
Assessing Student Proficiency
in a Reading Tutor that Listens

Joseph E. Beck, Peng Jia, and Jack Mostow

joseph.beck@cmu.edu
http://www.cs.cmu.edu/~listen

Project LISTEN
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213. USA.

Abstract. This paper reports results on using data mining to extract useful
variables from a database that contains interactions between the student and
Project LISTEN’s Reading Tutor. Our approach is to find variables we believe
to be useful in the information logged by the tutor, and then to derive models
that relate those variables to student’s scores on external, paper-based tests of
reading proficiency. Once the relationship between the recorded variables and
the paper tests is discovered, it is possible to use information recorded by the
tutor to assess the student’s current level of proficiency. The major results of
this work were the discovery of useful features available to the Reading Tutor
that describe students, and a strong predictive model of external tests that
correlates with actual test scores at 0.88.

1 Introduction and Motivation

Project LISTEN’ s Reading Tutor is an intelligent tutor that listens to students read
aloud and helps them learn how to read. Target users are students in first through
fourth grades (approximately 6- through 9-year olds). The Reading Tutor uses speech
recognition technology to (try to) determine which words the student has read
incorrectly and provide help.

Constructing a student model for the Reading Tutor is a challenging task. Most
student models are structured according to the domain content or a model of how
students solve procedural problems [1]. Previous work at constructing student models
in computer tutors for language learning has focused on understanding students’ typed
input [5]. Although the Reading Tutor uses mouse for some input, requiring typing
would not work well since non-readers cannot write.

Our goal with this work is to use fine-grained data generated by student-Reading
Tutor interactions to provide assessment of students’ reading performance that rely on
empirical knowledge that we can derive from data. Previous work [3] has used
external tests to validate the accuracy of a user model. This prior work used the
student model’ s estimates of the student’ s proficiencies to predict what his score
would be on an exam. Correlations between predicted and actual scores reached 0.81.

We are instead starting with student data and using external tests to derive a student
model. If we can accurately predict how a student would perform on a paper test, we
can use that prediction to direct the tutor’ s decision making. Such automated
assessments can be used to help adapt the Reading Tutor’ s functionality by selecting
stories for the student at an appropriate level of difficulty.

2 Approach

In the 2000-2001 school year, 88 students in grades one through four (i.e. 6- through
9-year olds) used the Reading Tutor from late October through early June. There
were 37 first graders, 18 second graders, 17 third graders, and 16 fourth graders.

We tested students individually 4 times. In October and April, students were
measured for fluency and the Woodcock Reading Mastery Test (WRMT) [7]. We
also tested students’ fluency in January and May. We measured fluency by having
each student read 3 grade-level passages and counting the number read correctly, and
then taking the median of those 3 numbers. The WRMT is a battery of tests designed
to assess the student’ s reading proficiency across a broad spectrum.

In this paper, we use these test scores to relate student interaction data logged by
the Reading Tutor to the paper tests for purposes of automatically assessing the
student. Specifically, we predict student fluency and Word Identification (WI) from
the WRMT. WI measures the student’ s skill at correctly reading words in English. A
2.4 means a student demonstrates word identifications skills at the level of 4 months
into the second grade.

The Reading Tutor logs when a student reads a story, a sentence, and a particular
word. It also logs when students request help on a word. From this information we
can define a series of measures that describe how students are performing while using
the Reading Tutor. One measure is the interword latency [6], defined as the time from
when a student finishes speaking the i-1th word in the sentence until he begins to
correctly pronounce the ith word. Note that some words do not have defined
latencies. If a student never reads word i-1 in the sentence, then word i does not have
a latency.

We defined several features based on latency:
1. Total percentage of words having a defined latency
2. Percentage of words read fluently (latency of 10ms)
3. Percentage of words read disfluently (latency >5000ms)
4. Median of all latencies
5. Mean of all latencies

We also defined features based on the student’ s help request behavior
1. Percentage of sentences for which the student requested sentence help
2. Percentage of words about which the student requested help

The features about latency and help requests were defined for all words the student
encountered. We also computed those features just for words that are on the Dolch
list [4] of 220 frequent words. We then computed those features just for words that
are not on the Dolch list. We also used as features each student’ s grade and gender,
and the percentage of words the student read the Reading Tutor accepted as correct.

Since the Reading Tutor’ s logs were designed primarily for debugging rather than
educational data mining, certain types of interactions were not logged in a parseable
form. See [2] for a description of problems with the logging procedure. In spite of
relatively minor warts with the logging (which have been fixed in later versions of the
Reading Tutor), we were able to define and extract many potentially useful
descriptors of student performance from our database. We now turn to using these
data to predict scores on the WRMT and fluency tests.

We only consider data about student performance in the Reading Tutor from within
a window of time before a paper-test is administered. We experimented with a variety
of window sizes: 1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks, and all data before
the test was administered to explore tradeoffs between timeliness of data and
noisiness of estimate. Data that are more recent better describe a student’ s changing
state of knowledge. However, if the window is too small, then we our estimates of the
parameters may be noisy (i.e. a version of bias-variance tradeoff). Once we have a
specified window size, we collect data on all of the student measures from within that
window and use those data to construct a set of features representing the student’ s
performance within the Reading Tutor.

Each training instance consists of one paper test score and 62 features computed
from student performance during its associated time window.

We aggregated the data for all 4 fluency tests and for both WI tests together. Since
there are 88 students and 4 fluency tests, combining the data together provides 352
instances to train a model of fluency. With only 2 WI tests, there are 176 instances
for training a model of the WI component of the WRMT. Due to students missing
some tests and our losing low-level Reading Tutor data from one student, we only had
344 fluency and 173 WI test scores to serve as labels.

We conducted experiments using Weka, a public domain set of datamining tools
written in Java, and used its model tree and linear regression algorithms to make
predictions. Model trees are a combination of decision trees and linear regression:
first the training data are partitioned as in a decision tree, but the leaf nodes contain a
linear model for making predictions. Model trees handle non-linearities in data by
splitting the data into regions that can be better modeled with linear techniques. For
both techniques we used the default settings in Weka.

3 Results

We now relate our model’ s predictions to how students actually performed on the
paper-based tests. These results are from a 10-fold cross validation of 87 students.
We used window sizes of 1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks, and all data
before the test. The best result for predicting fluency was a correlation of 0.86 from
using a model tree with a 12 week window. Model trees did better than linear
regression for all window sizes except for 1 week.

For Word Identification, the pattern between window size and performance was
less clear. Model trees outperform Weka’ s linear regression, and performance
improves somewhat as window size increases. Using an 8-week window, the model

tree’ s predictions correlate at 0.87 with the actual test scores while Weka’ s linear
regression correlates at 0.82.

A truism in datamining and machine learning is to start with simple models first,
and then see if using more complex models is needed and justified. However, we
have found that which software you use for your simple models can make a noticeable
difference. We performed the majority of our work in Weka since it is free and the
source code is available. Having source code is a great advantage for researchers
since it simplifies conducting experiments that software designers may not have
thought of. However, we have found that Weka and SPSS disagree on how well
linear models fit our data. Figure 1 shows how SPSS and Weka compare in model
accuracy. SPSS gives a maximum correlation of 0.88 with the actual test scores,
compared to 0.87 with Weka’ s model trees. This difference in correlations is
negligible; however, models generated by SPSS are relatively insensitive to window
size, which is a good feature. This difference in performance between regression
techniques is linked to Weka’ s default behavior that first prunes variables before
building its linear models. For regression it is easy to disable this pruning. For model
trees, turning off the pruning requires a source code modification that we have not yet
completed.

Figure 1. Performance at predicting word identification test

4 Conclusions

The approach of constructing a user model by relating fine-grained features to
existing, external measures is a promising one. It makes sense to bootstrap from the
extensive effort that has been spent psychometrically validating instruments such as
the WRMT. For domains such as reading, where it can be difficult to determine
which student performance measures are important, and it is impractical to make the
user interface transparent to show the student’ s “problem-solving steps,” constructing
a student model in this manner is a sensible procedure. However, this approach

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

1 w eek 2 w eeks 4 w eeks 8 w eeks 12 w eeks all data before

window size

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

SPSS

Weka: MT

Weka: LR

would not be practical for modeling finer-grained aspects of student-knowledge (e.g.
whether a student knows ph makes the sound /f/ in the word “phone”).

We have determined which variables are important in assessing student knowledge
at a coarse level. Viewing the variables as broad categories, both latency and help
request features provided useful information for predicting a student’ s level of reading
ability. Both variables combined did better than either one alone.

The most useful single variable was the percentage of words that had a latency
defined. This feature is somewhat different from, and outperformed, the percentage
of words the speech recognizer heard the student say correctly. Since latency is only
defined for 2 successive words read correctly [6], it is not defined for the first word of
the sentence or for isolated words read correctly. Thus, the student’ s ability to string
multiple words in a row together seems to have some predictive power above and
beyond just saying those words correctly in isolation.

Acknowledgements

This work was supported in part by the National Science Foundation under Grant
No. REC-9979894. Any opinions, findings, conclusions, or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the
views of the National Science Foundation or the official policies, either expressed or
implied, of the sponsors or of the United States Government. We thank members of
Project LISTEN who contributed to this work, especially Susan Rossbach for
conducting the field studies, Andrew Cuneo for constructing the database from the
logfiles, and June Sison for commenting on a draft of this paper.

References (see www.cs.cmu.edu/~listen for LISTEN publications)

1. Anderson, J.R., Rules of the Mind. 1993: Lawrence Erlbaum Assoc.
2. Beck, J.E., Jia, P., Sison, J. and Mostow, J., Predicting student help-request behavior

in an intelligent tutor for reading. Proceedings of the Ninth International Conference
on User Modeling. 2003

3. Corbett, A.T. and Bhatnagar, A., Student Modeling in the ACT Programming Tutor:
Adjusting a Procedural Learning Model With Declarative Knowledge. Proceedings of
the Sixth International Conference on User Modeling. 1997

4. Dolch, E., A basic sight vocabulary. Elementary School Journal, 1936. 36: p. 456-
460.

5. Michaud, L.N., McCoy, K.F. and Stark, L.A., Modeling the Acquisition of English:
an Intelligent CALL Approach". Proceedings of the Eighth International Conference
on User Modeling. 2001

6. Mostow, J. and Aist, G., The Sounds of Silence: Towards Automated Evaluation of
Student Learning in a Reading Tutor that Listens. Proceedings of the Proceedings of
the Fourteenth National Conference on Artificial Intelligence. p. 355-361. 1997

7. Woodcock, R.W., Woodcock Reading Mastery Tests - Revised (WRMT-R/NU). 1998,
Circle Pines, Minnesota: American Guidance Service.

