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Abstract.  In this paper we show how model identifiability is an issue for 
student modeling:  observed student performance corresponds to an infinite 
family of possible model parameter estimates, all of which make identical 
predictions about student performance.  However, these parameter estimates 
make different claims, some of which are clearly incorrect, about the student’s 
unobservable internal knowledge.  We propose methods for evaluating these 
models to find ones that are more plausible.  Specifically, we present an 
approach using Dirichlet priors to bias model search that results in a statistically 
reliable improvement in predictive accuracy (AUC of 0.620 ± 0.002 vs. 0.614 ± 
0.002).  Furthermore, the parameters associated with this model provide more 
plausible estimates of student learning, and better track with known properties 
of students’ background knowledge.  The main conclusion is that prior beliefs 
are necessary to bias the student modeling search, and even large quantities of 
performance data alone are insufficient to properly estimate the model.  

1  Introduction and Motivation 

The problem of student modeling, using observations of learner behavior to infer his 
knowledge, is a well studied one.  However, the problem of accurately inferring the 
student’s (not directly observable) mental state is challenging.  Although knowledge 
tracing [1] claims to enable such inference, there are statistical difficulties that restrict 
how can we can interpret its claims.  In this paper we identify this difficulty, then 
propose and validate a method for correcting it.  First, we will provide a brief 
overview of knowledge tracing and identify a crucial shortcoming with the approach. 

1.1 Description of Knowledge Tracing 

The goal of knowledge tracing is to map student performance (observable) to an 
estimate of the student’s knowledge (unobservable).  For example, Figure 1 shows 
hypothetical student performance (on the left) and learning (on the right) curves.  In 
both graphs, the x-axis represents the number of practice opportunities a student has 
with a particular skill.  For the performance graph, the y-axis is the probability a 



student with that amount of practice will respond correctly.  Since student 
performance is observable, this value can be directly estimated from the data.  For the 
learning curve, the y-axis is student knowledge, which cannot be directly observed 
from the data.  Instead, we rely on knowledge tracing to provide an estimate of the 
student’s knowledge.  Knowledge tracing infers student knowledge by first estimating 
four model parameters for each skill: 

• K0:  P(student knows the skill when he starts using the tutor) 
• T:  P(student learns the skill as a result of a practice opportunity) 
• Slip:  P(incorrect response | student knows the skill) 
• Guess:  P(correct response | student doesn’t know the skill) 

The first two parameters, K0 and T, are called the learning parameters of the model 
and represent the student’s knowledge of the skill.  The final two parameters, slip and 
guess, are called the performance parameters in the model.  They are the reason that 
student performance cannot be directly mapped to knowledge.  Perhaps the student 
generated a correct response because he knew the skill, or perhaps he made a lucky 
guess?  The slip and guess parameters account for several aspects in student 
performance, including lucky guesses, baseline performance for some testing formats 
(e.g. multiple choice tests), using partial knowledge to answer a question, using a 
weaker version of the correct rule to solve a problem, or even the inaccuracy from 
using a speech recognizer to score the student’s performance [2].  All of these factors 
serve to blur the connection between student performance and actual knowledge.   

 
Figure 1.  Hypothetical performance and learning curves 

1.2 Problems of Knowledge Tracing 

Although the student performance curve can be obtained directly from the data, the 
learning curve must be inferred statistically.  This inference would not be a problem if 
there were a unique, best fitting model.  Unfortunately, such is not the case.  Consider 
the three sets of hypothetical knowledge tracing parameters shown in Table 1.  The 
knowledge model reflects a set of model parameters where students rarely guess, the 
guess model assumes that 30% of correct responses are due to randomness.  This limit 
of 30% is the maximum allowed in the knowledge tracing code1 used by the Cognitive 
                                                           
1 Source code is courtesy of Albert Corbett and Ryan Baker and is available at 

http://www.cs.cmu.edu/~rsbaker/curvefit.tar.gz 
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Tutors [3].  The third model is similar to those used by Project Listen’s Reading Tutor 
[4] for performing knowledge tracing on speech input [2].  This model’s guess 
parameter is very high because of inaccuracies in the speech recognition signal.  As 
seen in Figure 2, the three models have identical student performance2—somewhat 
surprising given that the models appear so different.  The much larger surprise is that 
in spite of having identical performance, their estimates of student knowledge (right 
graph in Figure 2) are very different.     

Table 1.  Parameters for three hypothetical knowledge tracing models 

Model Parameter 
Knowledge Guess Reading Tutor 

K0 0.56 0.36 0.01 
T 0.1 0.1 0.1 

Guess 0.00 0.30 0.53 
Slip 0.05 0.05 0.05 

 

 
Figure 2.  Three knowledge tracing models illustrating the identifiability problem 

Given the same set of performance data, we have presented three knowledge tracing 
models that fit the data equally well.  Even if the guess parameter is capped at 0.3, 
there are still two competing models that perform equally well.  In fact, the situation is 
considerably worse since there is an infinite family of curves that fit the data of which 
we are presenting three examples.  Without loss of generality we will restrict the 
discussion to the three presented learning curves.  One natural question is, given the 
ambiguity of the performance data in estimating the student’s knowledge, which of 
three curves is correct?  Unfortunately, the situation is more bleak:  the question of 
which model is “correct” is not a meaningful one to ponder.  All three of the sets of 
parameters instantiate a knowledge tracing model that fit the observed data equally 
well; statistically there is no justification for preferring one model over another.  This 
problem of multiple (differing) sets of parameter values that make identical 
predictions is known as identifiability.   

In general, researchers are not hand generating models and selecting which one fits 
the data.  Instead we use optimization software that finds parameters that best fit our 
data.  The optimization software’s optimization method will drive which set of 
                                                           
2 Technically the three curves are not perfectly identical, however they are equivalent under 

finite precision arithmetic.   
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parameters it returns for a particular skill, and consequently the ensuing estimates of 
the student’s knowledge—a rather odd dependency.  This problem is not one of 
getting stuck in a local (rather than global) maximum.  Rather, the space has several 
global maxima (for example, the three presented knowledge tracing parameter sets) 
all of which make different assertions about student knowledge.   

1.3 Motivation 

One reasonable question is why we should care about the randomness in how 
knowledge tracing maps observations of student performance to student internal 
knowledge.  After all, all of the models have the same degree of model fit and make 
identical predictions, so what does it matter which one we select?  The difficulty is 
that we do not train models to fit the data well, we train models to use them in actual 
adaptive systems.  For example, the knowledge model predicts students will need 24 
practice opportunities to master (have a greater than 95% chance of knowing) a skill, 
while the Reading Tutor model predicts 32 practice opportunities are needed.  Which 
model’s predictions should we believe?   Another difficulty is tutorial decisions made 
on the basis of estimated student knowledge.  For example, the Reading Tutor 
displays instruction if it believes the student’s knowledge is below a certain threshold.   

Another rationale is efforts at conducting learning sciences research or educational 
data mining.  Imagine if the desired end product is a graph of the efficacy of a 
particular treatment when the student’s knowledge is low, medium, or high.  If some 
skills are modeled with parameters similar to knowledge while others are modeled 
with parameters similar to guess, the graph will not show the sharp contrast desired.   

Generally, we have two desired outcomes for our student models:  to accurately 
describe the student’s knowledge and to make predictions about his behavior.  In the 
past, some researchers have used accuracy in predicting student performance as 
evidence that the model was an accurate model of the student [2].  Unfortunately, 
given Figure 2, such claims are unwarranted as very different estimates of knowledge 
can predict the same performance.   

2.  Approach 

The goal of this work is to address the identifiability problem by finding metrics that 
let us determine which of two equally accurate models is better, and finding a way to 
bias the search process to make it more likely to find such better models.  Our 
approach is first to instantiate knowledge tracing in a graphical modeling framework.  
The Bayes Net Toolkit for Student Models (BNT-SM) [5] provides a framework for 
replicating knowledge tracing with a Bayesian network [6].  The reason for using 
graphical models is that they may provide a way out of our dilemma.  We have more 
knowledge about student learning than the data we use to train our models.  As 
cognitive scientists, we have some notion of what learning “looks like.”  For example, 
if a model suggest that a skill gets worse with practice, it is likely the problem is with 



the modeling approach, not that the students are actually getting less knowledgeable.  
The question is how can we encode these prior beliefs about learning? 

2.1 Encoding Prior Beliefs as Dirichlets 

Graphical models provide a means of encoding prior probabilities of the parameters in 
the model.  A common method for representing such priors is to use the Dirichlet 
distribution [7].  To determine the Dirichlet priors for each parameter, we first 
examined histograms from our previous knowledge tracing experiments to see what 
values each parameter took on.  We did not attempt to create Dirichlet distributions 
that perfectly mimicked those histograms or that minimized the sum-squared error.  
Our reasoning is that some of the parameter estimates were clearly nonsense.  For 
example, approximately 10% of words had a T parameter that would result in students 
mastering the word after a single exposure, while 10% of the words would never be 
mastered.  So we used the histograms as a starting point for the prior probabilities, but 
tempered them with our knowledge of student learning.   

Figure 3 shows the prior probabilities we selected for our experiments.  The x-axis 
is each possible value the four knowledge tracing parameters can take and the y-axis 
is the density of the distribution at that point.  For example, the most likely value of 
the K0 parameter is 0.6; it is only about half as likely that K0 will take on a value of 
0.45.  The T parameter peaks at around 0.1, and has a long positive tail; most skills are 
learned relatively slowly but perhaps some are easier to acquire.   

Our Dirichlets take as input two parameters that correspond to the number of 
positive and number of negative examples seen.  The curve represents the likelihood 
of each possible probability value for P(positive).  For example, the K0 curve was 
generated with 9 positive and 6 negative examples, which can be thought of as 9 cases 
of knowing the skill initially and 6 cases of not knowing the skill initially.  The mean 
of this distribution is 9/(6+9) = 0.6.  The odds that P(knows the skill initially) (i.e. the 
K0 parameter) is 0.3 is quite low, as can be seen from the graph.  If instead of 9 
positive and 6 negative, we had instead created the distribution with 90 positive and 
60 negative examples, the mean would still be 0.6.  However, the distribution would 
have a much sharper peak at 0.6 and consequently a much lower variance.  Thus, we 
control not only the mean of the distribution but also our confidence in how close 
most skills are to that value.  For the T parameter we used 2 and 9 positive and 
negative examples, for the guess parameter 19 and 9, and for the slip parameter 1 and 
15.  The reason for the high guess rate is that we are using a speech recognizer to 
score student input, and is has a tendency to score incorrect reading as correct [2].   

A plausible objection is there is no objective basis for preferring the numbers we 
used to generate these distributions and therefore this entire step should be omitted.  
However, skipping the step of creating a distribution is the same as asserting that the 
distribution is flat across the entire range of [0,1] and all possible values of the 
parameter are equally likely.  Such an assertion seems questionable at best.   



2.2 Using Dirichlets to Initialize Conditional Probability Tables 

Once we have constructed a set of distributions for K0, T, slip, and guess, we use their 
associated parameters to initialize the conditional probability tables (CPT) in the 
graphical network.  The CPTs keep track of counts of different types of events.  For 
example, the Dirichlet distributions for slip and guess would be used to instantiate the 
CPT shown in Table 2 that maps student knowledge to expected performance.   

Figure 3.  Prior probabilities for knowledge tracing parameters 

Table 2.  Using Dirichlet priors to initialize conditional probability tables 
Knowledge  Doesn’t know Knows 

Incorrect 9 1 
Correct 

Correct 19 15 
The mental model of this process is the Dirichlets are used to seed the CPT, then as 

actual observations accumulate those are added to the values in the CPT.  Thus, if a 
skill has little training data available it will be biased towards the average distribution.  
If there are many training data, then that skill’s parameters can deviate substantially 
from the mean.  Thus the initialization step does not force parameters to have a 
particular value, but simply provides a bias.  As mentioned previously, the number of 
positive and negative instances affects the shape of the distribution and consequently 
the amount of bias.  Higher counts provide stronger bias.   

3. Experimental Design and Results 

The goal of our experiment is to validate whether our approach of using Dirichlet 
priors results in a better student model.  We operationalize “better” as providing more 
believable estimates of the student’s knowledge, without loss in predictive accuracy 
compared to a baseline model.  Our approach is to use the BNT-SM to construct two 
knowledge tracing models.  We constructed the first model using Dirichlet priors with 



the parameter values described previously.  We did not examine the testing data when 
constructing the Dirichlet priors, and these results are for our first attempt at creating 
such priors (so they have not been tuned, and represent a lower bound on 
improvement).  We constructed the second, baseline, model by initializing each 
parameter to be the mean value that parameter had in a previous experiment (the same 
data we examined to generate the Dirichlets). Note that our comparison condition is 
with knowledge tracing, the closest thing the student modeling community has to a 
standard statistical model.  Furthermore, prior research with knowledge tracing 
estimated model parameters using conjugate gradient descent.  Instead, we estimate 
parameters with expectation-maximization which we have found produces better 
parameter estimates [5].  So our baseline condition is far from a strawman..     

Our data came from 360 children who were mostly between six and eight years old 
and who used Project LISTEN’s Reading Tutor in the 2002-2003 school year. Over 
the course of the school year, these students read approximately 1.95 million words 
(as heard by the automatic speech recognizer). On average, students used the tutor for 
8.5 hours. For modeling purposes, this paper treats each of the 3532 distinct English 
words that occurred that year as a separate skill.  We had three hypotheses: 

1. The approach of using Dirichlet priors would result in a poorer model fit 
for the training data since the priors provide bias.  We were not sure if the 
Dirichlet approach would better predict the testing data than the baseline.   

2. The student learning curves for the models constructed using Dirichlet 
priors will look more believable. 

3. The knowledge tracing parameter values obtained by the Dirichlet priors 
approach will better fit what is known about the domain. 

To test our hypotheses, we randomly assigned students to either the train or to the test 
set with an approximately equal number of data in each set.  To test the first 
hypothesis, we measured each approach’s predictive accuracy using the Area Under 
Curve (AUC) metric for Receiver Operator Characteristic (ROC) curves.  AUC is 
used for binary classification tasks when the true cost of each type of misclassification 
is unknown [8].  For the training set, both the Dirichlet and baseline had an AUC of 
0.653 ± 0.002.  This result contradicts our hypothesis; apparently the Dirichlet priors 
did not interfere with fitting the training data.  For the testing set, the Dirichlet 
approach had an AUC of 0.620 ± 0.002 while the baseline approach had an AUC of 
0.614 ± 0.002.  Thus, Dirichlets resulted in a small but detectable improvement in 
model accuracy on unseen test data.   

To test the second hypothesis, whether using Dirichlet priors would result in more 
plausible learning curves, we randomly selected three words that were at the 25th 
(“twist”), 50th (“Rome”), and 75th (“bought”) percentiles for amount of training data.  
We then plotted the learning curves (see Figure 4) for the models derived using the 
Dirichlet and baseline approaches.  The learning curves associated with Dirichlet 
priors look reasonable, while the three curves from the baseline approach do not show 
evidence that students learn.  The Dirichlet approach asserts that students would 
require 24, 16, and 15 practice opportunities to master the words “bought,” “Rome” 
and “twist,” respectively.  The baseline model believes those numbers should instead 
be 302, 5306, and 22313 practice opportunities.  Reasonable people can disagree over 
how much practice is required for the average student to learn a word, but few people 
would assert that over 5000 exposures to a single word are necessary.   



Perhaps these randomly selected three learning curves are not representative?  
These three words had an average T parameter of 0.14 in the Dirichlet approach vs. 
only 0.002 in the baseline approach.  Across all 3532 words, both the Dirichlet and 
baseline approaches had an average T parameter of 0.11.  However, 918 skills had a T 
parameter of 0.002 or lower in the baseline, compared to 0 such skills for the Dirichlet 
approach.  Thus, roughly ¼ of words with the baseline approach were learned as 
slowly as those shown in the right graph compared to none with the Dirichlet. 

 
Figure 4.  Comparing learning curves for Dirichlet vs. baseline approach 

Testing the third hypothesis, whether Dirichlet priors enabled knowledge tracing 
parameter estimates that better fit with domain knowledge, was more problematic.  
What do “better” parameter values look like?  Except in gross circumstances, such as 
Figure 4, it is hard to distinguish what makes one set of parameters better than 
another.  However, it is possible to take advantage of the domain we are studying, 
reading, by using known properties of how students learn words.  The K0 parameter 
represents the knowledge students have when they first start using the tutor.  
Unfortunately, we do not have a history of all of the words the student encountered 
before using the Reading Tutor.  However, we do have word frequency tables of 
English text.  These tables are not perfect at telling us which words a student has seen, 
since students will naturally read different material and thus see somewhat different 
sets of words, but the tables provide a starting point.  Specifically, students should be 
more knowledgeable about words they encounter more frequently.  Therefore, there 
should be a positive correlation between a word’s frequency and its K0 parameter.  

The percent of text made up by the most frequent word, “the,” is approximately 
7.1%, while the least frequent word (of words occurring in both our training data and 
our word frequency table) was “shear” which only makes up 0.000085% of text.  
Since the most frequent word is over 80,000 times more frequent than the least 
frequent, we performed a log-transform on the percentages before attempting to find a 
relation.  Figure 5 shows the plot of log-percent vs. the K0 parameter for both the 
Dirichlet priors and the baseline approaches.  A linear regression for each approach 
results in an R2 of 1% for the baseline and 16% for using Dirichlets.  Thus, using the 
Dirichlet approach produces the expected lawful relationship between prior 
knowledge and exposure to English text, while parameters estimated with the baseline 
approach exhibit almost no such relation.  Interestingly, the Dirichlet priors were not 
tuned based on word frequency, nor did the priors assigned to a word vary based on 
its frequency.  Simply providing the underlying distribution for the various parameters 
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(as per Section 2.1) enabled it to correctly assign parameters that track with word 
frequency. 

4. Future Word, Contributions, and Conclusions  

The largest limitation of this work is that it has only been evaluated on one (rather 
large) data set from Project Listen’s Reading Tutor, so it is possible the results may 
not transfer to other tutoring domains.  However, the problem of knowledge tracing 
sometimes returning parameter values that “just don’t look right” is well known.  In 
fact, this work was motivated by the difficulties a researcher (Hao Cen) had with 
applying knowledge tracing to some Cognitive Geometry Tutor data.  Furthermore, 
the Cognitive Tutor knowledge tracing code’s caps on the slip and guess parameters 
strongly suggest this problem occurred sufficiently often in the past that it was worth 
modifying the code.  However, validating our approach on another tutor’s data set is 
much needed and high on our priority list. 
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Figure 5.  Word frequency vs. estimated prior knowledge 

The second big open question is how the Dirichlets should be generated.  One 
possible critique is that our method of findings parameters isn’t replicable across 
domains.  While we acknowledge this argument may have merit, it is not obvious to 
us whether it is a serious flaw.  Encoding the beliefs of domain experts is something 
that must be done on a case by case basis.  If researchers working on the Geometry 
Tutor wish to apply our approach of using Dirichlets, they would need to think about 
what is a reasonable prior distribution for their data.  That said, it would be nice to 
have some guidelines about what reasonable means and variances tend to be, and the 
best way to use existing data to guide the selection of priors. 

This paper makes several basic contributions to student modeling.  First, it shows 
how identifiability is a problem for knowledge tracing.  Given a set of performance 
data, there is an infinite family of knowledge tracing models that can mimic student 
performance.  Unfortunately, those models all make different claims about the 



student’s knowledge.  Although capping the performance parameters alleviates this 
issue somewhat, it is still a problem.  We have not proven it, but we suspect 
identifiability affects not just knowledge tracing but any modeling approach that 
acknowledges student performance is a noisy reflection of his knowledge. 

Second, we have shown that predictive accuracy is severely lacking as an 
evaluation metric for student models.  We do not have a strong alternative, but have 
illustrated that two other techniques, examination of learning curves and inspection of 
model parameter estimates, can be used to evaluate models.   

Third, this paper has proposed and validated a solution to the identifiability 
problem.  The use of Dirichlet priors is a graceful way of biasing the model search 
process to result in more sensible models that (in this case) are slightly more accurate. 

The main conclusion of this paper is that, as system developers and learning 
science researchers, we must take the assertions of our student model about the 
student’s knowledge with a large grain of salt.  Furthermore, acquiring additional 
training data is not a solution to this problem.  Even with an order of magnitude more 
data, there are still many sets of parameters that will fit the student data equally well.  
We need to encode prior beliefs in order to do a satisfactory job of modeling student 
knowledge; performance data are not enough.   
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