each event starts and ends is simple but useful. For example,

timing responses to multiple-choice questions can detect hasty responses even when

they are correct (Mostow, Beck, Bey, Cuneo, Sison, Tobin and Valeri 2004). Timing

how long students spend in different activities can shed light on their motivation

and help predict their gains (Mostow, Aist, Beck, Chalasani, Cuneo, Jia and Kadaru

2002a). To help analyze students’ reading, a tutor can log which text students see, at

whose initiative (student or tutor), when, and how many times. It can log how long

they take to read each document, page, sentence (by making them click for each new

sentence), or even word (by using speech recognition to listen to them read aloud).

Speed can be a useful measure of student performance, and speedup can be a useful

measure of learning. For example, the time to read words aloud can be used to

estimate the student’s oral reading proficiency (Beck, Jia and Mostow 2004a) and to

analyze fluency improvement over time (Mostow and Aist 1997; Mostow and Beck

2005).

2.3 Reify operations to log them analyzably

To be useful, logged data must be machine-understandable. Even a complete record

of the student’s brain activity would be useless without some way to extract useful

information from it. Many tasks are important to student learning but hard for

machines to observe or analyze, such as solving a math or physics problem on

paper. Reification renders such processes machine-analyzable by reorganizing them

to use operations that are easier for computers to instrument. For example, reification

may replace handwritten input with typed input, freehand drawing with a limited

palette of graphical objects and operations (Koedinger and Anderson 1993), and

free-form responses with menu selections (Self 1988) or at least canned ‘sentence

openers’ (Soller 2001; Goodman, Hitzeman, Linton and Ross 2003).

2.4 Randomize tutorial decisions

Allocating credit and blame over the long sequence of tutor and student decisions

that lead to a given educational outcome is hard. One approach to making this

problem somewhat more tractable is to embed randomized experiments in the tutor.

For example, one such experiment (Aist 2001) randomly chose whether or not to



198 J. Mostow and J. Beck

explain a new word in a story, such as replied. If so, the Reading Tutor presented

a short, automatically generated explanation of the word, such as reply is a kind of

tell. The next day the student used the Reading Tutor, it tested the vocabulary words

whether or not it had explained them. It tested each word using an automatically

generated multiple choice question, such as What word is MOST like replied? soft-

pedal; observe; play down; answer. Analysis of over 3,000 such randomized trials

clarified when it helped to explain new words, compared to just letting students

encounter them in context. Explaining common words like apple did not help, but

explaining rare, single-sense words like astronaut boosted students’ performance

significantly on the test questions.

2.5 Probe student knowledge

Although many tutors include explicit probes as part of their normal interactions,

adding probes to a tutor may provide more information than can be inferred from

its normal interactions. For example, to test understanding of both the explained

and unexplained words in the experiment above, Aist (2001) modified the Reading

Tutor to generate and administer multiple choice questions about them the next

day the student used the tutor. Likewise, a later modification probed students’ text

comprehension by automatically inserting multiple-choice cloze questions. The cloze

method turns a sentence into a comprehension question by deleting a word for the

student to fill in based on comprehending the rest of the text. These questions served

not only as test items to assess students’ comprehension, but also as the outcomes

of randomized trials to test tutorial interventions (Mostow et al. 2004). Another

example of adding a probe is the Piagetian development test that enabled the

AnimalWatch tutor to tailor its actions to students’ cognitive development (Arroyo

et al. 2000).

2.6 Import student data

Analysis of tutor interactions can benefit from student data that the tutor might not

be able to observe, such as gender (Arroyo, Beck, Woolf, Beal and Schultz 2000),

age, IQ (Shute, Gawlick-Grendell, Young and Burnham 1996), prior declarative

knowledge (Corbett, McLaughlin and Scarpinatto 2000), or pretest scores. Such

data can be input to the tutor by the student or teacher, or obtained separately for

analysis purposes (Mostow, Beck, Chalasani, Cuneo and Jia 2002c). Even when the

extra data would not be feasible for a production version of the tutor to collect, it

can still be valuable in analyzing research versions of the tutor.

2.7 Analyze natural language

Reading and writing are vital to tutoring. A tutor cannot directly observe students’

reading comprehension, but can record which text students see, at whose initiative

(student or tutor), when, and how many times. Data on students’ writing may

include not only their typed input itself, but also response time, duration, and even



Towards automated educational discovery 199

keystroke-level information. Evaluating matches of student responses to expected

answers is more tractable than understanding natural language in general, with

solutions ranging in depth from spell-checking, to using simple keyword analysis to

grade short-answer questions, to using latent semantic analysis to grade students’

essay questions (Calfee, Kukich, Landauer, Laham, Foltz, Hirschmann, Breck, Burger

and Ferro 2000), to using parsing and domain-specific knowledge to analyze and

critique students’ self-explanations of proof steps (Aleven, Popescu and Koedinger

2002). Communication with peers is important in some tutors, but can be difficult

to instrument. One possibility is to monitor computer-mediated channels such

as email, newsgroups, and on-line chat, or channels built into the tutor itself

(Goodman, Hitzeman, Linton and Ross 2003). Analysis of computer-mediated peer

communication could range from tracking topic content using information retrieval

methods, to quantifying communication frequency, volume, and patterns of who

communicates with whom (Vassileva, Greer, McCalla, Deters, Zapata, Mudgal and

Grant 1999), to tracing finer-grained effects of peer communication on learning

(Soller 2004a, 2004b).

2.8 Hand-label data

Although a tutor can capture too much data to inspect by hand, manual analysis of

a strategic sample can be very helpful. For example, manual transcription of selected

speech input is useful when automated speech recognition is not accurate enough.

One such experiment tested the student’s ability to read certain words in isolation.

The tutor recorded these tests and sent them back to transcribe by hand, revealing

significant differences in efficacy among alternative methods for previewing words

before a story (Mostow in press).

3 Map events to variables

Instrumenting a tutor yields a rich but heterogeneous stream of events over time.

A position or length along the flow of the stream corresponds to the temporal

dimension of tutorial interaction. The breadth of the stream corresponds to the

variety of skills or topics involved. How can we translate such data into variables to

visualize and analyze, i.e., tabular data sets?

3.1 Segment an event stream into episodes by partitioning it at specified cut points

One way to simplify a complex stream of interaction is to parse it into shorter

episodes that can be analyzed individually. Segmentation preserves the breadth of

the interaction stream but cuts it into segments of shorter duration. For example,

one study (Beck, Woolf and Beal 2000) segmented tutorial dialogue at each student

response to a tutorial action. Outcome variables included the time it took the student

to respond, and whether the response was correct. To characterize the context, 48

variables encoded various features of the student, the problem, and recent instruction,

such as the amount of help provided. Segmenting the data yielded thousands of

such episodes to train a model of student behavior.



200 J. Mostow and J. Beck

3.2 Slice an event stream into strands for distinct skills

A powerful way to abstract a stream of interactions is inspired by ‘program

slicing’ (Weiser 1984), a method to simplify analysis of a computer program by

considering only the parts that affect particular variables. In mining a stream of

tutorial interactions, the idea of slicing is to focus only on interactions relevant to a

given target skill. Unlike segmentation, slicing preserves the length of the interaction

stream but factors it into narrow strands, one for each target. The assumption

that slices are independent of each other simplifies their analysis. For example,

knowledge tracing (Corbett and Anderson 1995) ‘slices’ students’ problem-solving

into opportunities to apply different skills, with one slice for each skill. Plotting

students’ performance at successive opportunities to apply a given rule reveals a

systematic learning curve for each skill, in contrast to the chaotic trajectory of

performance on successive complete problems, which exercise multiple skills.

3.3 Reformulate an event stream as a set of trials, each with its own context,

decision, and outcome

To analyze the complex effects on eventual educational outcomes of extended, rich

interaction with a tutor, it helps to decompose that interaction into a series of

experimental trials defined by local decisions. Each trial starts with a decision that

occurs while (or before) a student uses the tutor, and affects the ensuing tutorial

interaction. We have used this approach to extract dozens, hundreds, or even

thousands of data points per student from their tutor use, enabling us to harness

the power of ‘big data’ to resolve fine-grained effects of tutor behavior on student

learning.

Some kinds of trials are more conducive than others to drawing well-supported

causal inferences. A hardwired decision that always chooses the same option is hard

to analyze because it provides no basis for comparison. Decisions made by the

tutor are easier to analyze than decisions made by the student, because the effects

of student-influenced decisions are hard to tease apart from other student effects,

such as intrinsic characteristics of the student. For example, if students who pick

harder stories make greater gains in reading, which is cause and which is effect?

Randomized decisions are the easiest to analyze and provide the strongest evidence

to support causal inferences. Ideally trials are independent, but complications can

occur, as we shall shortly discuss.

Each trial occurs in a context, such as a particular student in a particular class

encountering a particular word in a particular story on a particular computer at a

particular time on a particular date. The characterization of the context as a set of

features serves as a basis for aggregating or disaggregating trials to relate context to

outcome.

Each trial culminates in an outcome. If the experimental outcome is formulated

in advance, the tutor may be able to explicitly log each outcome as soon as it occurs.

Logging each trial of an experiment as a single record in a table specific to that

experiment, with fields encoding the experiment’s context, decision, and outcome,

simplifies analysis. For example, an experiment comparing different ways to preview



Towards automated educational discovery 201

new words before reading a story posttested each word after the story, logging the

posttests as trial outcomes (Mostow et al. 2004).

Although logging entire trials at once simplifies analysis, it is not always appro-

priate to do. One reason is that the outcome may not be known until later. For

example, a vocabulary experiment with a delayed posttest (Aist 2001) could not log

the outcome of a trial until the next day the student used the tutor again.

Another reason is that explicit tests take time, can interrupt learning, and may not

measure the target skill well. An alternative is to define the outcome of a trial as the

student’s performance at the next encounter of the target skill. This approach not

only avoids the disadvantages of explicit tests, but also provides a more naturalistic

measure of a tutorial intervention’s effect on student learning. For example, one

such experiment defined the outcome of tutorial help on a word in terms of the

student’s performance on that word in a later sentence. This approach defined over

180,000 trials in the data set for a single school year – enough to detect subtle but

statistically significant differences in efficacy between alternative types of help.

A third reason not to log entire trials at once is that the outcome variable may

not be defined until after the fact. The ability to design such ‘post hoc experiments’

is critical to support exploratory and iterative data analysis. The ease, power,

and quality of such after-the-fact analyses benefited dramatically from replacing a

sequential event log file representation with a carefully designed database (Mostow

et al. 2002c). For example, back when we used log files to analyze the effects of

Reading Tutor assistance on words, we wrote perl scripts to parse the log files into

an analyzable data set (Aist and Mostow 1998). The perl scripts were sufficiently ad

hoc, complex, and bug-prone to deter such analyses in the first place, or to cast doubt

on their validity (Mostow and Aist 2001). In contrast, a database representation not

only facilitated analyses of assistance on words (Heiner, Beck and Mostow 2004,

2005), but of other tutorial interventions as well, such as inserting wh- questions to

stimulate comprehension (Beck, Mostow and Bey 2004b).

Although naturalistic outcomes offer some advantages, they can pose complica-

tions, especially when trials overlap in time. One such complication is ‘masking,’ in

which one trial affects the outcome of another (Mostow and Aist 2001). For example,

suppose the randomized decision is what type of help to give on a word, such as

cat. The outcome of the trial is the student’s performance the next time the student

attempts the same word cat in some later sentence. An instance of masking arises

if, just before that next attempt, the tutor gives help again on the word cat, thereby

substantially affecting the student’s performance and overestimating the impact of

the earlier help.

Another complication involves confounding the experimental manipulation with

other influences on trial outcomes. For example, the student’s performance may

depend on how soon the trial ends, which is influenced in turn by how often the

word occurs in English. Some types of word help (e.g. rhyming hints such as rhymes

with mat) tend to apply to high-frequency words such as cat, which the reader is

therefore likely to encounter again soon. Other types of help (e.g. segmenting into

syllables) tend to apply to low-frequency words such as catgut, which the reader is

likely to wait longer before re-encountering. If rhyming hints lead more often to



202 J. Mostow and J. Beck

success at the next encounter than syllable segmentation does, is it because that type

of hints is really more effective, or because it applies to easier words, or because

the reader has less time to forget the word before the re-encounter that defines the

trial outcome? That is, trial outcomes may confound help type with word frequency

(Heiner et al. 2004). Such complications are not necessarily insurmountable, but

require careful statistical treatment to control for them.

4 Mine tutor data set

Once tutor data is in tabular form, mining it extracts useful information, e.g. by

assessing student skills, evaluating interventions to scaffold those skills, or measuring

effects on student learning. What tactics does such mining use?

4.1 Browse example interactions to generate hypotheses

Inspecting specific examples of tutorial interaction can help identify interesting

phenomena, check conjectures, and spot bugs. We were able to develop a generic

tool to support such browsing, thanks to logging tutorial interactions to a database

that meets certain conventions (Mostow, Beck, Cen, Cuneo, Gouvea and Heiner

2005a; Mostow, Beck, Cuneo, Gouvea and Heiner 2005b). The tool lets us input a

query to describe tutorial events of interest, see the hierarchical context in which

each such event occurred, and drill down to explore it in further detail. For example,

we used the tool to browse example cases where students started to read stories but

then ‘bailed out’ without finishing them. Figure 1 displays one such case.

4.2 Aggregate a data set with respect to some feature

For example, one analysis (Mostow et al. 2002a) aggregated the total percentage

of time that each student spent on different types of activities. The resulting time

allocation correlated significantly with gains even after controlling for pretest scores.

For instance, the percentage of time that students spent picking stories instead of

reading them correlated negatively with their test score gains.

4.3 Fit a model to a data set by finding parameter values that minimize its

prediction errors

For example, given a cognitive model of a task in the form of a set of production

rules, ‘knowledge tracing’ (Corbett and Anderson 1995) estimates the probability

that the student has learned a given rule by analyzing a trace of the student’s

problem-solving steps. Here aggregation consists of Bayesian updating at each step

where the rule was appropriate, based on whether the student correctly applied the

rule. Once trained, such a model can help the tutor pick what to teach next.

4.4 Train a model on a data set

Various methods such as statistical regression and decision tree learning induce a

model to approximate a given data set. For example, one such model (Beck et al.



Towards automated educational discovery 203

Fig. 1. Hierarchical context and partially expanded details of a selected event, from (Mostow

et al. 2005a).

2004a) used data from automated speech recognition of children’s oral reading

to predict their actual reading fluency with correlation 0.9. Another such model

(Mostow et al. 2004) used students’ performance on automatically generated cloze

questions to predict their scores on a standard comprehension test with correlation

0.8. Besides guiding tutor decisions, such estimates may be useful to teachers and to

students. A set of association rules induced from data logged by a web-based logic

tutor enabled it to predict mistakes that students were likely to make, and warn

them first (Merceron and Yacef 2005) – a nice example of a tutorial intervention

enabled by mining tutor data.

5 Examples

To illustrate the ‘modify, map, mine’ strategy described above, we summarize how it

was applied in two experiments involving an automated reading tutor.



204 J. Mostow and J. Beck

One experiment (Heiner et al. 2004) compared the efficacy of different types

of tutorial assistance in decoding words. The key modification to the tutor, made

years earlier (Mostow and Aist 1999, 2001), was to randomize the decision of what

kind of assistance to give on a word. The tutor chose at random among plausible

alternatives, such as pronouncing the word, giving a hint of the form Rhymes

with . . . (if feasible), or sounding out its individual phonemes (but not if the word

was more than four phonemes long, lest this type of assistance overload the student’s

short-term memory).

The key mapping step, made after the fact, was to formulate the resulting data in

terms of trials. The context for each trial arose whenever the student was reading a

story and either the student clicked on a word for help, or the tutor decided on its

own initiative to give preemptive or corrective assistance on a word. For example,

the student is reading the sentence Laron likes to draw. The student clicks on the

word draw, and the tutor randomly chooses the hint Rhymes with saw. The outcome

of the trial is a function of the ensuing tutorial dialog. The purpose of the study

was to analyze how tutorial decisions affect student learning, so a natural outcome

was defined by the student’s subsequent encounter of the word draw, for example in

‘I want to draw something, not color in something somebody else drew,’ Jon whispered

to himself. One definition of success is whether the speech recognizer accepts this

later encounter of draw as read fluently without tutorial assistance.

The mining step in this example consisted of aggregating 189,039 trials to compare

the success rates of different forms of tutorial assistance on words – that is, the

percentage of trials ending in success as defined above. Rhyming hints turned out

to have the highest success rate. Slicing each student’s recorded tutorial interaction

into separate trials for each word exploits the assumption that assistance on a word

affects the student’s performance on subsequent encounters of the same word much

more than it transfers to performance on other words.

A different experiment (Beck et al. 2004b) tested the effect of a general intervention

to scaffold students’ comprehension. Detecting learning effects would be problematic

using a within-subject experiment design as in the word assistance experiment,

because a general comprehension strategy should transfer to other text. However,

such a design can still be used to detect scaffolding effects during the period where

students can use the strategy when prompted to do so, but have not yet learned to

apply it habitually on their own.

The comprehension scaffolding experiment used two types of modifications:

adding randomized interventions, and probes to measure their effects. The inter-

vention consisted of randomly inserting a generic multiple-choice wh- question

designed to scaffold comprehension, based on previous findings (Roshenshine,

Meister and Chapman 1996) that training students to ask wh- questions improved

their comprehension. For example, after the story sentence (from one of Aesop’s

fables) ‘Why not come and chat with me,’ said the Grasshopper,‘instead of toiling and

moiling in that way,?’ the tutor might insert either the question What has happened

so far?, or a different generic wh- question, or no question. The choices for each

question were also generic. In this example, the choices were: facts were given; a

problem is being solved; a problem has been solved; a problem; an introduction; a



Towards automated educational discovery 205

mistake; a meeting; nothing yet; I don’t know. After answering the question (if any),

the student resumed reading the story.

The probe tested comprehension by randomly choosing sentences in the story to

make into multiple-choice cloze questions. The tutor deleted a word and prompted

the student to choose among four story words to fill in the blank. Previous work

(Mostow et al. 2004) showed that children’s performance on such questions correlated

strongly with measures of their reading comprehension. One such probe occurred

after the sentence ‘I am helping to lay up food for the winter,’ said the Ant, ‘and

recommend you to do the same.’ The cloze prompt was ‘Why bother about ’?

The choices were food; winter; dying; past. After answering the question, the student

resumed reading the story, starting with the unmodified sentence, in this case ‘Why

bother about winter’? (which is dialog spoken by a character in the story as part of

the text, not a question inserted by the tutor).

The resulting data stream can be mapped to trials by treating each randomized

decision of whether to insert a wh- question as starting a trial, and the student’s

performance on the next cloze question as the outcome of that trial. However,

multiple decisions likely affected the same trial, and the same decision likely affected

multiple outcomes. So instead, it makes sense to analyze the overall impact on each

cloze question of all the preceding wh- questions.

Accordingly, an appropriate way to mine this data was to construct a logistic

regression model to predict performance on the 15,187 cloze questions. To control

for individual differences between students and account for statistical dependence

among each student’s performance on different questions (Menard 1995), the model

included student identity as a factor. The model included the number of preceding

wh- and cloze questions as variables to determine their effects on comprehension.

Initial analysis revealed that performance was lower on cloze questions administered

too soon after the preceding question, presumably because they annoyed students,

who then answered randomly. The model therefore also included variables for the

number of ‘recent’ wh- and cloze questions, i.e., asked in the preceding two minutes,

as well as a variable for the amount of time since the last question of any kind.

The logistic regression showed that the total number of wh- questions was a

significant positive predictor of cloze performance (p = .023), and the number of

‘recent’ wh- questions was a negative predictor (p = 0.074), as was the recency of

the last question (p = 0.036), but the number of cloze questions (total or recent)

was not a significant predictor. These results indicate that the wh- questions were

effective in scaffolding children’s comprehension.

6 Contributions and future work

We have decomposed the goal of automated educational discovery into modifying

the data that tutors log, mapping that data from event streams into tabular form,

and mining the data to extract information useful for assessing student skills and

evaluating tutorial actions. We have identified tactics for each of these phases

and illustrated their use. This approach transforms year-long, fine-grained streams

of daily, mixed-initiative tutorial interactions with several hundred students into



206 J. Mostow and J. Beck

hundreds of thousands of within-subject experimental trials. The resulting ‘big data’

offers the statistical power needed to discover which tutorial actions help which

students in which cases. Future work is needed to refine the model, identify additional

tactics, and automate them. An intelligent tutor that explores alternative strategies

fully autonomously in order to discover what works best may lie indefinitely far off.

But intelligent tutors can already accrue – and pool – more one-on-one interaction

with students than any human tutor can accumulate in a lifetime. The intelligent

tutor with a million hours of experience may not be far off at all. Our challenge is

to mine useful educational discoveries from such experience.

Acknowledgements

This work was supported in part by the National Science Foundation under

ITR/IERI Grant No. REC-0326153. Any opinions, findings, conclusions, or re-

commendations expressed in this publication are those of the authors and do not

necessarily reflect the views of the National Science Foundation or the official

policies, either expressed or implied, of the sponsors or of the United States

Government. We thank the educators and students who contributed to our data,

and our Project LISTEN colleagues, past and present, who contributed to the work

described here.

References

Aist, G. (2001) Towards automatic glossarization: Automatically constructing and

administering vocabulary assistance factoids and multiple-choice assessment. International

Journal of Artificial Intelligence in Education 12: 212–231.

Aist, G. and Mostow, J. (1998) Estimating the effectiveness of conversational behaviors in

a reading tutor that listens. Working Notes of the AAAI Spring Symposium on Applying

Machine Learning to Discourse Processing, Stanford, CA.

Aleven, V., Popescu, O. and Koedinger, K. (2002) Pilot-testing a tutorial dialogue system

that supports self-explanation. 6th International Conference on Intelligent Tutoring Systems,

pp. 344–354. Biarritz, France.

Arroyo, I., Beck, J. E., Woolf, B. P., Beal, C. R. and Schultz, K. (2000) Macroadapting

AnimalWatch to gender and cognitive differences with respect to hint interactivity

and symbolism. 5th International Conference on Intelligent Tutoring Systems (ITS2000),

pp. 574–583. Montreal, Canada.

Beck, J. E. (ed.) (2004) Proceedings of the ITS2004 Workshop on Analyzing Student-Tutor

Interaction Logs to Improve Educational Outcomes. Maceio, Brazil.

Beck, J. E., Jia, P. and Mostow, J. (2004a) Automatically assessing oral reading fluency in a

computer tutor that listens. Technology, Instruction, Cognition and Learning 2: 61–81.

Beck, J. E., Mostow, J. and Bey, J. (2004b) Can automated questions scaffold children’s reading

comprehension? Proceedings of the 7th International Conference on Intelligent Tutoring

Systems, pp. 478–490. Maceio, Brazil.

Beck, J. E., Woolf, B. P. and Beal, C. R. (2000) ADVISOR: A machine learning architecture

for intelligent tutor construction. Proceedings of the Seventeenth National Conference on

Artificial Intelligence, pp. 552–557. Austin, Texas.

Calfee, R., Kukich, K., Landauer, T., Laham, D., Foltz, P., Hirschman, L., Breck, E., Burger,

J. and Ferro, L. (2000) The debate on automated essay grading. IEEE Intelligent Systems

15(5): 22–37.

Corbett, A. and Anderson, J. (1995) Knowledge tracing: Modeling the acquisition of

procedural knowledge. User modeling and user-adapted interaction 4: 253–278.



Towards automated educational discovery 207

Corbett, A., McLaughlin, M. S. and Scarpinatto, K. C. (2000) Modeling student knowledge:

Cognitive tutors in high school and college. User modeling and user-adapted interaction 10:

81–108.

Goodman, B., Hitzeman, J., Linton, F. and Ross, H. (2003) Towards intelligent agents for

collaborative learning: Recognizing the roles of dialogue participants. 9th International

Conference on User Modeling, pp. 363–367. Johnstown, PA.

Heiner, C., Beck, J. E. and Mostow, J. (2004) Improving the help selection policy in a

Reading Tutor that listens. Proceedings of the InSTIL/ICALL Symposium on NLP and

Speech Technologies in Advanced Language Learning Systems, pp. 195–198. Venice, Italy.

Heiner, C., Beck, J. E. and Mostow, J. (2005) When do students interrupt help? Effects of time,

help type, and individual differences. Proceedings of the 12th International Conference on

Artificial Intelligence in Education (AIED 2005), pp. 819–826. Amsterdam, The Netherlands.

Koedinger, K. R. and Anderson, J. R. (1993) Reifying implicit planning in geometry:

Guidelines for model-based intelligent tutoring system design. In: S. P. Lajoie and S. J.

Derry (eds.), Computers as Cognitive Tools, pp. 15–45. Hillsdale, NJ: Erlbaum.

Menard, S. (1995) Applied Logistic Regression Analysis. Quantitative Applications in the Social

Sciences 106.

Merceron, A. and Yacef, K. (2005) Educational data mining: a case study. In: C.-K. Looi,

G. McCalla, B. Bredeweg and J. Breuker (eds.), Artificial Intelligence in Education:

Supporting Learning through Intelligent and Socially Informed Technology (Proceedings of

the 12th International Conference on Artificial Intelligence), pp. 467–474. Amsterdam: IOS

Press.

Mostow, J. (in press) Evaluation purposes, excuses, and methods: Experience from a Reading

Tutor that listens. In: C. K. Kinzer and L. Verhoeven (eds.), Interactive Literacy Education,

Mahway, NJ: Erlbaum.

Mostow, J. and Aist, G. (1997) The sounds of silence: Towards automated evaluation of

student learning in a Reading Tutor that listens. Proceedings of the Fourteenth National

Conference on Artificial Intelligence (AAAI-97), pp. 355–361. Providence, RI.

Mostow, J. and Aist, G. (1999) Giving help and praise in a reading tutor with imperfect

listening – because automated speech recognition means never being able to say you’re

certain. CALICO Journal 16(3): 407–424.

Mostow, J. and Aist, G. (2001) Evaluating tutors that listen: An overview of Project LISTEN.

In: K. Forbus and P. Feltovich (eds.), Smart Machines in Education, pp. 169–234. Menlo

Park, CA: MIT/AAAI Press.

Mostow, J., Aist, G., Beck, J., Chalasani, R., Cuneo, A., Jia, P. and Kadaru, K. (2002a) A

la recherche du temps perdu, or as time goes by: Where does the time go in a Reading

Tutor that listens? Proceedings of the Sixth International Conference on Intelligent Tutoring

Systems (ITS2002), pp. 320–329. Biarritz, Franc.

Mostow, J., Aist, G., Bey, J., Burkhead, P., Cuneo, A., Junker, B., Rossbach, S., Tobin, B., Valeri,

J. and Wilson, S. (2002b) Independent practice versus computer-guided oral reading: Equal-

time comparison of sustained silent reading to an automated reading tutor that listens.

Ninth Annual Meeting of the Society for the Scientific Study of Reading, Chicago, IL.

Mostow, J., Beck, J., Chalasani, R., Cuneo, A. and Jia, P. (2002c) Viewing and analyzing

multimodal human-computer tutorial dialogue: a database approach. Proceedings of the

Fourth IEEE International Conference on Multimodal Interfaces (ICMI 2002), Pittsburgh,

PA, pp. 129–134.

Mostow, J., Aist, G., Burkhead, P., Corbett, A., Cuneo, A., Eitelman, S., Huang, C., Junker,

B., Sklar, M. B. and Tobin, B. (2003) Evaluation of an automated Reading Tutor that

listens: Comparison to human tutoring and classroom instruction. Journal of Educational

Computing Research 29(1): 61–117.

Mostow, J., Beck, J., Bey, J., Cuneo, A., Sison, J., Tobin, B. and Valeri, J. (2004) Using

automated questions to assess reading comprehension, vocabulary, and effects of tutorial

interventions. Technology, Instruction, Cognition and Learning 2: 97–134.



208 J. Mostow and J. Beck

Mostow, J. and Beck, J. (2005) Micro-analysis of fluency gains in a Reading Tutor that

listens: Wide vs. repeated guided oral reading, Twelfth Annual Meeting of the Society for

the Scientific Study of Reading. Toronto.

Mostow, J., Beck, J., Cen, H., Cuneo, A., Gouvea, E. and Heiner, C. (2005a) An educational

data mining tool to browse tutor-student interactions: Time will tell! Proceedings of

the Workshop on Educational Data Mining, National Conference on Artificial Intelligence,

pp. 15–22. Pittsburgh, PA.

Mostow, J., Beck, J., Cuneo, A., Gouvea, E. and Heiner, C. (2005b) A generic tool to

browse tutor-student interactions: Time will tell! Proceedings of the 12th International

Conference on Artificial Intelligence in Education (AIED 2005), pp. 884–886. Amsterdam,

The Netherlands.

Mostow, J., Aist, G., Huang, C., Junker, B., Kennedy, R., Lan, H., Latimer, D., O’Connor,

R., Tassone, R., Tobin, B. and Wierman, A. (in press) 4-Month evaluation of a learner-

controlled Reading Tutor that listens. In: V. M. Holland and F. N. Fisher (eds.), Speech

Technology for Language Learning, Lisse, The Netherlands: Swets & Zeitlinger.

Poulsen, R. (2004) Tutoring Bilingual Students With an Automated Reading Tutor That Listens:

Results of a Two-Month Pilot Study. Unpublished Masters Thesis, DePaul University,

Chicago, IL.

Roshenshine, B., Meister, C. and Chapman, S. (1996) Teaching students to generate questions:

A review of the intervention studies. Review of Educational Research 66(2): 181–221.

Self, J. (1988) Bypassing the intractable problem of student modelling. Intelligent Tutoring

Systems, pp. 18–24.

Shute, V., Gawlick-Grendell, L. A., Young, R. K. and Burnham, C. A. (1996) An experiential

system for learning probability: Stat Lady description and evaluation. Instructional Science

24(1): 25–46.

Soller, A. L. (2001) Supporting social interaction in an intelligent collaborative learning

system. International Journal of Artificial Intelligence in Education 12(1): 40–62.

Soller, A. (2004a) Computational modeling and analysis of knowledge sharing in collaborative

distance learning. User Modeling and User-Adapted Interaction 14(1): 351–381.

Soller, A. (2004b) Understanding knowledge-sharing breakdowns: a meeting of the

quantitative and qualitative minds. Journal of Computer Assisted Learning 20(3): 213–223.

Vassileva, J., Greer, J., McCalla, G., Deters, R., Zapata, D., Mudgal, C. and Grant, S. (1999)

A multi-agent approach to the design of peer-help environments. International Conference

on Artificial Intelligence in Education, pp. 38–45. Le Mans, France.

Weiser, M. (1984) Program slicing. IEEE Transactions on Software Engineering 10(4): 352–357.


