
Appears in the 7th International Symposium on High Performance Distributed Computing

A Resource Query Interface for Network-Aware Applications

Bruce Lowekamp Nancy Miller Dean Sutherland
Thomas Gross∗ Peter Steenkiste Jaspal Subhlok

{lowekamp,nam,dfsuther,trg,prs,jass }@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213

Abstract

Development of portable network-aware applications
demands an interface to the network that allows an appli-
cation to obtain information about its execution environ-
ment. This paper motivates and describes the design of
Remos, an API that allows network-aware applications to
obtain relevant information. The major challenges in defin-
ing a uniform interface are network heterogeneity, diversity
in traffic requirements, variability of the information, and
resource sharing in the network. Remos addresses these is-
sues with two abstraction levels, explicit management of re-
source sharing, and statistical measurements. Theflowsab-
straction captures the communication between nodes, and
the topologiesabstraction provides a logical view of net-
work connectivity. Remos measurements are made at net-
work level, and therefore information to manage sharing
of resources is available. Remos is designed to deliverbest
effort information to applications, and it explicitly adds sta-
tistical reliability and variabilitymeasures to the core infor-
mation. The paper also presents preliminary results and ex-
perience with a prototype Remos implementation for a high
speed IP-based network testbed.

∗Thomas Gross is also with ETH Zurich, Switzerland
Effort sponsored by the Advanced Research Projects Agency and Rome
Laboratory, Air Force Materiel Command, USAF, under agreement num-
ber F30602-96-1-0287. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied,
of the Advanced Research Projects Agency, Rome Laboratory, or the U.S.
Government.

1 Introduction

Networked systems provide an attractive platform for
a wide range of applications, yet effective use of the re-
sources is still a major challenge. A networked system con-
sists of compute nodes (hosts), network nodes (routers and
switches), and communication links. Network conditions
change continuously due to the sharing of resources, and
when resource demands exceed resource availability, appli-
cation performance suffers. Congestion on network nodes
and links can reduce the effective bandwidth and increase
the response time observed by applications. On compute
nodes, competing jobs and higher-priority activities reduce
availability. An attractive way of dealing with such changes
is to make applicationssystem-aware, i.e., the application
periodically adapts to the system in an application-specific
manner.

A variety of applications can benefit from system-
awareness, and the manner in which they adapt to their
execution environment varies widely. Communication in-
tensive scientific simulations can select the optimal set of
nodes for execution based on runtime information about
the system state. Wide-area distributed applications, such
as videoconferencing and digital libraries, can dynamically
select the best servers and routes to best satisfy service re-
quests. Finally, applications can be designed to tradeoff pre-
cision in order to meet timing requirements in response to a
reduction in resource availability.

The Remos system developed at Carnegie Mellon Uni-
versity provides applications with a query-based interface
to their execution environment including the network state.
It is designed for experiments with the coupling of network-
aware applications and network architectures. The Remos
system has its roots in two separate projects: an investiga-
tion of resource management in application-aware networks
(Darwin) and an effort to support system-aware applications
through libraries, frameworks, and tools (Remulac).

1

Network-aware applications must be able to obtain in-
formation about resource availability, in particular, the net-
work’s capabilities and status. Unfortunately, network ar-
chitectures differ significantly in their ability to provide
such information to a host or to an executing application
To avoid dependences on the idiosyncrasies of network ar-
chitectures and communication systems, application devel-
opment for networks requires a system-independent inter-
face between applications and networks. A uniform inter-
face allows the development of portable applications that
can adapt on a range of network architectures. Furthermore,
a system-independent interface is crucial for allowing appli-
cations to adapt on heterogeneous networks, where compo-
nents are realized with different network technologies.

This paper describes Remos, which represents our solu-
tion to high-level and portable interaction between a net-
work and network-aware applications. Remos is a standard
interface for applications to obtain the relevant network in-
formation needed for effective adaptation. We present moti-
vation for Remos, describe the design and initial implemen-
tation, and present preliminary results. We conclude with
comparison to related work and our view of the directions
of future Remos related research.

2 Design challenges

In this section we briefly summarize the problems that a
uniform, portable network query interface like Remos must
address:

• Dynamic behavior: Network conditions can change
quickly, so the interface must characterize this dy-
namic aspect. Different applications may want this
information in different formats, e.g., some applica-
tions are more interested in burst bandwidth while oth-
ers primarily care about long term average bandwidth.
Furthermore, applications are most interested in fu-
ture network behavior, not historical information, and
hence it is important to provide expected future behav-
ior, particularly when reasonable basis for prediction
(e.g., existing reservations) exist.

• Sharing (internal and external): Application levelcon-
nectionsbetween computation nodes share physical
links with other connections. This dynamic sharing
of resources with entities external to an application is
the major reason for the variable network performance
experienced by applications. Parallel and distributed
computations often simultaneously transfer data across
multiple point-to-point connections, so there is also in-
ternal sharing as these connections compete with each

other for resources. An interface that provides perfor-
mance data must therefore consider the network’s shar-
ing policy when estimating bandwidth availability.

• Information diversity: Applications may be interested
in a wide variety of information, ranging from static
network topology, dynamic bandwidth estimations on
a variety of times scales, and latency information.
This information may have to be retrieved through di-
verse mechanisms ranging from querying information
databases using standard protocols to direct measure-
ments on the network interface.

• Network heterogeneity: Network architectures dif-
fer significantly in their ability to collect and report
network information such as communication perfor-
mance, link capacities and utilization, and network
topology. The nature of information that is made
available by a network architecture impacts the de-
sign, overheads, and accuracy of information associ-
ated with a query interface.

• Level of abstraction: One of the thorny issues in
designing an interface between applications and net-
works is to decide what aspects of the network should
be exposed to applications. One solution is to expose
as much information as possible. However, export-
ing low level or system specific information conflicts
with other goals, particularly the portability of the API
across heterogeneous networks. It also raises both ease
of use and scalability concerns (the Internet is too huge
for exposing all information). An alternative is to pro-
vide the information at a much higher level, with focus
on performance characteristics of interest to the appli-
cation. A high level of abstraction can make the inter-
face easier to use and avoid information overload, but
it can also result in vagueness and inaccuracies.

• Accuracy and fidelity:The information provided by
an interface between networks and applications may
not be completely accurate, e.g., the estimates of the
future bandwidth may not be able to take all traffic
into account. Nor may the information be of high fi-
delity, e.g., if the average bandwidth over a large in-
terval is computed based on a small number of mea-
surements. The issue then is how much accuracy and
fidelity should be demanded (from the network) or
promised (to the application).

3 Remos API

Remos is a query-based interface that provides “best-
effort” information to a client. The applications specifies

2

the kind of information it needs and Remos supplies the
best available information. To limit the scope of a query,
the application may select network parameters and parts of
a larger network that are of interest. We sketch the main
features of the Remos API and explain how they address
the challenges presented above. A complete API is pub-
lished in [4]. We organize our discussion around the three
major design issues: the level of abstraction, dynamic be-
havior and sharing, and accuracy.

3.1 Level of abstraction

To accommodate the diverse application needs, the Re-
mos API provides two levels of abstraction: a higher level
based on flow queries and a lower level based on network
topology.

Remos supports flow-based queries. Aflow is an
application-level connection between a pair of computa-
tion nodes. Queries about bandwidth and latency of sets
of flows form the core of the Remos interface. Using flows
instead of physical links provides a level of abstraction that
makes the interface portable and independent of system de-
tails. Flow-based queries present the API implementation
with the challenge of translating network specific informa-
tion into solutions to specific queries. However, they allow
the application developer to write adaptive network appli-
cations that are independent of heterogeneity inherent in a
network computing environment. Past experience indicates
that the flow abstraction should be easy to use by applica-
tion developers. We describe the basic form of flow queries
later in this section.

Remos also supports queries about the networktopology.
The reason we expose a network-level view of connectivity
is that certain types of questions are more easily or more ef-
ficiently answered based on topology information. For ex-
ample, finding the pair of nodes with the highest bandwidth
connectivity may be expensive if only flow-based queries
are allowed. The topology information provided by Remos
consists of a graph with compute nodes, network nodes,
and links, each annotated with their physical characteris-
tics, such as latency and available bandwidth. Topology in-
formation is in general harder to use, since the complexity
of translating network-level data into application-level in-
formation is partially left to the user.

Topology queries return alogical interconnection topol-
ogy in the form of a graph. This graph represents the net-
work behavior as seen by the application; the graph does
not necessarily reflect the physical topology. Using a logi-
cal topology gives Remos the option of hiding network fea-
tures that do not affect the application. E.g., if the routing
rules imply that a physical link is not used, or can be used

10Mb link

100Mb link

B

5

7

8

3

6

Compute node

Network node
A

1

2

4

Figure 1. Remos graph representing the
structure of a simple network

only up to a fraction of its capacity, then that information
is reflected in the graph. The graph can also represent half
or full-duplex bidirectional links. Similarly, if two sets of
hosts are connected by a complex network (e.g. the Inter-
net), Remos can represent this network by a single link with
appropriate statistical characteristics.

Figure 1 shows a simple example of a logical topol-
ogy graph. Circles represent network nodes (e.g., routers)
and squares indicate compute nodes (endpoints). Note that
even though we show only the bandwidth capacities of the
links, the topology also can also include capacities of nodes.
E.g., if A or B have an internal bandwidth of less then
100 Mbps, then this restriction should be represented in
the topology. Figure 1 suggests a simple topology consist-
ing of two routers, eight endpoints, and nine physical links.
However, since Figure 1 is alogical topology, it can rep-
resent a much broader set of (physical) networks. E.g., the
link betweenA andB could represent a complex network.
However, the internal details of that network are not rele-
vant to the communication performance between the eight
endpoints, so Remos turns this network into a single link
with the bandwidth reflecting what the network can offer to
this application.

The basic network topology query has the following
form:

remos_get_graph(nodes, graph, timeframe)

The query fills agraph that is relevant for connecting
thenodes set. The graph will contain all the nodes speci-
fied in thenodes parameter, as well as nodes that are part
of the network that connects the specified nodes and the rel-
evant communication links. The information annotated to
the graph is relevant for the specifiedtimeframe , which
represents a window of time in the past or the future.

3

3.2 Dynamic resource sharing

Applications can generate flows that cover a broad spec-
trum, ranging from constrained low-bandwidth audio to
bursty high-bandwidth data flows. Remos collapses this
broad spectrum into three types of flows.Fixed flowshave a
specific bandwidth requirement.Variable flowshave related
requirements and demand the maximum available band-
width that can be provided to all such flows in a given ratio.
(e.g., all flows in a typical all-to-all communication opera-
tion have the same requirements) Finally,independent flows
simply want maximum available bandwidth. These flow
types also reflect priorities when sufficient resources are not
available to satisfy all the flows.Fixed flowsare considered
first, followed byvariable flows, thenindependent flows.

Applications can specify all flow requirements in their
request simultaneously, and Remos takes internal resource
sharing into account when responding to the queries. E.g., if
multiple application flows share theA−B link in Figure 1,
then Remos will take the shared link into account, and the
sum of the reported available bandwidths for all the flows
will not exceed the bandwidth of theA −B link.

A general flow query has the following form:

remos_flow_info(fixed_flows,
variable_flows, independent_flows,

timeframe)

Remos will first try to satisfy thefixed_flows and
allocate bandwidth for these flows. Next, bandwidth is as-
signed to thevariable_flows simultaneously in the ra-
tio specified in the query. Finally,independent_flows
are satisfied from the capacity that is available after pre-
vious assignments. The corresponding data structures are
filled with assignments to the flow requests based on the
timeframe parameter.

Determining how the throughput of a flow is affected by
other messages in transit is very complicated and network
specific, and it is unrealistic to expect Remos to characterize
these interactions accurately. In general, Remos assumes
that, all else being equal, the bottleneck link bandwidth is
shared equally by all flows (that are not bottlenecked else-
where). If other information is available, Remos can use
different sharing policies when estimating flow bandwidths.
The basic sharing policy assumed by Remos corresponds to
the max-min fair share policy [11], which is the basis of
ATM flow control for ABR traffic [13, 2], and is also used
in other environments [9].

Note that clients of the topology interface are responsible
for accounting for sharing effects, both across application
flows, and between application flows and other competing

flows. This is one of the reasons to prefer the query in-
terface over the topology interface when both can provide
equivalent information.

3.3 Accuracy

Applications ideally want information about the level of
service they can expect to receive in the future, but most
users today must use past performance as a predictor of the
future. Different applications are also interested in activities
on different timescales. A synchronous parallel application
expects to transfer bursts of data in short periods of time,
while a long running data intensive application may be in-
terested in throughput over an extended period of time. For
this reason, relevant queries in the Remos interface accept
a timeframe parameter that allows the user to request data
collected and averaged for a specific time window. The user
can also request the expected availability of resources in a
window in the future, and models for estimation of future
resource availability are being investigated.

Network information such as available bandwidth varies
dynamically due to sharing, and often cannot be measured
accurately. As a result, characterizing these metrics by a
single number can be misleading. E.g., knowing that band-
width availability has been very stable represents a different
scenario from it being an average of rapidly changing in-
stantaneous bandwidths. To address these aspects, the Re-
mos interface adds statistical variability and estimation ac-
curacy parameters to all dynamic quantitative information.
Since the actual distributions for the measured quantities are
generally not known, we present the variability of network
parameters using quartiles [12].

4 Implementation

The initial implementation of the Remos interface is for a
dedicated IP-based testbed at Carnegie Mellon illustrated in
Figure 2. The testbed uses PCs running NetBSD as flexible
routers, 100Mbps point-to-pointEthernet segments as links,
and DEC Alpha systems as endpoints.

The Remos implementation has two components, a Col-
lector and Modeler; they are responsible for network-
oriented and application-oriented functionality, respec-
tively. The Collector consists of a process that retrieves
information from routers using SNMP [3]. The informa-
tion obtained covers both static topologyand dynamic band-
width information. For latency, the Collector currently as-
sumes a fixed per-hop delay. (A reasonable approximation
as long as we use a LAN testbed). A large environment
may require multiple Collectors. The Modeler is a library

4

that can be linked with the application. It satisfies appli-
cation requests based on the information provided by the
Collector. Its primary tasks are generating a logical topol-
ogy, associating appropriate static and dynamic information
with each of the network components, and satisfying flow
requests based on the logical topology. The modeler exports
Remos information through a Java and a C interface.

We would like to point out that the Remos API is inde-
pendent of its implementation, and the suitable implemen-
tation techniques will be different for networks of different
types and sizes. The above choices were made for a particu-
lar network environment that was available to us. However,
this implementation will work on similar networks that use
SNMP-capable routers.

aspen

whiteface

m-4

m-5

m-6

m-1

m-2

m-3

m-7 m-8

timberline

Links: 100Mbps point-to-point ethernet

Endpoints: DEC Alpha Systems (manchester-* labeled m-*)

Routers: Pentium Pro PCs running NetBSD (aspen,timberline, whiteface)

Figure 2. IP-based testbed for Remos imple-
mentation and experiments

5 Usage and results

The Remos interface can be used in a variety of ways to
develop network-aware applications, ranging from dynamic
selection of network resources for execution, to customiza-
tion of the program execution in response to changes in sys-
tem resources. In this paper, we present a preliminary report
on the usage of Remos for selection of the best set of nodes
for the execution of parallel and distributed programs.

The node selection algorithm will be referred to asclus-
tering. It selectsn nodes that are closest to a given set of
one or more nodes. Clustering has been implemented as a

user level library routine that proceeds as follows. First, it
calls a Remos routine to obtain the logical topology of the
relevant graph, as follows:

remos_get_graph(nodes, graph, timeframe)

For our experiments,nodes is the set of nodes on our
IP-based testbed, and the topology of the testbed is returned
in graph . The timeframe parameter is obtained from
the application and specifies whether only static capacity
information should be appended to the graph, or dynamic
information relating to a window in history should be used.

Once the topology is obtained, the clustering routine re-
peatedly measures the aggregatedistancebetween the cur-
rent set of nodes in the cluster and all other nodes, and adds
the node which is theclosestneighbor. The details are be-
yond the scope of this paper, and we simply state that the
distanceis based on the bandwidth and latency estimates
returned by Remos, and the algorithm uses a greedy heuris-
tic for adding nodes. The clustering routine is a client of
Remos information and we will refer to the procedure as
Remos based clustering.

We now present results on the usage of clustering on two
programs:fast Fourier transforms (FFT)andAirshed pol-
lution modelling. The FFT program performs a two dimen-
sional FFT, which is parallelized such that it consists of a
set of independent 1 dimensional row FFTs, followed by a
transpose, and a set of independent 1 dimensional column
FFTs. Airshed contains a rich set of computation and com-
munication operations, as it simulates diverse chemical and
physical phenomena [18]. Both programs were developed
using the Fx compiler system [8, 19] and easily modified to
use the clustering information. All experiments were per-
formed on the IP-based testbed illustrated in Figure 2.

We first examine the value of node selection when there
are no competing applications on the testbed. We should
point out that our testbed presents a difficult test for the clus-
tering routine using Remos. Since the testbed is connected
with high performance links and switches throughout, and
any node can be reached from any othernode with at most
3 hops, it is difficult to judge what sets of nodes are better
connected than others.

The FFT program and the Airshed program were exe-
cuted on sets of nodes selected by the Remos based clus-
tering routine, and the results were compared with execu-
tion on other representative sets of nodes. In all exam-
ples, the programs gave nodem-4as a start node and used
clustering to select remaining nodes. The results are pre-
sented in Table 1. We observe that the execution time on
the nodes selected by clustering was generally (but not al-
ways) lower than for other node sets, but only by relatively
small amounts. As noted earlier, this is a hard case for Re-

5

mos based clustering, but our toolchain is doing a fair job
of node selection. However, we note that node selection has
limited importance on a small network with fast routers and
links and no external traffic.

To study the importance of node selection in the pres-
ence of competing applications, we performed another set
of experiments. We added a synthetic program that gener-
ates communication traffic between nodesm-6andm-8on
our testbed. The program used wasnetperf and it con-
tinuously sent as much data as possible between the pair of
nodes for the duration of the experiments.

Once again the Remos based clustering routine was used
for node selection in this environment. The programs were
then executed on the selected sets of nodes. For comparison,
the programs were re-executed on a set of nodes that the
clustering routine could have potentially selected if it only
used the static physical capabilities of the testbed communi-
cation nodes and links. The results are tabulated in Table 2.

We observe that the execution times are larger by 80-200
percent when dynamic traffic information is not used for
node selection. The reason is that selection of nodes using
Remos measured dynamic traffic makes it possible to avoid
links with heavy traffic that are potential communication
bottlenecks for a parallel program. The table also shows the
performance of the programs in the absence of the exter-
nal traffic (last column). We observe that with our dynamic
node selection, the performance degrades only marginally
in the presence of traffic, while a naive selection of nodes
(we chose agoodset of nodes without considering traffic)
can lead to a dramatic degradation in the performance. The
conclusion is that node selection is very important for per-
formance in dynamic environments with competing traffic,
and our greedy clustering routine using Remos is effective
in selecting good sets of nodes in such realistic situations.

6 Related Work

A number of resource management systems allow appli-
cations to make queries about the availability of computa-
tion resources, some examples being Condor [14] and LSF
(Load Sharing Facility). In contrast, Remos is motivated by
network driven applications and focuses primarily on com-
munication resources.

Resource management systems for large scale internet-
wide computing is an important area of current research,
and some well known efforts are Globus [6] and Legion [7].
These systems provide support for a wide range of functions
such as resource location and reservation, authentication,
and remote process creation mechanisms. The Remos inter-
face focuses on providing good abstractions and support for
application level access to network status information, and

allow for a closer coupling of applications and networks.
The Remos system can be used to extend the functionality
of the above systems.

Recent systems that focus on measurements of commu-
nication resources across internet wide networks include
Network Weather Service (NWS) [20] andtopology-d[15].
NWS makes resource measurements to predict future re-
source availability, whiletopology-dcomputes the logical
topology of a set of internet nodes. Both these systems
actively send messages to make communication measure-
ments between pairs of computation nodes. An important
characteristic that distinguishes Remos is that applications
interact with a portable interface to the network that in-
cludes flow query and logical topology abstractions. The
network measurements are used to answer queries but not
reported directly to applications. Remos implementations
make measurements at network level when possible, which
minimizes the measurement overhead and yields key infor-
mation for managing sharing of resources.

A number of groups have looked at the benefits of ex-
plicit feedback to simplify and speed up adaptation [10, 5].
However, the interfaces developed by these efforts have
been designed specifically for the scenarios being studied,
while Remos is a general interface.

A number of sites are collecting Internet traffic statistics,
e.g., [1]. This information is not in a form that is usable
for applications, and it is typically also at a coarser grain
than what applications are interested in using. Another class
of related research is the collection and use of application
specific performance data, e.g., a Web browser that collects
information the response times of different sites [17].

An important aspect of the Remos interface is that dy-
namic quantities are reported with statistical parameters
and not just as single values. Related work in estimating
stochastic values such as [16] is important for developing
good Remos implementations.

7 Concluding remarks

Remos is an attempt to develop a uniform interface be-
tween networks and network-aware applications that covers
a range of network architectures. It allows applications to
discover, at runtime, the properties of their execution envi-
ronments. Such interfaces can also be of value to tools that
attempt to place computations onto network nodes.

Remos’ goal of a single portable interface between ap-
plications and different types of networks raises many new
questions that will be addressed in detail in future research.
The primary problem is the implementation of a single API
on diverse network environments, spanning local area to

6

Problem Description Remos Selected Nodes Other Representative Node Sets
Name No. Exec. Exec. Exec.

of of Node Time Node Time Percent Node Time Percent
Program Nodes set (secs) set (secs) increase set (secs) increase

FFT (512) 2 m-4,5 .462 m-1,4 .468 1.3 m-4,8 .481 4.1
FFT (512) 4 m-4,5,6,7 .266 m-1,2,4,5 .287 3.7 m-1,4,6,7 .268 .03
FFT (1K) 2 m-4,5 2.63 m-1,4 2.66 1.1 m-4,8 2.68 1.9
FFT (1K) 4 m-4,5,6,7 1.51 m-1,2,4,5 1.62 7.3 m-1,4,6,7 1.61 6.6
Airshed 3 m-4,5,6 908 m-4,6,8 907 -.1 m-1,4,7 917 1.1
Airshed 5 m-4,5,6,7,8 650 m-1,2,3,4,5 647 -.4 m-1,2,4,5,7 657 1.1

Table 1. Comparison of performance of FFT and Airshed parallel programs on computation nodes
selected using Remos, and two other sets of nodes that are representative of alternate choices
without Remos knowledge

Problem Description Execution Time with External Traffic Exec. time
Remos selected Nodes Nodes selected with without

Name No (Dynamic Measurements) only Static Measurements External
of of Node Time Node Time Percent Traffic

Program Nodes Set (secs) Set (secs) increase (secs)

FFT (512) 2 m-4,5 .475 m-4,6 1.40 194 .462
FFT (512) 4 m-1,2,4,5 .322 m-4,5,6,7 .893 177 .266
FFT (1K) 2 m-4,5 2.68 m-4,6 7.38 175 2.63
FFT (1K) 4 m-1,2,4,5 2.07 m-4,5,6,7 3.71 79 1.51
Airshed 3 m-1,4,5 905 m-4,5,6 2113 133 908
Airshed 5 m-1,2,3,4,5 674 m-4,5,6,7,8 1726 156 650

Table 2. Performance implications of node selection using Remos in the presence of external traffic.
Measurements use a synthetic program that generates significant traffic between nodes m-6 and m-8
on our IP-based testbed

internet-wide networks and various types of present and fu-
ture network implementation technologies. Our implemen-
tation is based on SNMP measurements on the router nodes
in the network. To extend the implementation to more com-
plex networks, we will have to address bridges and other
devices that necessitate different measurement methodolo-
gies. We have emphasized the use of passive measure-
ments that do not generate new traffic, and demonstrated
that this approach can yield satisfactory results. However,
for internet-wide networks, active measurements are often
the only option, and the best way to use them is currently
an active area of research. The Remos API allows queries
for future availability of resources, and includes fields for
statistical variability andaccuracy. However, techniques to
compute these fields in different network environments con-
tinues to be a topic of research.

The current Remos API does not provide adequate sup-

port for multicast or reservations. These features can be
added when they are more widely available to applications.
The current Remos API focuses on performance aspects. At
a later time, other dimensions, such as cost (of transmitting
data via a specific link) and security (of physical links in the
network) can be included.

The Remos API is a realistic interface to address the
concerns discussed in this paper; a prototype implementa-
tion demonstrates that the interface can be realized and has
value. A uniform interface for network-aware applications
significantly reduces the difficulty of coupling an applica-
tion to a network. As network architectures continue to
evolve, we anticipate that interfaces like Remos will play
an important role in raising the acceptability and practical-
ity of network-aware applications.

7

References

[1] http://www.nlanr.net/INFO.

[2] ATM User-Network Interface Specification. Version
4.0, 1996. ATM Forum document.

[3] CASE, J., MCCLOGHRIE, K., ROSE, M., AND

WALDBUSSER, S. Protocol Operations for Version
2 of the Simple Network Management Protocol (SN-
MPv2), January 1999. RFC 1905.

[4] DEWITT, T., GROSS, T., LOWEKAMP, B., MILLER,
N., STEENKISTE, P., SUBHLOK, J., AND SUTHER-
LAND , D. Remos: A resource monitoring system for
network-aware applications. Tech. Rep. CMU-CS-97-
194, Carnegie Mellon University, Dec 1997.

[5] ECKHARDT, D., AND STEENKISTE, P. A Wireless
MAC with Service Guarantees. In preparation, 1998.

[6] FOSTER, I., AND KESSELMAN, K. Globus: A meta-
computing infrastructure toolkit.Journal of Super-
computer Applications. To appear.

[7] GRIMSHAW, A., WULF, W., AND LEGION TEAM.
The Legion vision of a worldwide virtual computer.
Communications of the ACM 40, 1 (January 1997).

[8] GROSS, T., O’HALLARON , D., AND SUBHLOK,
J. Task parallelism in a High Performance Fortran
framework. IEEE Parallel & Distributed Technology
2, 3 (Fall 1994), 16–26.

[9] HAHNE, E. L. Round-robin scheduling for max-min
fairness in data networks.IEEE Journal on Selected
Areas in Communication 9, 7 (September 1991).

[10] INOUYE, J., CEN, S., PU, C., AND WALPOLE, J.
System support for mobile multimedia applications. In
Proceedings of the 7th InternationalWorkshop on Net-
work and Operating System Support for Digital Audio
and Video(St. Louis, May 1997), pp. 143–154.

[11] JAFFE, J. M. Bottleneck flow control.IEEE Transac-
tions on Communications 29, 7 (July 1981), 954–962.

[12] JAIN , R. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, Inc., 1991.

[13] JAIN , R. Congestion control and traffic manage-
ment in ATM networks: Recent advances and a sur-
vey. Computer Networks and ISDN Systems(February
1995).

[14] LITZKOW, M., LIVNY, M., AND MUTKA , M. Con-
dor — A hunter of idle workstations. InProceedings
of the Eighth Conference on Distributed Computing
Systems(San Jose, California, June 1988).

[15] OBRACZKA, K., AND GHEORGHIU, G. The perfor-
mance of a service for network-aware applications.
Tech. Rep. TR 97-660, Computer Science Depart-
ment, University of Southern California, Oct 1997.

[16] SCHOPF, J., AND BERMAN, F. Performance predic-
tion in production environments. In12th International
Parallel Processing Symposium(Orlando, FL, April
1998), pp. 647–653.

[17] STEMM, M., SESHAN, S., AND KATZ, R. Spand:
Shared passive network performance discovery. In
USENIX Symposium on Internet Technologies and
Systems(Monterey, CA, June 1997).

[18] SUBHLOK, J., STEENKISTE, P., STICHNOTH, J.,
AND LIEU, P. Airshed pollution modeling: A case
study in application development in an HPF environ-
ment. In12th International Parallel Processing Sym-
posium(Orlando, FL, April 1998), pp. 701–710.

[19] SUBHLOK, J.,AND YANG, B. A new model for inte-
grated nested task and data parallel programming. In
Proceedings of the Sixth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(June 1997), ACM.

[20] WOLSKI, R., SPRING, N., AND PETERSON, C.
Implementing a performance forecasting system for
metacomputing: The network weather service. Tech.
Rep. TR-CS97-540, University of California, San
Diego, May 1997.

8

