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ABSTRACT 
Assessment of reading comprehension can be costly and 
obtrusive.  In this paper, we use inexpensive EEG to detect 
reading comprehension of readers in a school environment.  We 
use EEG signals to produce above-chance predictors of student 
performance on end-of-sentence cloze questions.  We also attempt 
(unsuccessfully) to distinguish among student mental states 
evoked by distracters that violate either syntactic, semantic, or 
contextual constraints.  In total, this work investigates the 
practicality of classroom use of inexpensive EEG devices as an 
unobtrusive measure of reading comprehension. 

Categories and Subject Descriptors 
D.3.3 [Intelligent Tutoring Systems]: EEG, Machine Learning 

General Terms 
Human Factors 

Keywords 
EEG, Intelligent Tutoring Systems, Reading Comprehension 

1. INTRODUCTION 
Assessments are necessary for tutoring systems that try to make 
informed and effective interventions.  It follows that monitoring 
comprehension is vital for computerized tutors that teach reading 
skills.  For the scope of this paper, we define comprehension as 
understanding the meaning of a sentence in the context of a story.  
Understanding could be hurt by failures in parsing the sentence 
(syntax), understanding the meaning of the words and phrases 
(semantics), and understanding how the sentence fits into the 
larger context of the story (inter-sentential understanding). 

Many traditional systems assess students using comprehension 
questions.  Though comprehension questions have strong face 
validity, they can take time to produce by hand.  While 
computational methods exist to generate these questions, they are 
imperfect [1].  And though they have shown significant 
correlation with standardized comprehension tests [2], there 
remains room for improvement. 

Recent work has shown promising first results for the feasibility 
of using low-cost EEG to generate above-chance predictions of 
reading difficulty [3].  Ideally, replacing comprehension questions 
with passive assessment through EEG could (1) save material 
developers the trouble of creating questions, (2) save students the 
time to answer the questions, and (3) monitor the various 
components of understanding (e.g. semantic, syntactic) necessary 
to more fully diagnose lapses in comprehension. 

We hypothesize that through the use of machine learning 
techniques, we can create an above-chance detector of lapses in 
reading comprehension.  Additionally, we try to create a classifier 
for distinguishing student mental states as they evaluate 3 types of 
possible violations (syntactic, semantic, or contextual). 

1.1 Related Work 
Previous work on methods of unobtrusive reading assessment has 
shown that fluency measures (e.g. number of words read per 
second) can produce above-chance predictions of fluctuations in 
reading comprehension [4].  We hope that EEG can provide 
additional information about reading comprehension which may 
be used in conjunction with other unobtrusive measures to boost 
prediction accuracy. 

Much of past work combining EEG and reading comprehension 
focuses on understanding mechanisms of comprehension [5][6] 
and not the practical use of EEG as a reading assessment tool.  
Notably, these experiments use costly EEG devices that are 
beyond what would be cost-effective in schools. 

Studies using low-cost EEG have so far been unable to reliably 
predict reading comprehension [3].  In the present paper, we 
expand upon earlier work with low-cost EEG by taking a more 
principled approach to question design (Section 2.2) and using 
more sophisticated methods of classification (Section 2.4). 

1.2 Overview 
We report on two experiments.  Our first experiment attempts to 
predict student performance on end-of-sentence cloze questions 
using EEG signals over the reading passage.  Our second 
experiment attempts to detect features of an answer choice (e.g. 
ungrammaticality, semantic non-sensicality) using EEG signals 
over the short period of time that a student sees that choice.  
Section 2 describes our methodology.  Sections 3 and 4 present 
respective results of the two experiments.  Section 5 concludes. 

2. PROCEDURE 
We used a computerized reading tutor (Section 2.1) to present 76 
multiple-choice cloze questions generated by 4 lab members 
(Section 2.2).  We recorded EEG signals of students who read and 
completed those cloze questions.  We use the correctness of the 
student responses as our dependent measure of comprehension.  
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We trained classifiers and evaluated them by testing their 
predictions against this measure (Section 2.4). 

2.1 Environment 
Our experiments are implemented in Project LISTEN's Reading 
Tutor.  The Reading Tutor is a program that listens to children 
read and provides intervention when it catches mistakes.  The 
program has demonstrated good performance in many aspects of 
reading instruction [2].  Because of its extensive logs and its 
support for embedding multiple choice questions within a story, it 
is a good platform for our experiment. 

 

2.2 Task 
To generate a question, we hand select an appropriate sentence 
and remove the last word.  Each question has four choices – one 
correct choice and three distracters – as Table 1 illustrates below: 

To probe the mental state of the student given their choices, the 
three distracters consist of one ungrammatical choice, one 
grammatically correct but implausible choice, and one plausible 
but incorrect choice.  We hand-wrote these distracters as Table 1 
explains.  This design for the distracters is based on previous work 
with comprehension questions in the Reading Tutor [1]. 

After a student reads a truncated sentence, the tutor displays the 4 
choices in random order.  The tutor displays one choice at a time 
for 1 second each, so that we can tell when students are looking at 
each choice type.  This way, we can separate the EEG data for 
each answer choice type.  After displaying each choice 
individually, the tutor displays them again and the student clicks 
on one of the choices.  Students received instructions on the cloze 
questions task at the start of each story. 

We use multiple-choice cloze questions because they can be 
scored by a computer.  In order to reliably select the one correct 
answer, the student must isolate the correct answer by recognizing 
each of the 3 distracters as incorrect.  Because each distracter is 
designed to violate one aspect of understanding (syntax, semantics, 
inter-sentential context), ruling them out implies an understanding 
of those 3 aspects of meaning of the sentence. 

Due to an implementation error, some questions we deployed had 
2 implausible choices and no ungrammatical choice.  This error 
introduces some additional noise for our answer type classifiers in 
section 4. 

2.3 EEG Data 
We deployed these cloze questions over the course of 7 weeks to 
26 2nd-3rd grade students in classrooms at a local urban elementary 
school.  In total, the students answered 906 questions.  The 
percentages of choices that students selected are as follows: 78.7% 
correct, 13.0% plausible, 6.1% implausible, and 2.2% 
ungrammatical. 

 
Figure 1. Segments Used in Experiments.  F= full, R=reading, A=answering 

Item Example Explanation 

Story Context 

Then, Kimmie 
saw a big straw 
hat with a short 
red ribbon on it. 
The bow was not 
too long. The hat 
was not too fancy. 

Sentences following the 
previous question and 
preceding the present 
question 

Question It would be easy 
to _____. 

The sentence 
containing the cloze 
blank 

Correct 
Answer clean 

Actual word in story 
that we removed to 
make the cloze blank 

Ungrammatical 
Distracter car Makes sentence 

ungrammatical 

Implausible 
Distracter eat 

Grammatically valid 
but semantically non-
sensical. 

Plausible 
Distracter win 

Grammatically valid 
and semantically 
sensible sentence.  But 
the sentence must make 
no sense in context. 

Table 1: Example Cloze Question 



We used NeuroSky BrainBands to record EEG raw waves at 512 
Hz.  We used NeuroSky’s proprietary algorithms to generate 
Signal Quality, Attention, and Meditation scores at 1 Hz. 

To denoise, NeuroSky’s program removed frequencies below 3Hz 
and above 100Hz.  Like Chang et al. [3], we did further denoising 
by applying a wavelet transform for soft thresholding [7]. 
2.4 Classification 
For each experiment, we broke down EEG data into segments by 
time (2.4.1) and computed features from the segments (2.4.2).  
We trained Gaussian Naïve Bayes classifiers with these features 
and evaluated our classifiers with cross-validation (2.4.4).  Figure 
3 illustrates the flow of our experiment.  This pipeline is based on 
Chang et al. [3]. 

 
Figure 3: Flow of experiment in the form of pseudo-code 

2.4.1 Data Segmentation 
The student’s task (reading and answering an end-of-sentence 
cloze question) consists of several segments (see Figure 1).  
Broadly, there are two overall segments for each question: (1) a 
reading portion. containing the sentences that form the context of 
the cloze question and the clozed sentence itself and (2) an 
answering portion, where the student is reading the 4 answer 
choices and selecting an answer.  Figure 1 illustrates this 
breakdown. 

2.4.2 Features 
The NeuroSky program generated 12 data streams 1  – signal 
quality, attention, meditation, rawwave, delta, theta, alpha1, 
alpha2, beta1, beta2, gamma1, and gamma2.  We removed any 
trials containing EEG signals with imperfect signal quality scores 
(for some experiments nearly 50% of data are removed for signal 
quality).  We used the 11 channels other than signal quality to 
derive features for our classifier.  For each channel, we derived 8 
features: mean, variance, min, max, skew, kurtosis, first-order-
polynomial-fit, and second-order-polynomial-fit.  Thus each 
segment has 88 features in total. 

2.4.3 Student-Specific vs. Student-Independent 
Classifier 
For each experiment, we trained one within-subject classifier 
(trained and tested on data from the same subject) and one 
                                                                 
1 Frequencies corresponding to various channels: delta: (1-3Hz); 

theta (4-7Hz), alpha1: (8-9Hz); alpha2: (10-12Hz); beta1: (13-
17Hz); beta2: (18-30Hz); gamma1: (31-40Hz); gamma2: (41-
50Hz) [8] 

between-subject classifier (tested on one subject, trained on all 
other subjects).  The within-subject classifier minimizes the effect 
of individual differences by custom training a classifier for each 
subject; the between-classifier simulates the performance of the 
classifier on unseen subjects.  The between-subject classifier has 
the additional advantage of using a much larger training set 
(consisting of data from all other subjects) where the within-
subject classifier only uses data from a single subject. 

2.4.4 Cross-Validation 
Our experiments used leave-one-out cross-validation to generate 
train/test splits.  For every subject s, we trained the within-subject 
classifier on data from subject s and cross-validated on 1 left-out 
data point.  We trained the between-subject classifier on data from 
all subjects except s and cross-validated on data from s. 

2.4.5 Balancing 
For most of our experiments, our data is imbalanced.  Because we 
want to appraise the accuracy of our classifier without allowing it 
to exploit the class size imbalance, we prebalance the data prior to 
training.  Like Chang et al [2], we chose to undersample from the 
majority class as a conservative way to prebalance.  We lose an 
appreciable amount of data (~58%) by undersampling, but we are 
still able to get some significant results (Section 3.1.2) 

2.4.6 Feature Selection 
Due to the high number of features and our relatively small 
amount of data, overfitting is a definite concern.  To limit our 
features, we used rank feature selection - ranking on class 
separability as computed by t-test.  We selected the 3 highest 
ranked features as input for our classifier.  We decided on 3 by 
trying a variety of cutoffs on a single test subject.  This subject 
was not included in any experiments. 

2.4.7 Classifier 
We trained Gaussian Naïve Bayes classifiers using the selected 
features.  We chose Naïve Bayes because it supports non-linear 
decision boundaries (by contrast, we tried linear SVM and it did 
not perform as well) and does not require a lot of data to train.  To 
avoid building classifiers on too few data points, we only used 
subjects with at least 4 samples in each category. 

2.4.8 Evaluation 
Because we use leave-one-out classification, we produce exactly 
two predictions (one between subject and one within subject) for 
each data point.  Thus, we have 2 accuracy measures per 
experiment – between subject accuracy and within subject 
accuracy. 

We used two tests for significance.  One is a Chi-Squared test, 
comparing the correct-versus-incorrect predictions against a 
baseline of 50:50.  The Chi-Squared test is standard for evaluating 
the significance of categorical results but it assumes independence 
of samples. This assumption is a problem for us because we 
measure our predictor multiple times per subject (once per cross-
validation fold) and these measurements of the same subject are 
not independent of each other. 

To deal with these independence assumptions we used Fisher’s 
Method as an additional test of significance.  We treat each 
predictor’s performance on each individual subject as a separate 
experiment and perform a Chi-Squared test on each subject.  We 
then use Fisher’s Method to aggregate the test results into a single 
significance value. 



Fisher’s Method is a meta-analysis technique for aggregating 
distinct experiments.  We are aggregating individual subjects from 
the same experiment so we are uncertain about how well Fisher’s 
Method applies.  We noticed that Fisher’s Method gave 
“significance” attributions to several near chance or below chance 
results.  We suspect that we’ve made further violations of 
independence assumptions and will explore other significance 
tests in future work.  We recommend caution when interpreting 
our significance values under Fisher’s Method. 

3. PREDICTING CORRECTNESS 
First, we try to predict whether a student will answer a 
comprehension question correctly. 

3.1 Setup 
We want to detect comprehension without using EEG signals 
collected during the comprehension question.  To fully factor out 
the comprehension question, we need to predict the outcome of 
our cloze question using exclusively EEG data over time periods 
before the student sees the question (see Experiment R’ in Figure 
1). 

Each experiment began with 906 questions but many data 
segments were filtered out due to poor EEG signal quality (see N 
in Figure 2).  The accuracy shown in Figure 2 is the percentage of 
correct predictions on left out data across all subjects. 

3.2 Results and Discussion 
Our classifier achieves significantly above-chance accuracy (p < 
.05) trained on only the reading portion (experiment R’).  This 
result suggests that the reading portion is informative about 
comprehension.  By contrast, the answering portion, without 
above-chance accuracy, may not be informative. 

Significance remains when we limit the data to 4 seconds, the 
minimum length of the answering portion (see R4sec) indicating 
that our classifier is not taking advantage of the length of the 
reading portion.  Further, our within-class R’ classifier are has an 
above 50% accuracy for both the correct and incorrect labels, 
showing that we are not producing degenerate classifiers that only 
output the majority class. 

The performance of our multi-segmental classifiers (F2, R2) is 
comparable to their single-segmental counterparts.  It’s possible 
that over-fitting due to the increased number of features cancelled 
out any benefit those features could have provided. 

Notably, most of our significant results are from our between-
subjects classifier.  This is understandable since nearly all our 
subjects had fewer than 10 incorrect responses so our within-
subject classifiers had very little training data. 

We warn that our significance test makes more independence 
assumptions than warranted (see Section 2.4.8) so significance 
should be interpreted with caution.  We also note that we did not 
correct for multiple comparisons, although our false discovery 
rate (expected number of false positives) is less than one, much 
lower than the number of significant results we found. 

Though these results suggest that we can detect how well students 
understand a sentence, it’s possible that we are merely 
recognizing student preparedness.  Specifically, we would see 
similar results if our between-subject classifier was only picking 
up on how good of a reader the student is rather than any lapses of 
understanding in a specific sentence (good readers tend to answer 
correctly more often).  We could check for this hypothesis by 
looking at whether our predictions for a given student differ 
across stories.  Unfortunately, our current study does not have 
large enough N to make this analysis feasible. 

4. RECOGNIZING ANSWER TYPES 
In addition to correctness, we also tried to detect the student’s 
mental state as he/she read each answer choice.  Each of the 3 
distracters in our task represents a different kind of error (see table 
1) and should elicit different mental states in students as the 
students look at them.  Further, these error-elicited mental states 
should be different from the mental state elicited by the correct 
choice.  We test whether we could use EEG signals to detect these 
differences in mental state.  An above-chance prediction would 
suggest that these inexpensive EEG devices could pick up some 
underlying mental state related to semantic, syntactic, or 
contextual violations. 

 
Figure 2: Accuracy of single segment experiments (note: using Fisher’s Method produced significant below-chance results)



In these experiments, we use 1-second segments representing the 
time when a student was reading a particular type of answer 
choice (see choice 1 through choice 4 in Figure 1).  We only used 
questions where the students gave correct responses, in the hope 
that they actually understood the answers.  We produced binary 
classifiers for each pair of answer types (e.g. grammatical vs. 
correct; plausible vs. implausible).  There were 6 distinctions in 
total. 

4.1.1 Results and Discussion 
The accuracy apparently varies across the different binary 
distinctions but because there are no significant above-chance 
predictions, we caution against drawing any conclusions from 
those apparent differences. 

Note that our within-subject plausible vs. ungrammatical accuracy 
was significantly below chance.  With α = 0.5, we expect a false 
positive rate of 1/20.  Given that there are 12 answer-type 
experiments, there is a reasonable (46%) chance of getting at least 
one false positive.  This is in contrast to the correctness 
experiments where having 4 or more false positives in 16 
experiments is highly unlikely (< 0.01% chance). 

 
Table 5: Answer type recognition accuracy (Fischer’s 
significance test not shown) 
Experiment Within Between 

N Accuracy N Accuracy 
Correct vs. 
Plausible 

402 0.4776 402 0.4776 

Correct vs. 
Implausible 

401 0.4713 401 0.4863 

Correct vs. 
Ungrammatical 

393 0.4529 393 0.5115 

Plausible vs. 
Implausible 

418 0.4569 418 0.5072 

Plausible vs. 
Ungrammatical 

401 0.4090* 401 0.4539 

Implausible vs. 
Ungrammatical 

400 0.4525 400 0.475 

 
The poor results could mean that these specific mental states are 
not detectable with EEG but there are a number of alternative 
explanations: (1) our specific lower-end EEG devices are not 
sensitive enough to detect these states (2) our classification 
pipeline does not make good enough use of the data or (3) we 
didn’t collect enough data to overcome over-fitting/noise issues.  
Any combination of those causes could have led to these poor 
results.  Future work could explore how to resolve these concerns. 

5. CONCLUSION 
The present work demonstrates that inexpensive EEG devices can 
generate above-chance predictions of comprehension.  Critically, 
these predictions only use EEG data recorded before the students 
even saw the cloze question.  However, certain independence-
assumption violations put the strength of our significance tests in 
question.  We also tried to detect student mental states as they saw 
various choice types.  Thus far, we are unable to produce a 
significant-above-chance classifier of those mental states. 

Our system is certainly not ready to replace comprehension 
questions.  But these results, though modest, do suggest that some 
information about comprehension exists even in inexpensive EEG 
devices deployed in noisy classroom settings.  We believe this 
work is a necessary first step in evaluating the practical feasibility 
of EEG as an unobtrusive measure of reading comprehension.  
Future work will explore ways of increasing prediction accuracy, 
assessing other dimensions of student knowledge, and applying 
those assessments to improve learning outcomes. 
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