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Abstract

One issue in a Reading Tutor that listens is to determine which
words the student read correctly. We describe a confidence mea-
sure that uses a variety of features to estimate the probability
that a word was read correctly. We trained two decision tree
classifiers. The first classifier tries to fix insertion and substitu-
tion errors made by the speech decoder, while the second clas-
sifier tries to fix deletion errors. By applying the two classifiers
together, we achieved a relative reduction in false alarm rate by
25.89% while holding the miscue detection rate constant.

1. Introduction

In this paper, we describe a confidence measure for Project LIS-
TEN’s automated Reading Tutor [1], which uses speech recog-
nition to listen to children read aloud. The purpose of the con-
fidence measure is to estimate the probability that a given text
word in a sentence was read correctly by the student.

Confidence measures have been applied to many different
speech recognition tasks, such as large vocabulary speech recog-
nition [2], and spontaneous speech recognition [3]. One signif-
icant difference between these tasks and the Reading Tutor is
that the Reading Tutor knows the text that the children are ex-
pected to read. In this domain, we can also exploit information
about the student’s past performance.

Related work on applying speech recognition in education
domains includes an automated pronunciation learning system
with confidence measures. Witt et al. [4] used forced alignment
to obtain the phoneme boundaries of an input speech utterance.
It computed a confidence score for each phoneme by normaliz-
ing its acoustic score obtained from the forced alignment by its
corresponding acoustic score computed from a phone-loop de-
coder. However, using forced alignment with children’s reading
is inappropriate because children often jump back to the begin-
ning of the phrase or sentence and reread, or skip hard words.

This paper is organized as follows. Section 2 describes
how the Reading Tutor listens currently and how a confidence
measures can be applied in the Reading Tutor. Section 3 de-
scribes the feature sets used for training the classifiers. Sec-
tion 4 describes experimental settings of the confidence mea-
sure followed by evaluation results in Section 5. Discussion
and conclusion are provided in Section 6 and Section 7 respec-
tively.
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2. How does the Reading Tutor listen?
There are two issues that the Reading Tutor needs to address:
(1) tracking the student’s current position in the sentence and
(2) deciding if a word was read correctly. To address the first
issue, the Reading Tutor aligns the output hypothesis from the
SPHINX [5] decoder against the target sentence. As shown in
Figure 1, each word hi in a hypothesis (H) is aligned to a word
wj in a target sentence (T). As shown in Figure 1, an utter-
ance 1 can start at any word position of the target sentence and
jump around in the sentence. Forced alignment against the tar-
get sentence ignores this problem. Instead, we use a constrained
language model generated from the sentence [6]. Without con-
fidence measures, the Reading Tutor determines if a word in
the sentence is read correctly by using the alignment as shown
in Figure 2. If some hypothesized word hi that matches target
word wj (i.e. hi = wj ) is aligned against wj , the Reading
Tutor classifies wj as read correctly. Therefore the decision is
currently a 0-1 hard decision. Instead, we propose to estimate
Pr(Word was read correctly|Features) (or Pr(W |F ) for short)
to give a soft decision between [0,1]. This scheme exploits
additional information so as to decide more accurately which
words to accept as correct, and provides flexibility to the Read-
ing Tutor by varying a threshold t and accepting wj as correct
if Pr(W |F ) > t.

Sentence

Transcript

Hypothesis

     they poverty and discriminating as a result they

      as a result they encountered poverty and discrimination

      result they MISREAD_encountered poverty poverty and discrimination as a result they

Figure 1: Alignments of a hypothesis (H) against a sentence (S),
and a transcript (T) against S.

H:

 C  C      C         C               O                      C           C               S

 C  C      C         C               S                      C           C               C

S:   as a result they encountered poverty and discrimination
T:

Figure 2: Classifications of words from sentence (S) based on
alignments against hypothesis (H) and transcript (T) in Figure 1
(where c=correct, o=omission, s=substitution)

1A student can attempt all or part of a sentence more than once.
Each attempt is recorded as an utterance.



3. Features used
We investigate three kinds of features to estimate the confidence
probabilities. The first kind of features are obtained from a
speech decoder (decoder-based features). The second kind of
features are derived from an alignment as shown in Figures[1,2]
(alignment-based features). The third kind of features are ex-
tracted from the student’s previous reading (history-based fea-
tures).

3.1. Decoder-based Features

Decoder-based features are computed at the word level from
the output of the SPHINX decoder [5]. They consist of the log
energy normalized by number of frames, acoustic score normal-
ized by number of frames, language model score, lattice density,
averaged phone perplexity 2 and duration.

3.2. Alignment-based Features

Alignment features are computed from the alignments of the
hypothesis H against the target sentence S. To help describe the
alignment features, we define the following symbols:

{h1, h2, ..., hi, ..., hH} denotes the hypothesis H.

{w1, w2, ..., wj , ..., wT } denotes the target sentence S.

i,j >0 denote word position in H and S respectively.

φc(wj) denotes a set of hi that are aligned to wj s.t. hi = wj .

(In Figure 1, φc(w6 = poverty) equals
{h4=poverty, h5=poverty})

φw(wj) denotes a set of hi that are aligned to wj s.t. hi �= wj .

(In Figure 1, φw(w5 = encountered) equals
{h3 = MISREAD encountered})

S(hi) denotes an aligned sentence position of hi.

(In Figure 1, S(h7 = discrimination) = 8 because h7

aligns against w8).

LC(hi) is the left context of hi, defined as the number of
successive words read correctly 3 in a sentence S before
the hypothesized word hi.

(In Figure 1, LC(h7 = discrimination) = 2 because
h6 = w7 = “and” and h5 = w6 = “poverty” but h4 �=
w5.)

RC(hi) is the right context of hi, defined as the number of
successive words read correctly in a sentence S after the
hypothesized word hi.

(In Figure 1, RC(h5 = poverty) = 2 because h6 =
w7 = “and” and h7 = w8 = “discrimination”.)

Alignment-based features of a target word wj are:

• 0-1 indicator I(wj) that wj is read correctly,

e.g. I(w6=“poverty”) = 1 since h4 = w6.

• the number of hypothesized words hi aligned against wj

where hi is equal to wj divided by the total number of
hi aligned against wj :

|φc(wj)|
|φc(wj)| + |φw(wj)| (1)

2Averaged phone perplexity measures how well the acoustic obser-
vations from a word segment discriminate across different phonemes.

3For brevity, whenever “read correctly” refers to words in a hypoth-
esis, we leave implicit the caveat “according to the recognizer.”

• averaged jump distance between successive hypothesized
words in a sentence:

∑
hi∈φc(wj)

(j−S(hi−1))

|T |
|φc(wj)| (2)

This feature measures how much the student’s reading
jumps around a target sentence T.

• averaged difference between a hypothesized word posi-
tion and a target word position:

∑
i,hi∈φc(wj) i − j

|φc(wj)| (3)

• length of the left context of wj in a sentence which is
defined below. There are two possible cases:
Case 1: φc(wj) is non-empty:

maxhi∈φc(wj ){LC(hi)} (4)

Case 2: φc(wj) is empty. This happens when the speech
decoder does not recognize the word wj .

maxhi∈φc(wj−1){LC(hi) + 1} (5)

If wj is the first word of a sentence (i.e. w1), or φc(wj−1)
is empty, the feature value is zero.

• length of the right context of wj in a sentence. The fea-
ture is computed analogously to the left-context feature
described above.

• inter-word latency [7] (time between the end of (the hy-
pothesis word hi aligned against) the previous text word
wj−1 and the start of (the hypothesis word h′

i aligned
against) the current text word wj (i.e., S(hi) + 1 =
S(hi′)).

3.3. History-based Features

These features are computed from the student’s history in the
Reading Tutor, including all of the student’s recorded utter-
ances, not just those that were transcribed.

The features are divided into word-level and utterance-level
features. The historical word-level features for each wj in a
sentence include:

• The number of times the word was encountered in dis-
tinct sentences (i.e. do not count rereading a sentence)

• The number of times the word was accepted

• We compute the following features for all words, just
for Dolch (high-frequency) words [8], and just for non-
Dolch words:

– The average of the lower-bound estimates of inter-
word latency [7]

– The average of the upper-bound estimates of inter-
word latency

The utterance-level features for each wj in a sentence in-
clude:

• The number of attempts the student has made to read this
sentence

• Average number of sentence words the student attempts
per utterance



• Average number of sentence words the student reads cor-
rectly per utterance

• Average number of words the student reads correctly (e.g.
for the sentence “The cat in the hat,” if the student says
“the cat...the cat in the hat,” then the total number of
words would be 7)

• Average number of jumps (reading a word other than the
next word or current word)

• Average number of times the student regresses to the first
word in the sentence

4. Experimental Setup
4.1. Preparation of data sets

Children’s speech data were collected from the field where the
Reading Tutor has been deployed in elementary schools in Pitts-
burgh. Our speech data analyst transcribed speech data and we
split it into training and test sets of 3714 and 1883 utterances re-
spectively. Speakers in the training and test sets do not overlap.
Alignments of a hypothesis and a transcript in Figure 2 create a
3x3 confusion matrix which describes the partition of data over
the 9 possible cells as shown in Table 1. Table 2 and Table 3
show the partitions of training and test data. Each word is fur-
ther categorized into content words and function words [6] (e.g.
a, an, the). Function words do not carry much of a sentence’s
meaning; therefore, we focus on assessing a student’s ability to
read content words.

Table 1: 3x3 confusion matrix generated using text-space align-
ments of target sentence (S) against transcription (T) and hy-
pothesis (H).

H Correct H Omission H Substitution
T Correct Cell 1 Cell 2 Cell 3

T Omission Cell 4 Cell 5 Cell 6
T Substitution Cell 7 Cell 8 Cell 9

Table 2: Training data distribution of content and function
words (counts of function words are shown in parentheses).

H Correct H Omission H Substitution
T Correct 9551 (4897) 392 (216) 290 (35)

T Omission 2117 (1289) 13402 (6421) 383 (45)
T Substitution 557 (243) 224 (136) 102 (21)

Table 3: Test data distribution of content, and function words
(counts of function words are shown in parentheses).

H Correct H Omission H Substitution
T Correct 5621 (3044) 195 (109) 165 (13)

T Omission 746 (549) 5844 (3042) 122 (19)
T Substitution 215 (85) 80 (56) 40 (6)

4.2. Classifier to estimate Pr(W |F )

We used WEKA [9] to train a decision tree to estimate Pr(W |F ).
WEKA uses a maximum information gain criterion to grow the
decision trees. At each leaf of a decision tree, Pr(W |F ) can
be computed as the relative frequency of the labeled data as-
signed to the current leaf. During training, we used 10-fold
cross-validation on the training data.

We trained two decision trees. The first classifier estimates
confidence probabilities of words in the first and third columns
of the confusion matrix in Table 1. The columns contain SPHINX’s
insertion errors (cells 4,6) of words omitted by the reader ac-
cording to an alignment of a transcript against a sentence. More-
over, cell 7 (3) represents substitution errors in which the words
are misread but SPHINX says the words are correct (or vice
versa). The first classifier uses decoder-based and alignment-
based features.

The second classifier is used to train and estimate confi-
dence probabilities of words on the second column of the confu-
sion matrix in Table 1. It tries to correct the deletion errors (cell
2) made by the speech decoder. There are no decoder-based
features for deleted words, only history-based features plus the
left and right context features of the alignment-based features.

4.3. Performance Metrices

To simplify analysis, we reduce a 3-class classification prob-
lem into a 2-class classification problem by defining the data
labeled “omission” and “substitution” as “miscue”. In this case,
columns 2 and 3 are combined into a single column, and rows 2
and 3 are combined into a single row in Table 1.

Performance of a Reading Tutor is evaluated using the false
alarm rate (FA) and miscue detection rate (MD) which are de-
fined as follows:

MD =
100 · Nc(cells{5, 6, 8, 9})

Nc(rows{2, 3}) + Nf (row{2, 3})
FA =

100 · Nc(cells{2, 3})
Nc(row1) + Nf (row1)

where Nc and Nf represents the counts of content words and
function words. The Reading Tutor ignores miscues on function
words, so the numerators omit Nf . FA measures hearing correct
student reading as incorrect; MD measures the ability to hear
students’ mistakes and omissions caused by skipping words or
(more often) attempting only part of the sentence within the
time interval covered by the utterance. The false alarm rate and
miscue detection rate of the baseline (without a confidence mea-
sure) on the test set are 3.94% and 56.33% respectively.

5. Experimental Results
Figure 3 shows a Receiver Operating Characteristics (ROC) curve
that analyzes the tradeoff between the correct acceptance rate
(=100% - false alarm rate) and the miscue detection rate.

5.1. Results using both Classifiers

We used estimated confidence probabilities from both classi-
fiers to plot the ROC curve as shown in Figure 3. It shows that
when the threshold is between [0.20, 0.35], the confidence mea-
sure improves the false alarm and miscue detection rates rela-
tive to the baseline. We observe that given the same false alarm
rate as the baseline, the confidence measures improves the mis-
cue detection rate relatively by 4.1% (from 56.33% to 58.64%).
Moreover, given the same miscue detection rate as the baseline,
the confidence measures reduces the false alarm rate relatively
by 25.89% (from 3.94% to 2.92%).

5.2. Performance of Individual Classifier

From Table 4, we can see that at the same FA rate as the base-
line, the first classifier (which attempts to fix insertion and sub-
stitution errors described in Section 4.2) improves miscue de-



tection by 357 (348+9) words respectively, while the second
classifier (which attempts to fix deletion errors described in Sec-
tion 4.2) reduces the false alarms (-17) to compensate for the
increase in false alarms (+17) made by the first classifier. On
the other hand, from Table 5, we can see that at the same MD
rate as the baseline, both classifiers reduce false alarms by 56
and 37 words respectively. The first classifier also improves de-
tection of miscues (+240-14) to compensate for the loss made
by the second classifier (-221-5).
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Figure 3: ROC curve of the test set using estimated probabilities
of both classifiers.

Table 4: Change of distribution of content-word data of the test
set (relative to Table 3) after applying classifier A and B given
fixed false alarm rate of 3.94% (threshold=0.3502).

H Correct H Omission H Substitution
T Correct 0 -17 +17

T Omission -241 -107 +348
T Substitution -8 -1 +9

Table 5: Change of distribution of content-word data of the test
set (relative to Table 3) after applying classifier A and B given
fixed miscue detection rate of 56.33% (threshold=0.1706)

H Correct H Omission H Substitution
T Correct +93 -37 -56

T Omission -19 -221 +240
T Substitution +19 -5 -14

6. Discussion: Which features are
informative?

It is interesting to know which subset of features are most infor-
mative in terms of classification. When decision-tree learners
are employed, questions located near the root node of the tree
reflect the informativeness of features in terms of maximizing
the information gain. In the first classifier (which attempts to fix
insertion and substitution errors described in Section 4.2), aver-
aged phone perplexity is used at the first level of the tree while
log energy and the alignment indicator are applied at the second
level. In the second classifier (which attempts to fix deletion

errors described in Section 4.2), length of the left context is ap-
plied at the first level of the tree while length of the right context
is applied at the second level. Contextual information may help
“guess” when a word is read by the child but the speech decoder
does not hear it.

7. Conclusions and Future Work
We successfully developed a confidence measure for an auto-
mated Reading Tutor that listens. We estimated confidence prob-
abilities using two decision tree learners. The first learner ad-
dresses insertion and substitution errors while the second learner
tries to correct deletion errors made by the speech decoder. Com-
pared to the baseline, the confidence measure achieves a relative
reduction of false alarm rate by 25.89% at the same miscue de-
tection rate as the baseline in the test set. Moreover, it improves
the miscue detection rate by 4.1% (relative) at the same false
alarm rate as the baseline in the test set. In addition, there exists
a range of thresholds in the ROC of the test set such that both the
false alarm rate and miscue detection rates of the Reading Tutor
with confidence measure are better than the baseline results. In
future work, we would like to further explore the application of
history-based features.
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