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Abstract.   This paper reports results on using data mining to extract useful 
variables from a database that contains interactions between the student and 
Project LISTEN’s Reading Tutor.  Our approach is to find variables we believe 
to be useful in the information logged by the tutor, and then to derive models 
that relate those variables to student’s scores on external, paper-based tests of 
reading proficiency.  Once the relationship between the recorded variables and 
the paper tests is discovered, it is possible to use information recorded by the 
tutor to assess the student’s current level of proficiency.  The major results of 
this work were the discovery of useful features available to the Reading Tutor 
that describe students, and a strong predictive model of external tests that 
correlates with actual test scores at 0.88.   

1  Introduction and Motivation 

Project LISTEN’ s Reading Tutor is an intelligent tutor that listens to students read 
aloud and helps them learn how to read.  Target users are students in first through 
fourth grades (approximately 6- through 9-year olds).  The Reading Tutor uses speech 
recognition technology to (try to) determine which words the student has read 
incorrectly and provide help.   

Constructing a student model for the Reading Tutor is a challenging task.  Most 
student models are structured according to the domain content or a model of how 
students solve procedural problems [1].  Previous work at constructing student models 
in computer tutors for language learning has focused on understanding students’  typed 
input [5].  Although the Reading Tutor uses mouse for some input, requiring typing 
would not work well since non-readers cannot write.    

Our goal with this work is to use fine-grained data generated by student-Reading 
Tutor interactions to provide assessment of students’  reading performance that rely on 
empirical knowledge that we can derive from data.  Previous work [3] has used 
external tests to validate the accuracy of a user model.  This prior work used the 
student model’ s estimates of the student’ s proficiencies to predict what his score 
would be on an exam.  Correlations between predicted and actual scores reached 0.81.  



We are instead starting with student data and using external tests to derive a student 
model.  If we can accurately predict how a student would perform on a paper test, we 
can use that prediction to direct the tutor’ s decision making.  Such automated 
assessments can be used to help adapt the Reading Tutor’ s functionality by selecting 
stories for the student at an appropriate level of difficulty.   

2  Approach 

In the 2000-2001 school year, 88 students in grades one through four (i.e. 6- through 
9-year olds) used the Reading Tutor from late October through early June.  There 
were 37 first graders, 18 second graders, 17 third graders, and 16 fourth graders.   

We tested students individually 4 times.  In October and April, students were 
measured for fluency and the Woodcock Reading Mastery Test (WRMT) [7].   We 
also tested students’  fluency in January and May.  We measured fluency by having 
each student read 3 grade-level passages and counting the number read correctly, and 
then taking the median of those 3 numbers.  The WRMT is a battery of tests designed 
to assess the student’ s reading proficiency across a broad spectrum. 

In this paper, we use these test scores to relate student interaction data logged by 
the Reading Tutor to the paper tests for purposes of automatically assessing the 
student.  Specifically, we predict student fluency and Word Identification (WI) from 
the WRMT.  WI measures the student’ s skill at correctly reading words in English. A 
2.4 means a student demonstrates word identifications skills at the level of 4 months 
into the second grade. 

The Reading Tutor logs when a student reads a story, a sentence, and a particular 
word.  It also logs when students request help on a word.  From this information we 
can define a series of measures that describe how students are performing while using 
the Reading Tutor.  One measure is the interword latency [6], defined as the time from 
when a student finishes speaking the i-1th  word in the sentence until he begins to 
correctly pronounce the ith word.  Note that some words do not have defined 
latencies.  If a student never reads word i-1 in the sentence, then word i does not have 
a latency.    

We defined several features based on latency: 
1. Total percentage of words having a defined latency 
2. Percentage of words read fluently (latency of 10ms) 
3. Percentage of words read disfluently (latency >5000ms) 
4. Median of all latencies 
5. Mean of all latencies 

We also defined features based on the student’ s help request behavior 
1. Percentage of sentences for which the student requested sentence help  
2. Percentage of words about which the student requested help 

The features about latency and help requests were defined for all words the student 
encountered.  We also computed those features just for words that are on the Dolch 
list [4] of 220 frequent words.  We then computed those features just for words that 
are not on the Dolch list.  We also used as features each student’ s grade and gender, 
and the percentage of words the student read the Reading Tutor accepted as correct.    



Since the Reading Tutor’ s logs were designed primarily for debugging rather than 
educational data mining, certain types of interactions were not logged in a parseable 
form.  See [2] for a description of problems with the logging procedure.  In spite of 
relatively minor warts with the logging (which have been fixed in later versions of the 
Reading Tutor), we were able to define and extract many potentially useful 
descriptors of student performance from our database.  We now turn to using these 
data to predict scores on the WRMT and fluency tests.   

We only consider data about student performance in the Reading Tutor from within 
a window of time before a paper-test is administered.  We experimented with a variety 
of window sizes:  1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks, and all data before 
the test was administered to explore tradeoffs between timeliness of data and 
noisiness of estimate.  Data that are more recent better describe a student’ s changing 
state of knowledge.  However, if the window is too small, then we our estimates of the 
parameters may be noisy (i.e. a version of bias-variance tradeoff).  Once we have a 
specified window size, we collect data on all of the student measures from within that 
window and use those data to construct a set of features representing the student’ s 
performance within the Reading Tutor.   

Each training instance consists of one paper test score and 62 features computed 
from student performance during its associated time window.   

We aggregated the data for all 4 fluency tests and for both WI tests together.  Since 
there are 88 students and 4 fluency tests, combining the data together provides 352 
instances to train a model of fluency.  With only 2 WI tests, there are 176 instances 
for training a model of the WI component of the WRMT.  Due to students missing 
some tests and our losing low-level Reading Tutor data from one student, we only had 
344 fluency and 173 WI test scores to serve as labels.   

We conducted experiments using Weka, a public domain set of datamining tools 
written in Java, and used its model tree and linear regression algorithms to make 
predictions.  Model trees are a combination of decision trees and linear regression:  
first the training data are partitioned as in a decision tree, but the leaf nodes contain a 
linear model for making predictions.  Model trees handle non-linearities in data by 
splitting the data into regions that can be better modeled with linear techniques.  For 
both techniques we used the default settings in Weka.  

3  Results 

We now relate our model’ s predictions to how students actually performed on the 
paper-based tests.  These results are from a 10-fold cross validation of 87 students.  
We used window sizes of 1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks, and all data 
before the test.  The best result for predicting fluency was a correlation of 0.86 from 
using a model tree with a 12 week window.  Model trees did better than linear 
regression for all window sizes except for 1 week.   

For Word Identification, the pattern between window size and performance was 
less clear.  Model trees outperform Weka’ s linear regression, and performance 
improves somewhat as window size increases.  Using an 8-week window, the model 



tree’ s predictions correlate at 0.87 with the actual test scores while Weka’ s linear 
regression correlates at 0.82.   

A truism in datamining and machine learning is to start with simple models first, 
and then see if using more complex models is needed and justified.  However, we 
have found that which software you use for your simple models can make a noticeable 
difference.  We performed the majority of our work in Weka since it is free and the 
source code is available.  Having source code is a great advantage for researchers 
since it simplifies conducting experiments that software designers may not have 
thought of.  However, we have found that Weka and SPSS disagree on how well 
linear models fit our data.  Figure 1 shows how SPSS and Weka compare in model 
accuracy.  SPSS gives a maximum correlation of 0.88 with the actual test scores, 
compared to 0.87 with Weka’ s model trees.  This difference in correlations is 
negligible; however, models generated by SPSS are relatively insensitive to window 
size, which is a good feature.  This difference in performance between regression 
techniques is linked to Weka’ s default behavior that first prunes variables before 
building its linear models.  For regression it is easy to disable this pruning.  For model 
trees, turning off the pruning requires a source code modification that we have not yet 
completed.   

 

 

 

 

Figure 1.  Performance at predicting word identification test 

4  Conclusions 

The approach of constructing a user model by relating fine-grained features to 
existing, external measures is a promising one.  It makes sense to bootstrap from the 
extensive effort that has been spent psychometrically validating instruments such as 
the WRMT.  For domains such as reading, where it can be difficult to determine 
which student performance measures are important, and it is impractical to make the 
user interface transparent to show the student’ s “problem-solving steps,” constructing 
a student model in this manner is a sensible procedure.  However, this approach 
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would not be practical for modeling finer-grained aspects of student-knowledge (e.g. 
whether a student knows ph makes the sound /f/ in the word “phone”). 

We have determined which variables are important in assessing student knowledge 
at a coarse level.  Viewing the variables as broad categories, both latency and help 
request features provided useful information for predicting a student’ s level of reading 
ability.  Both variables combined did better than either one alone. 

The most useful single variable was the percentage of words that had a latency 
defined.  This feature is somewhat different from, and outperformed, the percentage 
of words the speech recognizer heard the student say correctly.  Since latency is only 
defined for 2 successive words read correctly [6], it is not defined for the first word of 
the sentence or for isolated words read correctly.  Thus, the student’ s ability to string 
multiple words in a row together seems to have some predictive power above and 
beyond just saying those words correctly in isolation.   
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