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Abstract. Intelligent Tutoring Systems derive much of their power from
having a student model that describes the learner’s competencies. How-
ever, constructing a student model is challenging for computer tutors
that use automated speech recognition (ASR) as input, due to inherent
inaccuracies in ASR. We describe two extremely simplified models of
developing word decoding skills and explore whether there is sufficient
information in ASR output to determine which model fits student per-
formance better, and under what circumstances one model is preferable
to another.

The two models that we describe are a lexical model that assumes
students learn words as whole-unit chunks, and a grapheme-to-phoneme
(G→P) model that assumes students learn the individual letter-to-sound
mappings that compose the words. We use the data collected by the
ASR to show that the G→P model better describes student performance
than the lexical model. We then determine which model performs better
under what conditions. On one hand, the G→P model better correlates
with student performance data when the student is older or when the
word is more difficult to read or spell. On the other hand, the lexical
model better correlates with student performance data when the student
has seen the word more times.

Keywords. Intelligent Tutoring Systems, Student Model, Automatic
Speech Recognizer, Knowledge Representation

1. Introduction

Intelligent Tutoring Systems (ITS) derive much of their power from having a
student model [16] that describes the learner’s proficiencies at various aspects
of the domain to be learned. For example, the student model can be used to
determine what feedback to give [3] or to have the students practice a particular
skill until it is mastered [4]. Unfortunately, language tutors that use automated
speech recognition (ASR) as input have difficulty in developing strong models of
the student. Much of the difficulty comes from the inaccuracies inherent in the
ASR output. Providing explicit feedback based only on student performance on
one attempt at reading a word is not viable since the accuracy at distinguishing
correct from incorrect reading is not high enough [14].



In previous work, we have been able to use ASR output to estimate a student’s
overall level of knowledge [1] (e.g. help requests within the use of a reading tutor
[2]) and assess interventions (e.g. help selection policy) of a tutoring system [7].
The next question is whether we can construct a student model from the ASR
output. Specifically, we would like to model internal knowledge representation
of reading and word decoding strategies. Ideally, we would like to construct a
complex student model capturing all aspects of reading. For example, Ehri [6]
describe the reading process:

“Reading words may take several forms. Readers may utilize decoding, analogizing,
or predicting to read unfamiliar words. Readers read familiar words by accessing
them in memory, called sight word reading. With practice, all words come to be read
automatically by sight, which is the most efficient, unobtrusive way to read words
in text. The process of learning sight words involves forming connections between
graphemes and phonemes to bond spellings of the words to their pronunciations
and meanings in memory. The process is enabled by phonemic awareness and by
knowledge of the alphabetic system, which functions as a powerful mnemonic to
secure spellings in memory.”

However, training such a complex student model is clearly infeasible due to a
sparse data problem. Although we can obtain more data with ASR, the inherent
inaccuracies with ASR output must be addressed. Therefore, in the current study
we first propose two extremely simplified models of developing word decoding
skills and examine whether there is sufficient information at all in ASR output
to discriminate the two overly simplified models.

More specifically, the two models that we describe are a lexical model that
assumes students learn words as whole-unit chunks, and a grapheme-to-phoneme
model that assumes students learn the individual letter-to-sound mappings that
compose the words. Given the observed student performance data, we map those
overt actions to some internal representation of the student’s knowledge. Then,
we evaluate the two models to determine which model fits student performance
data better. Furthermore, we examine under what circumstances one model is
preferable to another.

2. Knowledge Tracing

The goal of knowledge tracing is to estimate student’s knowledge from their ob-
served actions. Prior work in this area [2] has shown that knowledge tracing [4]
is an effective approach for using ASR output to model students.

As illustrated in Figure 1, knowledge tracing maintains four constant parame-
ters for each skill. Two parameters, L0 and t, are called learning parameters and
refer to the student’s initial knowledge and to the probability of learning a skill
given an opportunity to apply it, respectively. Two other parameters, slip and
guess, are called performance parameters and account for student performance
not being a perfect reflection of his underlying knowledge. The guess parameter
is the probability that a student who has not mastered the skill can generate a
correct response. The slip parameter is used to account for even knowledgeable
students making an occasional mistake.



Figure 1. Overview of knowledge tracing. A set of L0, t, slip and guess parameters is estimated
for each skill, while the internal knowledge state of a skill is traced for each student.

At each successive opportunity to apply a skill, knowledge tracing updates
its estimates of a student’s internal knowledge state of the particular skill, based
on the skill-specific learning parameters and the observed student performance
(evidence). P (Ln) denotes the probability of knowing the skill following the nth

encounter,

P (Ln) =
{

L0 if n = 0
P (Ln−1|evidence) + (1− P (Ln−1|evidence)) ∗ t if n > 0 (1)

Given the current knowledge state of a student at a particular skill, knowledge
tracing then predicts the probability of the student performing the skill correctly,
based on the skill-specific performance parameters. P (On) denotes the probability
of applying the skill correctly at nth encounter,

P (On) = P (Ln−1) ∗ (1− slip) + (1− P (Ln−1)) ∗ guess (2)

Prior work on applying knowledge tracing to ASR output [2] demonstrate
that the slip and guess parameters, in addition to accounting for variability in
student performance, also account for variability in the ASR scoring of student
responses.

3. The Lexical and Grapheme-to-phoneme Student Model

We consider two extremely simplified models for how students can learn to decode
words. The first is a lexical model, which assumes that students learn words as a
whole-unit with no transfer between words. Although the assumed lack of transfer
is somewhat naive, it is likely that skilled readers recognize most words by sight
[6]. It is less clear, however, whether children learning to read have a similar
representation as skilled readers.

The second model is a grapheme-to-phoneme (G→P) model, and assumes
that rather than learning whole words, students instead learn sub-lexical units.
Specifically, it assumes that students learn the grapheme (letter) to phoneme



(sound) mappings that make up words. For example, the word “cat” contains the
following G→P mappings: c→/K/, a→/AE/, and t→/T/.

Unlike the lexical model which assumes lack of transfer between words, the
G→P model allows students to share the sub-lexical knowledge for words that
share G→P mappings. For example, the word “bat” contains the G→P mappings
of b→/B/, a→/AE/, and t→/T/, where the last two G→P mappings are shared
with the word “cat”. The G→P model assumes that knowledge about a→/AE/,
and t→/T/ that are learned from reading the word “cat” will transfer to the word
“bat”.

4. Data Collection

Our data came from 360 students who used the Reading Tutor [9] in the 2002-
2003 school year. The students using the Reading Tutor were part of a controlled
study of learning gains, so were pre- and post-tested on the Woodcock Reading
Mastery Test [15]. The test was human administered and scored.

Over the course of the school year, these students read approximately 1.95
million words (as heard by the ASR). On average, students used the tutor for 8.5
hours. Most students were between six and eight years old, and had reading skills
appropriate for their age.

During a session with the Reading Tutor, the tutor presented one sentence (or
fragment) at a time, and asked the student to read it aloud. The student’s speech
was segmented into utterances that ended when the student stopped speaking.
Each utterance was processed by the ASR and aligned against the sentence. This
alignment scored each word of the sentence as either being accepted (heard by
the ASR as read correctly), rejected (the ASR heard and aligned against some
other word), or skipped (not read by the student) [11]. For example, in Table 1,
the student was supposed to read “The dog ran behind the house.” The bottom
row of the table showed how the student’s performance would be scored by the
tutor.

Table 1. Example alignment of ASR output to sentence

Sentence The dog ran behind the house.

ASR output The the ran

Scoring Accept Reject Accept Skipped Skipped Skipped

Notice that, we used the terms “accepted” and “rejected” rather than “cor-
rect” and “incorrect” due to inaccuracies in the ASR. The ASR only noticed about
25% of student misreadings, and scored as read incorrectly about 4% of words
that were read correctly. Therefore, “accept” and “reject” were more accurate
terms.



5. Experiment 1: Fitting Aggregate Student Performance Data

5.1. Model Representation and Credit Assignment

To determine which of the lexical and G→P models better describes student
performance, we fit each model to student performance data as heard by the ASR.
First, we split the students into two groups (to create a testing set to be used
later). Then, for each model, we estimate the knowledge tracing parameters for
each skill using an optimization algorithm1. The optimization algorithm performs
a gradient search over the space of L0, t, guess and slip to find the best fit of a
non-linear curve to all student performance data in the training set, characterized
by Equation 1 and 2.

For the lexical model, we simply treat words as skills. Therefore, each student’s
attempt at reading a word is evidence for knowing the whole word or not. For the
G→P model, modeling the student’s proficiency at a sub-lexical level is difficult,
as we do not have observations of the student attempting to read G→P mappings
in isolation. In the current study, we adopt a simple crediting mechanism: if a word
is accepted by the ASR, then all of the G→P mappings are credited; otherwise,
if a word is rejected, then all of the mappings are debited.

The lexical model has considerably more skills than the G→P model. There
are 3210 lexical skills (i.e. words) and in comparison, there are only 295 G→P
mappings encountered by students. As a result of this difference in number of
skills, the G→P model has substantially more students encountering each skill on
average (106 vs. 45).

5.2. Model Fit

Table 2 describes the knowledge tracing parameter estimates for each of the mod-
els. Notice that, the knowledge tracing parameters are skill-specific; that is, a set
of L0, t, guess and slip is estimated for each skill. To summarize the parameters
for a model, we report the average across each skill in the model, weighted by the
number of times the skill occurred. This weighting is to avoid biasing the model
by several skills that occur rarely (e.g. the word “arose” or “bts→/TS/” as in the
word “debts”).

Table 2. Estimated knowledge tracing parameters (averaged across skills, weighted by the num-
ber of times the skill occurred)

Model L0 T Guess Slip R2

Lexical 0.32 0.14 0.65 0.08 0.34

G→P 0.49 0.01 0.57 0.10 0.48

As seen in Table 2, the performance parameters (guess and slip) are similar
for both models, while the learning parameters (L0 and T) are different. These
performance parameters are vastly different than in knowledge tracing done in
other ITSs (where typically “guess” is restricted to be less than 0.3 [4]). The reason

1Source code is courtesy of Albert Corbett and Ryan Baker and is available at
http://www.cs.cmu.edu/∼rsbaker/curvefit.tar.gz



for this difference is the uncertainty introduced by the ASR. This uncertainty is
also the reason the performance parameters under both models are similar: the
parameters are (mostly) modeling the speech recognition rather than the student.
The column labeled R2 in the table refers to how well the knowledge tracing
parameters fit student performance data. The R2 for the lexical and G→P models
are 0.34 and 0.48, respectively, and are significantly different at p < 0.01.

At least within the framework of knowledge tracing, student performance is
better described by the G→P model than by the lexical model. Thus, the G→P
model appears to be a better description of how children between six and eight
acquire reading skills.

Notice that, the knowledge tracing’s model fit, R2, fits the aggregated stu-
dent performance data. That is, the performance data of all students are lumped
together in order to have more data to estimate knowledge tracing parameters
more reliably. Consequently, the estimated knowledge tracing parameters describe
aggregated student performance data and are not student-specific.

6. Experiment 2: Fitting Individual Performance Data

Given that the G→P model fit the aggregate student performance better, our
second goal is to determine which of the lexical and G→P model fit the individual
student performance data better. Our approach is to treat the problem as a
classification problem. For each student, we use knowledge tracing’s estimates of
his proficiency to predict whether the ASR will accept a word that he attempts
to read.

For example, upon encountering the word “cat”, we extract a student’s pro-
ficiency in both the lexical and G→P model. Whereas the lexical model asserts
that successful reading of the word “cat” depends on proficiency in only one skill,
“cat”, the G→P model asserts that it depends on three sub-lexical skills, c→/K/,
a→/AE/, and t→/T/. Notice that, the skill proficiency can be estimated in two
ways. We may estimate it to be the probability of knowing the skill, or the prob-
ability of correctly applying the skill. Unfortunately, neither of P (On) nor P (Ln)
is perfect solution. On one hand, by using P (On), we run the risk of solely mod-
eling the ASR, even when P (Ln) contains no information (that it is not model-
ing student knowledge). On the other hand, by using P (Ln), we run the risk of
ignoring ASR’s tendencies to accept/reject certain words regardless of student’s
knowledge. One remedy is to evaluate and bound proficiency in both P (On) and
P (Ln). In the current study, we simply use the P (On).

Given students’ proficiencies in both the lexical and G→P skills of a word,
we train two logistic regression classifiers to predict whether the word will be
accepted by the ASR. The first logistic regression classifier is for the lexical model
and has one predictor - the corresponding lexical skill for the word. The second
logistic regression classifier is for the G→P model and has one predictor for each
sub-lexical skill in the word. In the above example, the word “cat” requires only
one skill in the lexical model, but three skills in the G→P model. To account for
such differences, we train different logistic regression models for different word
lengths. That is, for the lexical model, we train a logistic regression for all words



with the same word length, totaling 16 models since the longest word tried has a
length of 16 characters. For the G→P model, a logistic regression model is trained
for all words with the same number of G→P mappings, totaling 12 models since
the longest word tried has 12 G→P mappings.

We use the second (testing) half of our data to construct the classifiers, so
these data have not been used to perform the knowledge tracing parameter es-
timates of L0, t, slip, or guess. We then compute the R2 for each length, and
weight the overall result by the number of words of each length. The weighted
R2 suggests whether data can be predicted by our models. As seen in Table 3,
the R2 for the lexical model is essentially the same as the G→P model (0.0861
and 0.0832, respectively). Notice that, the R2 for individual data are expected to
be smaller than R2 for aggregate data (0.34 and 0.48) since aggregated data are
smoother.

Given the two logistic regression models, each model makes separate predic-
tions on the probability that a student will read a word correctly. We then use
the probabilistic predictions of the two models as independent variables in a lo-
gistic regression model to again predict individual performance data. The com-
bined model achieves an even higher R2 of 0.109, as seen in Table 3. This finding
suggests that, although each model fits individual performance data equally well,
there exists some variations in model predictions and each model accounts for
unique variance in student performance. It is likely that students use different
strategies for different words. That is, students may use the lexical model for some
words and the G→P for other words. In our next experiment, we examine which
model is preferable under what circumstances.

Table 3. Logistic regression

Model R2

Lexical 0.0861

G→P 0.0832

Combined 0.1090

7. Experiment 3: Which model performs better under what conditions

7.1. Model Preferability and Contextual Information

Given that the combined model is better, we want to know under what circum-
stances one model outperforms another. We do this by correlating various student
and word information with Delta, a construct that relates to preferability of a
model.

For each word encounter, each model makes separate predictions of the prob-
ability that a student will read the word correctly. We can compute the error
made by each model by taking the squared difference between a model’s proba-
bilistic prediction and the student’s observed performance. Then, we define Delta
as the lexical model’s error minus the G→P model’s error. For example, suppose
the lexical and G→P model estimate the probability that the student reads a



Table 4. Example of error in model prediction and Delta

Example Model Model Prediction ASR accept Error Squared Error Delta

1 Lexical 0.7 1 0.3 0.09 -0.16

G→P 0.5 1 0.5 0.25

2 Lexical 0.7 0 0.7 0.49 0.22

G→P 0.5 0 0.5 0.25

word correctly at a particular trial as 0.7 and 0.5, respectively, where in reality,
the ASR indeed accepts student’s reading. Then, the squared error of the two
models are (1− 0.7)2 = 0.09 and (1− 0.5)2 = 0.25, respectively, and Delta equals
0.09− 0.25 = −0.16. Therefore, a negative Delta indicates that the lexical model
is performing better than the G→P model. Conversely, a positive Delta indicates
that the G→P model is performing better than the G→P model (see Table 4).

As discussed earlier, we want to characterize the students and words for which
one model outperforms the other. For information about a student, we include
the student’s age, grade, and word identification grade as found in the pretest of
Woodcock Reading Mastery’s Word Identification subtest [15]. For information
about a word, we heuristically estimate the word’s identification and spelling dif-
ficulty from the same Woodcock pretest. The measures give the difficulty esti-
mate of the word in grade equivalent terms. In addition, we include prior, the
number of prior encounters of the word within the Reading Tutor, and frequency,
how often the word occurs in a corpus of English text. Finally, we identify the
dolch [5] and stop words. The dolch words are a list of 220 high frequency words
that are used in beginning reading programs, whereas the stop words are 36 high
frequency words on which errors seldom affect comprehension [10].

7.2. The Correlation Matrix

The correlation between each feature and Delta is shown in Table 5. Despite the
small correlation coefficients, all correlations, except grade, are in the expected di-
rection and are statistically significant at p < 0.01. We now describe the observed
correlations.

One one hand, the G→P model better estimates the student performance
data when the student is older or has higher word identification proficiency (cor-
relation of 0.014, and 0.008, respectively). This finding agrees with Ehri’s descrip-
tion [6]: the process of skilled reading is enabled by phonemic awareness and by
knowledge of the alphabetic system. Moreover, the G→P model also performs
better when the word is more difficult. This is seen in the positive correlation of
word identification difficulty and spelling difficulty with Delta (0.022 and 0.023,
respectively). The direction is intuitive; the more difficult a word is, the more
likely is one to decode the word using G→P mappings.

On the other hand, the lexical model better predicts student performance
data when the word is more frequently encountered. This is seen in the negative
correlation between number of prior encounters, frequency in English text and
Delta (-0.014 and -0.016, respectively). The direction is intuitive; the more en-
countering of a word, the more likely one is to become a skilled reader with that
word. Further, we have expected and found similar correlations for the dolch and
stop word (correlations of -0.026 and -0.024, respectively).



Table 5. Correlation matrix. **Correlation is significant at p < 0.01 (2-tailed).

Feature Correlation with Delta

(Positive means better fit for the G→P model)

Student Age 0.014**

Grade 0.000

Word identification proficiency 0.008**

Word Word identification difficulty 0.022**

Spelling difficulty 0.023**

Number of prior encounters -0.014**

Percent in English text -0.016**

Dolch word -0.026**

Stop word -0.024**

8. Conclusion and Future Work

The ASR of a computer tutor for reading provides information about an individ-
ual student’s reading development. This paper reports using ASR output from a
computer tutor for reading to construct two models of how students learn to read
words: a lexical model and a grapheme-to-phoneme (G→P) model. First, the two
student models are evaluated to determine which model better predicts student
performance data. The G→P model outperforms the lexical model in a model
where we aggregate across student performance data. The performance difference
disappears when we evaluate the models against individual performance data.
Nonetheless, when we combine the two student models, the combined model out-
performs either model alone. Consequently, we evaluate which model performs
better under what conditions. Correlations between model fit and student infor-
mation (grade, age, etc.), word information (number of prior encounters within
tutor, frequency, etc.) are in the expected directions. On one hand, the G→P
model better correlates with student performance data when a student is older
or when the word is more difficult to read or spell. On the other hand, the lexical
model better correlates with student performance data when the student has seen
the word more times. There appears to exist sufficient information in the ASR
output to determine which model is better under what circumstances.

Despite the initial success, the method for constructing a student model from
the ASR output is somewhat crude. Two areas of potential improvement are a
better credit model and using cues other than acceptance/rejection of a word.
Currently, all of the G→P mappings in a word are blamed or credited. However,
if a student misreads a word it is probable that not all of the mappings are
responsible. A Bayesian credit assignment approach (e.g. [3]) would overcome this
weakness. Similarly, the student’s pattern of hesitation before a word contains
a useful signal for modeling the student [9]. One possible avenue is to use the
amount of hesitation before reading a word as a clue to the strategy the student
is using: a short pause suggests a lexical strategy while a longer pause suggests
the student is using knowledge of G→P mappings.
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