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ABSTRACT 
Previous work on knowledge tracing has fit parameters per skill 
(ignoring differences between students), per student (ignoring 
differences between skills), or independently for each <student, 
skill> pair (risking sparse training data and overfitting, and under-
generalizing by ignoring overlap of students or skills across pairs).  
To address these limitations, we first use a higher order Item 
Response Theory (IRT) model that approximates students’ initial 
knowledge as their one-dimensional (or low-dimensional) overall 
proficiency, and combines it with the estimated difficulty and 
discrimination of each skill to estimate the probability knew of 
knowing a skill before practicing it.  We then fit skill-specific 
knowledge tracing probabilities for learn, guess, and slip.  Using 
synthetic data, we show that Markov Chain Monte Carlo (MCMC) 
can recover the parameters of this Higher-Order Knowledge 
Tracing (HO-KT) model.  Using real data, we show that HO-KT 
predicts performance in an algebra tutors significantly better than 
fitting knowledge tracing parameters per student or per skill. 
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1. Introduction 
Traditional knowledge tracing (KT) [1] estimates the probability 
that a student knows a skill by observing attempted steps that 
require it, and applying a model with four parameters for each 
skill, assumed to be the same for all students:  the probabilities 
knew of knowing the skill before practicing it, learn of acquiring 
the skill from one attempt, guess of succeeding at the attempt 
without knowing the skill, and slip of failing despite knowing the 
skill. Prior work shows that fitting such parameters for individual 
students can improve the model’s accuracy in predicting student 
performance [2] or reduce unnecessary practice [3]. Such per-
student parameters, however, ignore differences between skills. 
Fitting KT parameters separately instead for each <student, skill> 
pair risks sparse training data and overfitting, and under-
generalizes by ignoring overlap of students or skills across pairs.  

    Item Response Theory (IRT) [4, 5] predicts a student’s 
performance on an item based on the difficulty and discrimination 
of the skill(s) the item requires, and a one- (or low-) dimensional 
static estimate of the student’s overall proficiency. Prior work 
adapted IRT to estimate the static probability of knowing a given 
skill [6], or dynamic changes in overall proficiency [7].  Here we 
dynamically estimate individual skills required in observed steps. 

2. Approach 
IRT’s 2-Parameter Logistic model [4] estimates the probability 
knewnj of student n already knowing skill j as a logistic function of 
student proficiency θn, skill discrimination aj, and difficulty bj: 

𝑘𝑛𝑒𝑤𝑛𝑗 =   
1

1 + exp  (−1.7𝑎!(𝜃! − 𝑏!)
 

Deriving knewnj instead of fitting it separately makes it a higher 
order model.  We then fit each skill’s KT parameters learnj, 
guessj, and slipj.  Figure 1 shows this hybrid Higher Order 
Knowledge Tracing (HO-KT) model’s graphical representation.  
The observable state Y(t) tells if a skill is applied correctly at time 
t. The latent state K(t) models knowing it at time t; Pr(K(0)) = knew.  

 
Figure 1. Graphical representation of Higher-Order 

Knowledge Tracing (HO-KT) model 
    For Markov Chain Monte Carlo (MCMC) estimation of HO-
KT’s parameters, we specify their prior distributions as follows:  

                 𝜃!    ~  𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

            𝑏!       ~  𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

        𝑎!       ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2.5) 

 𝑙𝑒𝑎𝑟𝑛!       ~  𝐵𝑒𝑡𝑎(1, 1) 

          𝑔𝑢𝑒𝑠𝑠!       ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4) 

              𝑠𝑙𝑖𝑝!       ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4) 

Given observations Y, MCMC finds vectors θ, a, b, l (learn), g 
(guess), and s (slip) with maximum posterior probability, namely: 

𝑃 𝜽,𝒂,𝒃, 𝒍,𝒈, 𝒔 𝒀 ∝ 𝐿 𝒀 𝒈, 𝒔,𝑲 𝑃 𝑲 ! 𝜽,𝒂,𝒃 × 

            𝑃 𝑲 ! 𝑲 !!! , 𝒍 𝑃 𝜽 𝑃 𝒂 𝑃 𝒃 𝑃 𝒍 𝑃 𝒈 𝑃(𝒔)!
!!!  

HO-KT fits parameters to all data so far, in contrast to using IRT 
to fit θ, a, and b to early data and KT to fit l, g, and s to later data. 

 

 



3. Experiment 
We first generated synthetic data with N=100 students, each of 
whom practices J=4 skills required in a series of T=100 steps. We 
used OpenBUGS [8] to implement MCMC estimation for HO-KT 
in the BUGS language. We simultaneously ran the model in 5 
chains for 10,000 iterations with a burn-in of 3000, each chain 
starting from randomly generated initial values, and considered 
MCMC to converge when all 5 chains overlapped in OpenBUGS’ 
monitor window. Table 1 shows how well the estimated value of 
learn for each simulated skill recovered its true value; estimates of 
other parameters were similarly accurate but omitted here for lack 
of space.  Moreover, MCMC correctly recovered 99.4% of the 
simulated students’ 10,000 hidden binary knowledge states. 

Table 1. Estimation of learn in synthetic data 

Skill j learn Estimate (95% C.I.) s.d. MC_error 
1 0.8 0.81 (0.48, 0.99) 0.13 0.006599 
2 0.6 0.60 (0.52, 0.70) 0.05 0.002132 
3 0.5 0.57 (0.38, 0.84) 0.11 0.005432 
4 0.3 0.29 (0.25, 0.33) 0.02 7.79E-04 

     

    We then evaluated HO-KT on real data from the Algebra 
Cognitive Tutor® [9], containing a total number of 41,762 
observations from 123 students performing 157 problem steps. 
Our model assumed each problem step required a single skill. We 
split the data evenly into training and test sets with no overlapping 
<student, skill> pairs. We limited the observed sequence length of 
each student to T=100, and still ran 5 chains starting from random 
initial values for 10,000 iterations with a burn-in of 3000.  

    For comparison, we also used BNT-SM [10] to fit knowledge 
tracing parameters per skill and per student to the algebra data.  
The data are unbalanced (85.10% are correct steps), so we also 
computed within-class and majority class accuracy.  Table 2 
compares the models’ prediction accuracy and log-likelihood on 
the unseen test data. HO-KT is significantly higher in overall 
accuracy than KT per skill and per student, with p<.0001 in paired 
T-tests comparing HO-KT to the two KT models for each of 123 
students. HO-KT also achieves the best log-likelihood. 

Table 2. Evaluation on real data from algebra tutor 

Model: 
Accuracy Log-

likelihood Overall  Correct Incorrect 
HO-KT 87.13% 97.76% 26.43% -5442.50 
KT per skill 85.92% 96.19% 27.28% -5216.23 
KT per student 85.15% 99.99% 0.92% -5102.15 
Majority class 85.10% 100.00% 0.00% -- 

4. Discussion 
HO-KT uses IRT to estimate students’ initial knowledge of a skill 
based on its difficulty and discrimination and their overall 
proficiency, and KT to model learning over time. It outperforms 
per-student or per-skill KT by combining information about both. 
HO-KT estimates every probability Knew(student, skill) without 
requiring training data for every <student, skill> pair, because it 
can estimate student proficiency based on other skills, and skill 
difficulty and discrimination based on other students. 

    Future work should compare HO-KT to other methods and on 
data from other tutors. We should also test if k-dimensional 
student proficiency captures enough additional variance to justify 
fitting k times as many parameters. Finally, extending HO-KT to 

trace multiple subskills should use considerably fewer parameters 
than prior methods [11, 12], thanks to combining IRT and KT. 
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