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Abstract.  This paper describes our efforts at constructing a fine-grained 
student model in Project LISTEN’s intelligent tutor for reading.  Reading is 
different from most domains that have been studied in the intelligent tutoring 
community, and presents unique challenges.  Constructing a model of the user 
from voice input and mouse clicks is difficult, as is constructing a model when 
there is not a well-defined domain model.  We use a database describing student 
interactions with our tutor to train a classifier that predicts whether students will 
click on a particular word for help with 83.2% accuracy.  We have augmented 
the classifier with features describing properties of the word’s individual 
graphemes, and discuss how such knowledge can be used to assess student 
skills that cannot be directly measured.   

1  Introduction and Motivation 

Project LISTEN’ s Reading Tutor [10] is an intelligent tutor that listens to students 
read aloud with the goal of helping them learn how to read English.  Target users are 
students in first through fourth grades (approximately 6- through 9-year olds).  
Students take turns with the Reading Tutor picking stories to read.  Students are 
shown one sentence at a time, and the Reading Tutor uses speech recognition 
technology to (try to) determine which words the student has read incorrectly [13].  
The student can also request help on words about which he is uncertain; types of help 
include sounding out the word, pronouncing the word, and providing rhyming hints.   

The Reading Tutor is more effective at helping children learn to read than simply 
letting children read books on their own [11].  Much of the Reading Tutor’ s power 
comes from allowing children to request help and from detecting some mistakes that 
students make while reading.  It does not have the strong reasoning about the user that 
distinguishes a classic intelligent tutoring system, although it does base some 
decisions, such as picking a story at an appropriate level of challenge, on the student’ s 
reading proficiency.   

Our goal is to strengthen the Reading Tutor’ s user model and determine which user 
characteristics are predictive of student behavior.  If we can predict how students 



behave while using the Reading Tutor, we can use such knowledge to help adapt the 
tutor’ s behavior, assess students, and we will have discovered useful features for 
understanding students using the tutor.  Given our current lack of knowledge of good 
features for student modeling within the Reading Tutor, learning how to describe 
students is a worthwhile goal.  We take the approach of observing users and trying to 
learn patterns from their behavior.  Being able to validate hypotheses about how users 
behave against already logged data also simplifies experimental design:  it is not 
necessary to run a new study to evaluate the accuracy of the student model.   

2  Approach 

In this section we discuss how we collected data from students, what aspect of the 
students we choose to model, how to approach the problem as a classification task, 
and various architectures for training the classifier.   

2.1  Data Collected 

In the 2000-2001 school year, 88 students in two schools used the Reading Tutor as 
part of a controlled study.  Students used the Reading Tutor from the end of October 
2000 until the beginning of June 2001.  On average, students used the Reading Tutor 
for approximately 18 hours.   

The Reading Tutor logged when students started reading a story, when a new 
sentence was displayed, when a student read each word in the sentence, and when the 
student clicked on a word for help.  These data were parsed and used to construct an 
SQL database [12].  Across the 88 students, students saw a total of 2.4 million words 
over the year, which amounts to students seeing 25 words per minute while using the 
Reading Tutor (about one-tenth of the average adult reading rate).   

Students requested help on a word from the Reading Tutor 229,000 times over the 
course of the year.  We know what word the student clicked on and when he clicked.  

Unfortunately, the logging was incomplete.  We are not able to extract from the 
logs what type of help the Reading Tutor provided to the student.  Since many 
students would continue to click until the Reading Tutor read the word (the Reading 
Tutor randomly selects which type of help to give each time the student clicks), it is 
difficult to interpret what multiple requests for help mean:  the student could be very 
confused or simply holding out until the RT read the word.   

Another area where logging was incomplete was when the Reading Tutor decided 
to provide help to the student.  The Reading Tutor gives help to students before they 
start reading a sentence on words that it thinks are difficult.  The rationale for this help 
is that if a student gets practice reading a word incorrectly it will be harder to teach 
him later the correct way of reading the word [4].  Therefore, the Reading Tutor gives 
help on words the student is likely to have difficulties with.  Unfortunately, whether 
the Reading Tutor gave preemptive assistance was logged, but the actual word for 
which the tutor provided assistance was not recorded in an easily analyzable form.  



2.2  Modeling Problem:  What to Predict? 

Predicting student behavior is a means of adapting instruction.  If the tutor knows 
when the student will, for example, require assistance, it can provide help before the 
student becomes stuck.  There are a variety of student behaviors we could predict:  
whether the student will speak a word correctly, the delay before a student begins to 
pronounce a word [6, 9], whether the student clicks on a word for help, etc.  Speech 
recognition is a far from perfect technology, so to simplify our task we concentrate on 
predicting whether the student will click for help on a word.   

We treat predicting whether the student asks for help as a binary prediction task.  
One use for such a model is to determine when the Reading Tutor should provide 
preemptive assistance before the student attempts to read the sentence.  Currently, 
preemptive assistance is biased towards giving help on longer words and on words the 
student has read poorly in the past.  This approach is somewhat lacking as it does not 
consider the length of time since the student saw the word, whether the student has 
previously asked for help on this word, etc.  A model of help requests is also a model 
of relative word difficulty: words that a student is likely to click for help on are harder 
than words for which the student does not need help.  Such a model of word difficulty 
could be used to select stories that are appropriate for the student, or to provide 
additional information to speech recognizer.  In particular, if a student is likely to 
need help on a word (and does not receive help) the prior probability that he will read 
the word correctly should be lowered.   

We examined student help request patterns on common and uncommon words.  
Dolch words [3] are 220 high-frequency words that children should learn by sight.  
Students tend to have few help requests on Dolch words, so we do not consider them 
in our analysis.  Figure 1 shows student help request patterns on non-Dolch words.  
The x-axis is how many times the student has seen this word previously in the 
Reading Tutor.  The y-axis is the probability he will request help on a word.  Each 
line on the curve represents a group of students who scored similarly on the 
Woodcock Reading Mastery’ s Word Identification test [15].  The Word Identification 
(WI) test reports student’ s ability to read words correctly in English.  A score of 2.3 
means that a student reads at a level comparable to a student in the 3rd month of the 
2nd grade.  Students were pre-tested in October before using the Reading Tutor and 
post-tested in late March.  We define a student’ s grade level as the average of pre- and 
post-test scores on the WI test.  This figure excludes students who had grade levels of 
4, 5, or 6 for clarity (their help request rate was lower than students at grade level 3).     

Figure 1 shows a strong effect for students’  reading ability; students at higher grade 
level ask for help less often.  Students initially ask for help on words fairly often, but 
after being exposed to words ask for help less often.  For example, someone with an 
average Grade level of 1 asks for help about 20% of the time on a word he has seen 
only once.  After seeing a word 10 times, students ask for help only ≈6% of the time 
on average.  We have marked the region of Figure 1 that we have chosen to try to 
model.  We are focusing on an “interesting” region of the space.  For students at 
higher grade levels, it is easy to predict accurately whether the student will ask for 
help:  simply predicting “no” does an excellent job.  Since one use of our model of 
student help requests is to decide when to give preemptive assistance, focusing on 



students who need assistance is a good first step.  Therefore, we concentrate on 
students whose grade level is 1 or 2. 

 
Number of previous encounters of word

1514131211109876543210

M
ea

n 
he

lp
 r

eq
ue

st
 r

at
e

.4

.3

.2

.1

0.0

Grade level

1

2

3

 

Figure 1.  Learning curves showing students decreasing help request rate 

The first time a student sees a word, preemptive assistance is almost always 
provided.  Since we do not know whether the Reading Tutor gave assistance on a 
word, it is difficult to predict whether the student will click on the word (presumably 
if the Reading Tutor provides help the student will not also click for help).  Therefore, 
we ignore first encounters of a word.  After a student has seen a word 6 times the 
chances of asking for help become rather low.  Therefore, we focus on words that 
have only been seen 6 or fewer times. 

This screening procedure reduces our sample of students from 88 to 53, and the 
number of word encounters from 2.4 million to 555,818.   

2.3  Casting the Problem as a Classification Task 

Since our goal is to determine whether the student will click for help on a word, and 
we know which words the student clicked or did not click for help, we need to find 
some method of describing words that will allow us to predict into which category a 
particular word falls.  We consider information that is static for a particular encounter 
of a word, such as the student’ s reading proficiency and past history with reading and 
asking for help on this word.   

For each word, we computed static properties such as its length and its frequency 
of occurrence in children’ s stories.  We also computed word properties that are not-
static, but are constant for a particular sentence such as the word’ s position in the 
sentence.  Features about position were encoded both as an absolute and as a 
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percentage of the length of the sentence (i.e. a word at position 3 in a 12 word 
sentence would be 0.25).  

We used properties about the student, including gender and grade.  We also use 
the student’ s current WI score for the day when he encountered each word.  We 
estimate his WI score by assuming that it increases linearly between the pre- and post-
tests.  For a coarse measure on a grade equivalent scale, linear growth is a reasonable 
assumption.  Linear growth is not a reasonable assumption for a more specialized skill 
such as solving a linear equation.  For this research we used the linearly interpolated 
WI score provided by the paper tests; a deployed Reading Tutor would obviously not 
have access to the student’ s posttest score, so would have to use its estimates of the 
student’ s WI level [1, 6].  Another feature we used is the student’ s overall rate of 
clicking for help on words. 

We also used the student’s history of reading this word as a source of 
information for features.  Information extracted from the log files includes how many 
days have passed since the student last encountered this word, the average latency [9] 
(delay before pronouncing a word) in past encounters, how many previous encounters 
the student has had with this word, and how many times the speech recognizer heard 
the  student read this word.   

The student’ s help request behavior on this word is also important.  Features 
include whether the student has ever asked for help on this word, whether he has 
asked for help on this word today, and if the student asked for help the first time he 
saw this word.   

We generated an exhaustive list of 60 features from the above sources.  Knowledge 
of which features were likely to be redundant trimmed this list down to 20 features.   

Our goal is to use these features to predict whether a student will ask for help on a 
particular word.  We now turn to constructing a model to make such predictions.   

2.4  Group vs. Individual Modeling:  How to Construct Models 

We use the term “ group modeling”  to refer to user models that are constructed from a 
group of users and applied to a new user, and the term “ individual modeling”  to refer 
to user models constructed with a user’ s own data.  Some researchers use the terms 
“ collaborative”  and “ feature-based”  [16] respectively to describe such models.  
“ Collaborative”  is already an overused term in education circles, and “ feature-based”  
is similarly misleading since many group models are feature-based.   

Given that we have a series of labeled instances, features describing words and 
students, and information about which words the student clicked on for help, how can 
we construct a classifier to make predictions?  We do not have sufficient training data 
to build a model for each word in the English language.  Therefore, we collapse across 
words and rely on the features describing them (length and frequency) to describe 
meaningful differences.     

We have a similar option for whether to build a separate classifier for each student 
[14] (individual modeling) or whether to aggregate the data for all of the students 
together to construct a group model [2, 5].  Advantages of aggregating the data 
together include more training instances than for any individual student.  Having more 
data tends to result in more accurate models.  Another advantage is that we can tune 



the classifier’ s performance and once it is satisfactory, we can deploy it in the 
Reading Tutor. 

Advantages of building a separate model for each student include possibly higher 
accuracy.  If the features do poorly at describing students, or if some students differ 
dramatically, then constructing a model for each student might do a better job.  We 
compare both group and separate models as means for constructing a classifier.   

To evaluate the classifiers, we used a different penalty for different types of 
mistakes.  A classifier can make two types of mistakes:  it can predict that a student 
wishes to receive help when he doesn’ t, or it can predict that a student does not need 
help when in fact he does.  We believe that the second mistake is more important to 
avoid.  If a student needs help, he might not realize it and proceed to read the word 
incorrectly (young children often do not have strong meta-cognitive skills [8]).  The 
Reading Tutor does not do a good job at detecting misread words.  Also, due to 
occasionally mishearing correctly read words, the Reading Tutor permits the student 
to advance to the next sentence after reading at least 50% of the words in the sentence 
correctly.  Therefore, it is possible for a student to complete a sentence without 
knowing how to read a particular word.  If a student gets practice at incorrectly 
reading the word, then correcting him later will be more difficult.  Table 1 shows how 
we penalize the classifier for various types of mistakes.                                                                                                          

Table 1.  Penalty matrix for classifier 

 Classifier predicts 
help requested 

Classifier predicts no 
help requested 

Student clicks for help 0 5 
Student does not click for help 1 0 

3  Results 

We now compare the results of grouped and individual modeling, and then discuss 
adding phonemic features to the classifier.   

3.1  First Experiment:  Group vs. Individual Modeling 

To evaluate the performance of a group modeling agent, it is necessary to aggregate 
the data from multiple students to train the classifier.  To test the classifier, we 
planned to evaluate its accuracy using a leave-one-out approach by constructing the 
classifier with the data from N-1 students, testing on the Nth student, and repeating 
the process for each student.  However, we built the classifier with data from only 
25% of the other students since using more of the data crashed the computer.   

For individual modeling, we are trying to determine how our classifier performs if 
it were trained on the data from an individual student.  One approach is to load all of 
he student’ s data, and perform a cross-validation to determine the model’ s accuracy.  
Such an approach is not appropriate since the data are temporally dependent on each 
other.  For example, imagine the third time a student encounters the word “ telephone”  



is in the training set, and we know that he asked for help on both prior encounters.  If 
the second time the student saw the word “ telephone”  is in the test set we can predict 
with perfect accuracy that he must have asked for help.  Therefore, we incrementally 
add instances to the training data.   

Figure 2 shows our approach for training an individual’ s model.  The student’ s data 
are first sorted by time, and then the first item is presented to the classifier.  The 
classifier makes a prediction for this one item, which is then added to the training 
data.  This iterative process continues, such that over time the classifier’ s training data 
grows and is used to make a prediction for the next word encountered by the student. 

 
Figure 2.  Individual modeling approach 

We used Weka, a public domain data mining package written in Java, to perform 
these analyses.  Specifically, we used Weka’ s J48 (a version of C4.5) and naïve 
Bayesian classifier (NBC) methods for performing the classifications.   

For group modeling, J48 was correct on 71% of its predictions and NBC was 
correct on 75% of its predictions.  For individual modeling, 81% of J48’ s predictions 
were correct and 75% of NBC’ s predictions were correct.   

These results are somewhat surprising.  Naïve Bayesian classifiers tend to 
outperform decision trees when there is a small amount of training data [7].  However, 
we found that decision trees work better for predicting on the basis of data from one 
student, while NBCs work better with data from multiple students.   

Overall, individual modeling with J48 gave the best result, with an accuracy of 
81%.  One way to improve on this result is to use the model trained from a group of 
students until enough data are collected to construct a model from the current 
student’ s data.  Another approach is to combine data from the current student with the 
data from the population to improve the model’ s predictions [2, 5]. 

3.2  Second Experiment:  Adding Phonemic Information 

Another goal of student modeling in the Reading Tutor is to assess “ hidden skills.”   
That is, skills that are not directly measured but that must be performed to solve a 
task.  For reading, an example is the grapheme ph makes the sound /f/ in the word 
“ phone.”   There are many letter to sound mappings in English, and testing the student 
on each of them would disrupt the natural process of reading.     

As a first step towards this goal, we provide our classifier with information about 
the graphemes (letters and groups of letters) and grapheme to phoneme (the sound that 



a grapheme makes) mappings that make up each word.  A graphemeÆphoneme 
mapping (abbreviated as “ gÆp mapping” ) is simply the grapheme and phoneme for a 
particular word paired together.  E.g. the word date contains DÆ/D/, AÆ/EY/, and 
TEÆ/T/ as gÆp mappings.   

If such features are useful in helping to predict on which words students request 
help, then we can reason backwards and infer that students are having difficulties 
reading words with those particular hidden skills.  This approach of adding 
information about the components that make up a word generalizes to other predictive 
tasks.  For example, if we are predicting whether a student will read a word correctly, 
determining whether students make mistakes on words that contain rare graphemes 
will aid in drawing conclusions about a student’ s ability on these hidden skills.   

We added phonemic features to the already existing features.  Specifically, we 
added features about how likely various graphemeÆphoneme mappings are in the 
English language.  P(gÆp) is defined as the word frequency weighted probability of a 
word containing this gÆp mapping.  Specific features were:  

1. Average probability of all  gÆp mappings in the word 
2. Probability of the first gÆp mapping in the word 
3. Probability of the rarest gÆp mapping in the word 

The first feature describes the overall unusualness in the word’ s pronunciation.  
The second feature accounts for the fact that students often try to read the first portion 
of a word and guess at the remainder of the word.  The last feature models the most 
difficult part of the word.  If the word is hard overall (feature #1), or if the student 
cannot get started in reading the word (feature #2), or if the student encounters a very 
rare mapping (feature #3), then we expect the student is more likely to ask for help.   

We also added features about how likely it is for a grapheme to make a particular 
sound.  That is, what is P(p|g).  If a word contains a rare gÆp mapping, such as in CH 
making the sound /k/ as in “ chord,”  then we could expect students to have difficulties 
reading this word.  For each word, we added the following features: 

1. Average of P(p|g) for all graphemes in the word 
2. P(p|g) for the first grapheme in the word 
3. P(p|g) of the rarest grapheme in the word 

Unfortunately, we did not have gÆp mappings for all the words in our dataset.  We 
had gÆp mappings for only 2,460 out of 4,169 distinct words.   

To run experiments, we first screened out words for which we did not have gÆp 
mappings.  Since constructing models for individual students outperformed building 
models from groups of students, we constructed a model for each student using J48.  
On the subset of words for which we had gÆp mappings, our classifier had an 
accuracy of 82.5%.   

Adding the six features described above gave an average accuracy of 83.2%.  This 
marginal gain was statistically reliable at P=0.013 (paired samples t-test).  
Improvements in performance were not distributed randomly across students.  There 
was a correlation of -0.46 between the classifier’ s performance with the original set of 
features and gain from adding phonemic information.  I.e. for students who were 
already well-modeled, there was little gain from additional information.   

We have demonstrated that information about the phonemic properties of words 
can help predict whether students will click for help on a word.  This result suggests 
that a word’ s phonemic information affects whether students believe they know a 



word and ask for help.  Therefore, help request patterns are an avenue for assessing 
these hidden skills.  If students request help on a word containing a set of gÆp 
mappings, we can update the tutor’ s estimate of the student’ s proficiency on those 
skills.  Fine-grained assessment of a student’ s knowledge is helpful for predicting 
what types of mistakes he is likely to make.  For example, if a student can pronounce 
“ chord,”  it is probable that he can also pronounce “ chords,”  and will have a better 
chance at pronouncing “ chaos”  than a student who cannot read the word “ chord.”   The 
common factor in all of these words is the initial grapheme /CH/ making the sound 
“ k.”   Being able to assess student knowledge at the grapheme level would be a large 
improvement in the Reading Tutor’ s capabilities.   

4.  Conclusions and Future Work 

Logging student interactions with the tutor in an easily analyzable form is a powerful 
strategy for constructing user models.  We have used a database constructed from 
logged information to construct a student model capable of predicting whether the 
learner will click on a word for help.  Such user models can be used to adapt the 
tutor’ s behavior by, for example, determining when to give the student help 
preemptively.  Analyzing predictive user models can also be a means for assessing a 
student’ s proficiency at “ hidden skills.”    

Our first attempt at adding phonemic features met with mixed success.  Although 
the improvements in performance were significant statistically, they may not be 
meaningful.  Finding a stronger set of features would benefit both predicting student 
help requests and relating a student’ s actions to his underlying knowledge of English 
words.  One possibility for better features is to consider the student’ s history for each 
gÆp mapping.  E.g. what percentage of words containing this gÆp mapping does the 
student read correctly?  What percentage of words containing this gÆp mapping does 
the student ask for help on?  Such historical information was useful at the word level 
for predicting a student’ s help requests, so it is likely historical information at the 
grapheme level will also have predictive power. 

One possibility is not all students are decoding words, but are instead recognizing 
them as whole words (or guessing).  One way to determine which strategy students 
are using is to use the inter-word latency [9].  Presumably a decoding approach will 
result in a larger latency.  We are exploring such approaches.     
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