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Abstract. We present a data set collected since 2012 containing children’s EEG 
signals logged during their usage of Project LISTEN’s Reading Tutor. We also 
present EEG-ML, an integrated machine learning toolkit to preprocess EEG da-
ta, extract and select features, train and cross-validate classifiers to predict be-
havioral labels, and analyze their statistical reliability.  To illustrate, we de-
scribe and evaluate a classifier to estimate a student’s amount of prior exposure 
to a given word. We make this dataset and toolkit publically available1 to help 
researchers explore how EEG might improve intelligent tutoring systems. 
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1 Introduction 

With the rising importance of educational data mining and analytics, measuring 
and predicting student actions and mental states has become a key part of building 
better educational technologies. Electroencephalography (EEG) records a student’s 
brain activity using electrodes on the scalp. Studies show EEG can be informative of 
many educationally relevant metrics including workload [1] and learning [2]. Howev-
er, most of those studies were done in laboratories using laboratory-grade devices and 
fail to simulate the cost or environmental constraints of real classroom deployment of 
EEG devices. To explore the feasibility of practical classroom usage of EEG devices, 
we need to 1) use EEG devices simple enough for students to wear without assistance 
and cheap enough for schools to afford en masse and 2) record students’ data in a 
realistic school setting. Collecting data in this way introduces two notable challenges: 
1) the reduced dimensionality resulting from fewer sensors on a cheaper device and 2) 
the environmental noise inherent to an uncontrolled setting. 

In this paper, we present a dataset from 3 years of school usage of Project 
LISTEN’s Reading Tutor during which we recorded students’ EEG signals. The sig-
nals were recorded with a consumer-grade single-channel device that now costs less 
than $100 each. We also describe EEG-ML, a machine learning toolkit to create and 
evaluate EEG-based classifiers of student actions and mental states. Many general-
purpose EEG processing software and machine learning packages have been imple-
mented and distributed; however, combining EEG processing with machine learning 
                                                           
1 https://sites.google.com/site/its2014wseeg/eeg_ml 



often involves complicated coding effort. EEG-ML simplifies the research process by 
providing a single pipeline for signal processing, classifier building, and cross-
validated evaluation. We do not claim that the toolkit is an algorithmic innovation, 
rather a framework and baseline implementation to allow researchers to explore dif-
ferent algorithms and prediction tasks without needing to write a lot of code. We 
demonstrate a use case on the Reading Tutor dataset by applying this toolkit to esti-
mate students’ level of prior exposure to the word they’re reading. 

2 Project LISTEN’s Reading Tutor EEG Dataset 

Project LISTEN’s Reading Tutor [3] (Fig. 1) is an intelligent tutoring system that 
displays text, listens to a student read it aloud, uses automated speech recognition to 
track the student’s position in the text and detect miscues [4], and responds with spo-
ken and graphical feedback. For 3 years, students 7-13 years old have worn EEG 
devices while they used the Reading Tutor. Our dataset consists of EEG signals and 
Reading Tutor logs collected during this period. 

 
Fig. 1. On the left, NeuroSky’s BrainBand. On the right, two students wear BrainBands that log 
their EEG data while they use the Reading Tutor. 

2.1 Behavioral Data 

We define a trial as a behavioral event with some outcome label, along with the 
corresponding EEG signal recorded during that time.  Two types of such events are: 

Sentence Encounter. During a session with the Reading Tutor, the tutor presents 
one sentence (or fragment) at a time, and asks the student to read it aloud. As the stu-
dent reads the sentence, the words recognized by the tutor turn green. 

Word Encounter. The student’s speech is recognized as a time-aligned sequence 
of words by an Automated Speech Recognizer (ASR). The ASR estimates when each 
text word was read and whether the reading was correct. The tutor computes latency 
as the duration between successive text words. The ASR is imperfect – it detects only 
about 25% of misread words and falsely rejects about 2% of correctly read words. 



2.2 EEG Data 

We used NeuroSky’s BrainBands to collect EEG data (see Fig. 1).  The BrainBand 
is a wireless device with one electrode on the forehead (frontal lobe) roughly between 
Fp1 and Fp2 in the 10-20 system. BrainBands output raw EEG signals at a rate of 512 
Hz and NeuroSky’s proprietary eSense measures at 1 Hz. The BrainBand is a product 
for consumers so it is designed with ease of use in mind. Unlike the multi-channel 
electrode nets worn in labs, the BrainBand requires no gel or saline for recording, 
making it easier to wear and maintain. Students are able to put on the headset with 
minimal supervision. Students included in the dataset encountered ~160,000 sentenc-
es containing ~800,000 words and we recorded about 108 hours of EEG data, though 
not all sentence and word encounters have corresponding EEG data, and vice versa. 
Our example word-exposure classifier used data from the 17 students with the most 
data, who had an average of 3,600 words with aligned EEG. 

3 The EEG-ML Toolkit 

Machine Learning for EEG (EEG-ML) is a toolkit for studying EEG in the context 
of intelligent tutoring systems. The pipeline attempts to cover the complete process of 
signal processing, machine learning, and evaluation/analysis. Much of this pipeline 
has been described previously [5]. See Fig. 2 for the pipeline’s overall structure. We 
will describe important components below (see project website1 for a full descrip-
tion). 

 
Fig. 2. Overview of pipeline of EEG machine-learning toolkit 

As a demonstration of the toolkit and dataset, we use them to create a predictor for 
students’ number of prior encounters of particular words. Notably, this measure (word 
exposure) is fairly well insulated from ASR error and we urge caution when studying 
measures that could be heavily impacted by ASR error, such as latency or correctness. 
We will use this classifier as a running example as we describe our pipeline. 



Inputs. The pipeline’s inputs are 1) a spreadsheet of behavioral data containing the 
label that we want to predict, 2) a spreadsheet of EEG data, and 3) a set of parameters 
specifying the algorithms and arguments to be used in the pipeline. For our word-
exposure classifier, we labeled the first 11 encounters of a word (by each subject) as 
‘early encounter’ and the remaining encounters as ‘late encounter’. Example: if the 
subject saw ‘cat’ 30 times, the first 11 times are early encounters and the final 19 
times are late encounters. We chose 11 as a threshold so that we could have roughly 
the same number of early and late encounters. To avoid skewing our models with 
subjects who have little data, we removed subject with less than 8,000 seconds of 
EEG recordings and analyzed 17 students who read about ~62,000 words in total. 

Pipeline. Given the behavioral and EEG data, the pipeline 1) aligns corresponding 
EEG signals to each trial in the behavioral data, 2) filters and derives features for each 
trial from the EEG signals aligned to that trial, 3) splits the data into training and test-
ing sets following a cross-validation scheme. Within each cross-validation fold, we 
use feature selection to reduce the dimensionality, and train a classifier on the training 
set and apply it to the testing set. Finally, the pipeline aggregates classification results 
and evaluates the classifier’s performance.  This entire process happens offline. 

EEG Preprocessing and Filtering. Many noise sources (including eye blinks, fa-
cial expressions) can introduce artifacts into the recorded signals. To remove potential 
artifacts the pipeline uses soft thresholding with wavelets to denoise the signals [6]. 
The pipeline also allows experimenters to remove trials whose EEG signal had a cer-
tain proportion of low-quality signals. We use Neurosky’s PoorSignal score as a 
measure of signal quality. In building our word-exposure classifier, we are aggressive 
in filtering; we filter out all trials where more than 50% of corresponding signals have 
poor reported signal quality (score of 100 or higher on NeuroSky’s 0 to 200 poor 
signal scale). 

Feature Generation. The unit of analysis is an individual trial.  The pipeline 
breaks the trial into several epochs – an EEG segment of a fixed length. For example 
a 3-second-long trial could be broken into 3 epochs of 1 second each with no overlap, 
or it could be broken into 5 epochs of 1 second each with 0.5 seconds of overlap be-
tween epochs. 

The pipeline uses Fast Fourier Transform to extract oscillation features from each 
epoch – delta (1-3Hz), theta (4-7 Hz), alpha (8-11 Hz), beta (12-29 Hz), and gamma 
(30-100 Hz) frequency bands. Using these per-epoch features, the pipeline derives a 
set of higher-level features (e.g. mean, variance) for each trial. Our word-exposure 
classifier used 5 features - the means of each of the alpha, beta, gamma, theta, delta 
features of the epochs. 

Cross-Validation. The pipeline supports leave-one-out cross-validation with a 
within-subject or between-subject scheme. In the within-subject scheme, the training 
set and test set are taken from the same subject, creating a subject-specific classifier 
using all but 1 trial from the subject as the training set, and testing on the left-out trial. 
In the between-subject scheme, we train on all trials from all but one subject, and test 
on the trials of the left-out subject. The between-subject scheme allows us to simulate 
how the algorithm will perform on unseen subjects. We used within-subject cross-
validation to evaluate our word-exposure classifier. 



Feature Selection. In cases where we have little data but many features, we often 
want to use feature selection to reduce the dimensionality of our data before feeding it 
to a classifier, in order to learn a classifier less sensitive to noise. The pipeline sup-
ports two feature selection methods – Principal Component Analysis and T-Test 
based Rank Feature Selection. Because of the high level of noise in our data, our 
word-exposure classifier used 3 dimensional PCA to avoid over-fitting. 

Train/Apply Classifier. Our pipeline supports two types of classifiers – Linear 
SVM and Gaussian Naïve Bayes. The Linear SVM classifier is more commonly used 
in brain signal processing. A Gaussian Naïve Bayes classifier allows us to train non-
linear classifiers and train them more quickly than SVM. Our word-exposure classifi-
er used a Gaussian Naïve Bayes classifier. 

Evaluation. The pipeline computes 1) classification accuracy (ACC), 2) a chi-
squared test comparing accuracy to chance (one over the number of categories), and 
3) the receiver operating characteristic (ROC) curve and area under the curve (AUC). 
ACC is intuitive and widely used, but it can have issues with class size imbalance – a 
majority class classifier could obtain above-chance results. AUC calculates the area 
under the ROC curve, which is insensitive to data set imbalance. A majority class 
model would show a diagonal line from the bottom left to the top right corner in ROC 
space, and get an AUC score of 0.5. 

Outputs. The outputs of the pipeline are 1) a table showing accuracy, AUC, N 
(number of data points), and p-value and 2) a spreadsheet where each row of the orig-
inal behavioral data is annotated with the prediction made by the classifiers in the 
experiment so that further analysis may be done in other programs if desired. Our 
word-exposure classifier had an average accuracy of 57%, which was significantly 
above chance (p < 0.05), with AUC of 0.60. A measure whose accuracy is only in the 
high 50’s is not practical on its own, but can potentially be used as a feature in com-
bination with other features to improve student modeling, as shown by Xu et al. [7] 

Though significantly above chance, our accuracy is relatively low compared to that 
claimed in other EEG studies of learning [8]. A subtle difference in independence 
assumptions might be one reason [5]. Also, we expect the lower-end device and noisy 
in vivo setting to reduce accuracy.  However, further analysis of features (e.g. which 
bands are most useful) and algorithms (e.g. different classifiers and kernels) could 
produce incremental improvements to results. Indeed, a key motive for releasing this 
toolkit and dataset is to provide the research community with a baseline to build upon 
and a common dataset to evaluate different algorithms. 

4 Conclusion 

We present a multi-year dataset of EEG data from in vivo usage of an intelligent 
tutoring system. We also present EEG-ML, a machine learning toolkit to produce and 
evaluate EEG-based classifiers. We hope the dataset and toolkit will allow researchers 
to focus on experimentation and analysis rather than data collection and technical 
implementation, facilitating their research into new applications of brain signal pro-
cessing in building better intelligent tutoring systems. 
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