
Automatic Node Selection for
High Performance Applications on Networks

Jaspal Subhlok
Department of Computer Science

University of Houston
Houston, TX 77204

{jaspal }@cs.uh.edu

Peter Lieu and Bruce Lowekamp
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{lowekamp,pjl }@cs.cmu.edu

Abstract

A central problem in executing performance critical parallel
and distributed applications on shared networks is the se-
lection of computation nodes and communication paths for
execution. Automatic selection of nodes is complex as the
best choice depends on the application structure as well as
the expected availability of computation and communication
resources. This paper presents a solution to this problem
for realistic application and network scenarios. A new al-
gorithm to jointly analyze computation and communication
resources for different application demands is introduced and
a framework for automatic node selection is developed on top
of Remos, which is a query interface to network information.
The paper reports results from a set of applications, including
Airshed pollution modeling and magnetic resonance imag-
ing, executing on a high speed network testbed. The results
demonstrate that node selection is effective in enhancing ap-
plication performance in the presence of computation load as
well as network traffic. Under the network conditions used
for experiments, the increase in execution time due to com-
pute loads and network congestion was reduced by half with
node selection. The node selection algorithms developed in
this research are also applicable to dynamic migration of long
running jobs.

1 Introduction

Networked computers are the platform of choice for a wide
range of parallel and distributedapplications as they are ubiq-

Appears in the Proceedings of the Seventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPOPP ’99)

Space for ACM copyright notice.

uitous and cost-effective. Further, emerging performance
critical applications often contain components that require
execution on geographically distributed and heterogeneous
systems. Many network applications are not tied to spe-
cific hosts, but can choose execution nodes from a pool of
available nodes. Parallel scientific applications often select a
subset of nodes from one or more compute clusters. Client-
server applications may have a choice of machines on which
to run a client, or select from a set of distributed servers.
Network conditions change continuously due to sharing of
resources, and computation load, as well as congestion on
network nodes and links, can increase the application re-
sponse time dramatically. Therefore, a key challenge in ex-
ploiting such a distributed computation environment for high
performance applications is good node selection.

The goal of this research is to enable parallel and dis-
tributed applications to automatically select the best avail-
able computation nodes on the network for execution. The
major components of a framework to achieve this goal are
the following:

1. An interface for applications to specify their computa-
tion and communication structure and requirements.

2. A mechanism to query the status of the network, includ-
ing the current load on the computation nodes and traffic
on the communication links.

3. Procedures for node selection based on application re-
quirements and network status.

A uniform external interface for specification of appli-
cation behavior is an important component of the node se-
lection framework as it allows unmodified applications to
use automatic node selection. The ability to getaccurate
dynamic network information is a major challenge and an
important requirement for automatic node selection. Fortu-
nately this topic has been the focus of several recent research
efforts including the Remos system developed by our group
at Carnegie Mellon. Remos provides applications with an

interface to their execution environment and its important
features are outlined in the paper.

The central contribution of this paper is a new set of pro-
cedures for node selection on heterogeneous networks. The
algorithms use computation, communication, or a combi-
nation of the two, as the optimization criterion, and can be
tuned to a variety of application goals. We have implemented
a complete framework for node selection and performed a set
of experiments to validate the importance and accuracy of
the system. Experimental results are presented for a suite of
applications consisting of FFTs, Airshed pollutionmodeling,
and magnetic resonance imaging.

2 Framework for node selection

Our framework for node selection includes an interface for
applications to specify their execution requirements, and the
Remos interface to network information. We briefly describe
these components here, and will examine the node selection
procedures in detail in the next section.

2.1 Application specification interface

The structure and processing requirements of an application
are the driving inputs for automatic node selection. This
application level knowledge can be difficult or impossible
to discover automatically, hence it is important to allow the
application or the programmer to specify these characteris-
tics. The information that is transferred through this interface
includes the following: the number of nodes required for
execution, the nature of main computation and communica-
tion patterns (e.g. all-to-all or master-slave), relative priority
of communication and computation, different node groups
within an application (e.g. client and server groups), specific
requirements of different groups (e.g. a server may be com-
piled only for Alphaarchitecture or must run on some specific
machines). While this API is an important component of our
automatic node selection framework, it is not the main topic
of this paper and we will not discuss it further.

2.2 Remos API

Remos is an API designed to support the development of
network-aware parallel and distributed applications on di-
verse network architectures. The API is in the form of a
query interface, and is portable across network architectures
and installations. The cost that an application pays in terms
of runtime overhead is low and directly related to the depth
and frequency of its requests for network information.

Remos API exports network information at two levels of
abstraction:flow queriesandlogical network topology. Flow
queries provide specific information like available band-
width between pairs of nodes andaccount for sharing of

10Mb link

100Mb link

B

5

7

8

3

6

Compute node

Network node
A

1

2

4

Figure 1: Remos graph representing the structure of a simple
network.

network links by multiple flows. The logical network topol-
ogy presents a functional snapshot of the relevant part of the
network, including the traffic on communication links and
switches. An example topology graph is shown in Figure 1.
It is important to note that the logical topology graph con-
tains structural network information that cannot be captured
by measurements between pairs of compute nodes, and this
research exploits this extra information to develop faster and
more accuratenode selection procedures.

Remos information includes load on the compute nodes
as well as the capacity, utilization and latency of network
links. Remos can be queried for information based on a fixed
window of history, current network conditions, or an estimate
of the future availability. The local area implementation of
Remos is based onSNMPprocesses on network nodes and
entails a very low overhead. More details of Remos design
and implementation are available in [15] and a full API is
described in [4].

3 Node selection procedure

We first describe the structure of the network topology graph,
which is the basis for node selection. We present a set of
algorithms to solve the simple cases of node selection, and
then discuss the extensions and restrictions in the context of
more general network and application environments.

3.1 Network topology graph

The network topology graph is an undirected connected graph
G(n) containingn nodes. A node in this graph is acompute
nodeor anetwork node. A compute node represents a proces-
sor that is available for computation, while a network node
represents a network device used for routing communica-
tion. The edges in the graph represent communication links
between the nodes.

We should point out that the Remos API and our node
selection procedures support directed edges between nodes
that represent dedicated unidirectional communication links.
However, for simplicity of presentation, we are starting with

2

theassumption that thegraph is undirected, and will explicitly
discuss extensions for directed graphs later in this section.

A function cpu(i) is defined for each computenodeni
and it represents the fraction of the computation power of the
node that is available to an application. Thecpu function is
computed from the load average on a processor as follows:

cpu = 1/(1 + loadaverage)

The justification is that the load average represents the num-
ber of active processes, and the processor will be equally
shared by those processes and the user application process.
That is, we are implicitly assuming that all jobs have equal
execution priority.

Functionsmaxbw and bw are defined for each pair of
nodes connected by an edge.maxbw(i, j) is the peak band-
width between the nodesni andnj , while bw(i, j) is the
corresponding currently available bandwidth. We also de-
fine bwfactor, as the fraction of the peak bandwidth that is
available, i.e.:

bwfactor = bw/maxbw

3.2 Fundamental node selection algorithms

We present algorithms for node selection for maximizing
available computation capacity, for maximizing available
communication capacity, and with different weightage to
computation and communication. We make a number of
assumptions here, in part to simplify the presentation. We
assume that the network topology graph is acyclic, i.e., there
is only one path for data to travel between a pair of nodes. We
also assume that the network environment is homogeneous,
i.e., all computation nodes are identical and all communica-
tion links have the same capacity. The basis used for commu-
nication optimization is only bandwidth. We will separately
discuss these and other assumptions as well as algorithmic
changes required to relax them.

Maximize computation capacity

For a homogeneous system, node selection for maximizing
available computation capacity can be done effectively by
simply choosing the nodes with the least amount of load. In
our graph terminology, if an application requiresm nodes,
we simply select them nodes with the highest values of the
cpu function.

Maximize communication capacity

The criterion used for node selection for maximizing avail-
able communication capacity is tomaximize the minimum of
the available bandwidth between any pair of selected nodes,
i.e., to minimize the bottleneck communication path. Note

that we are assuming that all communication links have equal
capacity, but theavailable bandwidthon a link is a dynam-
ically varying quantity, and will, in general, be different for
different links. An algorithm that selects a set of nodes to op-
timize available communication capacity based on the above
criterion is outlined in Figure 2.

This algorithm is based on the following simple observa-
tion. For a set of connected nodes in an acyclic topology
graph, the least bandwidth between any pair of nodes in the
set cannot be less than the lowest edge bandwidth in the
graph. Hence, by repeatedly removing the minimum avail-
able bandwidth edge and testing if enough connected nodes
exist in the graph, the node-set that maximizes the minimum
available bandwidth between any pair of nodes is obtained.
In terms of the algorithm description in Figure 2, the sizel
of the largest connected componentL of graphG will keep
decreasing as the minimum bandwidth edges are removed
from the graph. Eventually this size will become less than
m, the number of connected nodes required for execution.
At that point, a set ofm nodes picked from the previousL
(which are in the current setM) are selected as an optimal
set of nodes for execution.

Balanced communication and computation optimization

We present an algorithm that selects a set of nodes to obtain
the maximum fraction of compute and communication ca-
pacity that can be achieved simultaneously. The fraction of
peak computation capacity available to a set of nodes is the
minimum of the fractional cpu capacities (cpu) available to
the nodes in the set. Similarly, the fraction of peak commu-
nication capacity available to a node set is the minimum of
the fractional peak bandwidth (bwfactor) available between
pairs of nodes in the set. Alternately stated, the (fractional)
computation and communication capacities for a set of nodes
are determined by the most loaded node and the path with
the maximum traffic, respectively. We have assumed that all
compute nodes and network links have the same capacity,
and we are further assuming that the application is weight-
ing communication and computation equally. Both these
assumptions are for simplicity of presentation and their re-
laxation is discussed separately. The algorithm is stated in
Figure 3.

The goal of this algorithm is to select a set of nodes
such that the minimum of the minimum fractional cpu ca-
pacity and the minimum fractional bandwidth capacity is
maximized. The algorithm at first selectsm nodes to op-
timize computation capacity without regard to communica-
tion. Subsequently, the algorithm repeatedly removes the
graph edge corresponding to the lowest fractional bandwidth
(minbw) in an attempt to improve the minimum fractional
bandwidth capacity, but this is likely to reduce the minimum
fractional cpu capacity (mincpu) in the graph. At every step,

3

Input : A connected logical topology graphG(n). Number of nodes required for executionm and
given that number of compute nodes inG is at leastm.
Output : A setM containingm nodes that maximizes the minimum bandwidth between any pair of
selected nodes.

1. M = {Any m compute nodes inG}

2. Remove the edge with the minimum available bandwidth (lowestbw) fromG.

3. Find the largest numberl of connected compute nodes inG, and let the corresponding connected
graph component beL.

4. If (l > m)
M = {Any m compute nodes inL}
Goto Step 2.

5. M contains an optimal set ofm nodes.

Figure 2: Algorithm to select a set of nodes to maximize the minimum available bandwidth between any pair of nodes

minresource, which is the minimum of the “minimum frac-
tional bandwidth” and “minimum fractional cpu capacity”, is
compared to its previous value, and the process continues un-
til this minresource keeps increasing. The algorithm stops
when removing this communication bottleneck link does not
lead to a higher low for fractional capacitiesminresource
(because of reduced minimum fractional cpu capacity) or if
a connected graph with sufficient number of compute nodes
is no longer available. This is a simple greedy algorithm that
is based on the fact that the minimum bandwidth available
on any path in a graph cannot be lower than the minimum
bandwidth edge in the graph.

Computation complexity

For an acyclic connected topology graphG with n nodes, it
is easy to see that selection of the set of nodes with maxi-
mum computational capacity simply takesO(n) time. We
now consider the algorithms for maximizing computation
capacity and balanced computation and communication op-
timization. For both these algorithms, we observe that the
number of iterations is bounded byn and the work in each
iteration consists of linear graph procedures that is bounded
byO(n). Hence the total complexity of finding the optimal
set of nodes isO(n2). Note that the number of nodesn in-
cludes the computation nodes in the network as well as the
communication nodes like switch nodes.

In our experiments, the computation time of these algo-
rithms has been insignificant in comparison with the execu-
tion times of the applications that they were applied to, but
our experience is limited to small to moderate size testbeds.
The computation time of the algorithms is a potential bot-
tleneck for very large testbeds and it may be necessary to
use heuristics and knowledge of the network configuration to
speed up the node selection process. We have not encoun-

tered or addressed this problem in our research and we shall
not discuss it further.

3.3 Generalized node selection

We discuss some important extensions to the node selection
algorithms. The presentation is centered around the balanced
communication and computation optimization algorithm as
the others are a special case of this algorithm.

Heterogeneous links and nodes:The assumption that all
links have the same bandwidth capacity is not neces-
sary and was made for simplicity of presentation. If
multiple capacity links exist, a reference link has to be
specified for balancing against computation. e.g., if the
network contains 100Mbps and 155Mbps links, the ref-
erence link will determine if 50% available bandwidth
is 50Mbps or 77.5 Mbps for the purpose of balancing
computation and communication. Similarly, the solu-
tion procedures can be modified relatively easily to han-
dle nodes with different computation capacities. The
requirements are that the relative computation capaci-
ties of the nodes must be known and a reference node
type must be specified.

Prioritization of computation and communication: The
balanced computation and communication algorithmat-
tempts to simultaneously deliver the highest fraction of
peak communication and computation capacity. The
procedure is easily modified to prioritize the optimiza-
tion of one by a given factor. For example, if computa-
tion was prioritized by a factor of 2, 50% CPU availabil-
ity would be considered equivalent to 25% availability
of communication paths.

4

Input : A connected logical topology graphG(n). Number of nodes required for executionm and
given that the number of compute nodes inG is at leastm.
Output : Optimal node setM containingm nodes based on maximizing the minimum of available
fractional compute and communication capacities.

1. M = {m nodes with maximum available cpu capacity inG}
mincpu = minimum available cpu capacity (cpu) among the nodes inM
minbw = minimum available fractional bandwidth (bwfraction) among the edges inG
minresource =min(mincpu,minbw)

2. Remove an edge corresponding to minimum bandwidthminbw inG
newsetflag = FALSE

3. Find all connected components of the current graph. Foreach connected componentL with at
leastm nodes:

newM = {m nodes with maximum available cpu capacity (cpu) in L}
mincpu = minimum available cpu capacity among the nodes innewM
minbw = minimum available fractional bandwidth (bwfraction) among the edges inL
newminresource =min(minbw,mincpu)
if (newminresource > minresource)

minresource = newminresource
M = newM
newsetflag = TRUE

4. If (newsetflag == TRUE) Goto Step 2.

5. M contains an optimal set ofm nodes.

Figure 3: Algorithm to select a set of nodes to maximize the minimum available fractional compute and communication
capacities

Fixed computation and communication requirements:
The procedures can be adapted to satisfy a fixed band-
width requirement (e.g. a minimum of 50Mbps between
any selected nodes) and maximize processor availabil-
ity under that constraint, and vice versa. The algorithm
structure is not modified and new constraints are added
that define eligible node sets.

Cycles in network topology: The algorithms assume that
the network graph is acyclic, but network topologies
often contain cycles, implying multiple paths between
nodes. However, networks typically use static routing
implying that a fixed path is actually taken for all com-
munication between a pair of nodes. Our algorithms are
directly applicable in this case, but are not suitable for
dynamic routing networks.

Independent and shared network links:
We have assumed that the same shared communication
fabric is used for carrying data in either direction on
a link between a pair of nodes in the network, which
allows us to represent the network with an undirected
graph. However, this is often not true, i.e., often a pair
of nodes is connected by two distinct links to carry data

in each direction. Such bidirectional links are handled
by Remos that provides the topology graphs, and by our
node selection procedures. The available capacity of
the a bidirectional link is taken to be the minimum of
the available capacities ineach direction. The analysis
details are modified to take this into account, but the
basic algorithm is not changed.

Dynamic migration: The solutionprocedure can be applied
directly to the problem of dynamic migration to avoid
network congestion and busy nodes, and some prelim-
inary experience is discussed in [11]. One important
consideration is that the load and traffic caused by the
application itself must be captured separately as it is not
due to a competing process.

3.4 Limitations

We discuss some important limitations of our node selection
procedures.

Simultaneous traffic streams: We have computed avail-
ability of bandwidth between any pair of nodes inde-
pendently. However, if multiple communication op-
erations in an application happen at exactly the same

5

time and share a network link, then one or both may
achieve a lower effective bandwidth. Remos is capable
of handling the sharing of network links, but it is often
impossible to predict the relative timing of communi-
cation operations in an application. Hence, this is a
difficult problem that is not addressed by this research.

Latency and other considerations:Our node selection
procedures are based on the load on compute nodes
and available bandwidth between them. A number of
other factors can affect application performance, some
examples being latency on the links, and memory and
disk availability on the compute nodes. Remos API in-
cludes this information and we plan to take these factors
into consideration in future work.

Networks with reservations: We have implicitly assumed
that the network environment assigns resources onbest-
effort basis to applications, but in practice many net-
works support explicit reservation of resources. Of
course, if an application is executing with reserved re-
sources, then theproblemaddressed in this research does
not occur. However, if an application is executing on
best-effort basis, while there may be other applications
that use reservations, our methods are still applicable
so long as the available resources can be computed and
made known to the processor selection algorithms. In
general, the concept of availability and sharing policy
for resources is fundamentally changed with reserva-
tions, and hence this a complex topic that is beyond the
scope of this paper.

Custom execution patterns: Our node selection proce-
dures attach equal importance to all nodes and com-
munication paths. However, this is not accurate for all
applications. For instance, a client-server application
may require that the node with the maximum available
computation capacity be assigned to the server, and that
only communication from the servers to the clients is
significant. Our application interface allows description
of such scenarios (and Remos has the relevant informa-
tion), and we are currently investigating the algorithm
extensions necessary to accurately handle a richer set of
application patterns.

Variable number of execution nodes:We have assumed
that an application executes on a fixed number of nodes.
However, for many parallel applications, the exact num-
ber of nodes for execution can be decided at the time
of invocation. The decision procedures developed in
this research can be applied to the problem of finding
the numberand the set of nodes for execution, but do
not solve the entire problem. These techniques have to
be coupled with methods for performance estimation,

for example [7, 19], to address this broader problem for
networked systems.

4 Experiments and results

The node selection procedures presented in this paper have
been implemented and in use on a networking testbed at
Carnegie Mellon. To validate the algorithms, node selection
was performed in the presence of realistic computation and
communication loads. We describe the setup for experiments
and then present results.

4.1 Network testbed

All experiments were performed on a part of a networking
testbed at Carnegie Mellon, that is illustrated in Figure4. The
part of the testbed used for these experiments employs DEC
Alpha compute nodes, Cisco routers, and 100 Mbps ethernet
links with one 155Mbps ATM link (connecting thegibraltar
andsuezrouters).

panama

 gibraltar

m-4

m-5

m-6

m-1

m-2

m-3

m-7 m-8

 suez

Figure 4: IP-based testbed for implementation and experi-
ments. The compute nodes are DEC Alphas labeledm-1 to
m-8. Routers, labeledpanama, suezandgibraltar are Cisco
routers. All links are 100Mbps Ethernet links, except that
the link betweengibraltar to suezis a 155 Mbps ATM link.
The figure also shows 4 nodes (with bold borders) that were
automatically selected to avoid a traffic stream fromm-6 to
m-8
.

4.2 Load and traffic generators

Procedures for automatic node selection should do a good
job with realistic loads and traffic on the network. But it is
virtually impossible to define what isrealistic, as the load

6

and traffic conditions vary dramatically in network environ-
ments. For the purpose of obtaining credible results, we used
the results of recent research in characterizing resource us-
age patterns, and set parameters intuitively to reflect a testbed
that is used primarily for data and compute intensive compu-
tations.

A synthetic compute intensive job was periodically in-
voked on every node. Processor load was generated using
models developed by Harchol-Balter and Downey, whose
measurements indicate Poisson interarrival times, with job
duration determined by a combination of exponential and
Pareto distributions [12]. Because we are interested in envi-
ronments which support compute and data intensive compu-
tations, higher parameters were used for the load generators
than would be used to represent typical interactive systems.
Assuming that our target environment is a cluster or group
of workstations in a single department, the workload distri-
bution study by Harchol-Balter should beaccurate, because
their model was derived from observations in such an envi-
ronment.

For generating network traffic, messages were periodi-
cally sent between random nodes. Message interarrival times
were Poisson, with message length having a LogNormal dis-
tribution. The bulk of the research in network modeling has
focused on internet-level traffic representation, rather than
for local area networks. Although there are problems with
using Poisson interarrival times for representing bulk traffic
and some characteristic of aggregated traffic, it represents
the interarrival times of the large high-speed data transfers
we would be most concerned about in our target environment
rather well [16, 17].

A full validation of the strengths and weaknesses of our
techniques would require a large number of experiments with
different network usage models and different parameters.
While we are not at this stage in our experiments, we believe
that a study with load and traffic generators that are realistic
in some environments does establish the fundamental value
of our node selection procedures.

4.3 Results

We employed the following 3 applications: 2D fast Fourier
transform (32 iterations), Airshed pollution modeling (6
hour simulation) [22], and magnetic resonance imaging(epi
dataset) [6, 9] to validate our decision procedures. Each ap-
plication was executed several times with the computation
load generator on, network traffic generator on, and with
both generators on. Node selection was alternately made
randomly and with our automatic node selection procedure.
Our experience and previous results indicate that random
node selection and node selection based on static network
properties give virtually identical performance on a small
testbed with all high speed links like ours [15], and hence the

random selection results also apply to static node selection
procedures. The results are presented in Table 1. Each mea-
surement is the average of a number of executions spanning
several hours. Since the activity on the network is changing
continuously, a large number of measurements is necessary
to have statistically relevant results.

We observe that for all three applications, the load and
traffic generators significantly increase the execution time, as
compared to the the time with no load (last column of the
graph), and their combined effect is cumulative. The im-
pact is fairly high for the FFT and Airshed programs (range
of 300% with both generators on and execution on random
nodes) but relatively modest for MRI(maximum of around
25%). The reason is that the FFT and Airshed programs
are loosely synchronous parallel computations where any
computation or communication step can become a bottle-
neck, while MRI uses a master-slave protocol for compute
intensive regions that automatically adapts if a compute or
communication step slows down.

In each of these cases, automaticnode selection reduces
the execution time significantly as compared to random node
selection, specifically 8-14% for MRI, 16-23% for FFT and
32-35% for Airshed. We now focus on the increase in execu-
tion time due to traffic and load. When using random nodes
and with both traffic and load generators on, the FFT time
went up from 48 to 142.6 seconds (201%), Airshed from 150
to 530.2 seconds (253%) and MRI from 540 to 776 seconds
(43.7%). Correspondingly, with automatic node selection,
the increase in execution time was 145% for FFT, 103% for
Airshed, and 23% for MRI. Making similar comparisons for
other cases, we come to the result thatthe increase in execu-
tion time due to traffic and/or load is approximately cut
in half with automatic node selection. While we should
caution that this result is certainly not applicable to all ap-
plications or network conditions, it clearly demonstrates that
our node selection procedures are effective in reducing the
impact of link and processor sharing on applications.

4.4 Discussion

We have presented a set of results under just one model of
computation load and communication traffic and with fixed
parameters. However, since the models are probabilistic,
a large number of measurements were necessary to obtain
statistically relevant results. The results presented in this
paper represent several days of execution on the testbed.

More experimentation is needed to address a number of
questions, including the generality of our procedures as well
as sensitivity of automatic node selection to load and traffic
on one hand, and application length and characteristics on
the other. Addressing these issues satisfactorily requires an
amount of experimentation that we could not attain because
of limited resources. More importantly, this points to the

7

Application Execution Time with External Load and Traffic (seconds) Reference
Randomly selected Nodes Automatically selected Nodes Execution

Name No Processor Network Load+ Processor Network Load+ time on
of of Load Traffic Traffic Load Traffic Traffic Unloaded

Program Nodes seconds seconds seconds secs(% change) secs(% change) secs(% change) Testbed

FFT (1K) 4 112.6 80.3 142.6 82.6 (-23.8%) 64.6 (-19.5%) 118.5 (-16.7 %) 48
Airshed 5 393.8 281.3 530.2 254.0 (-35.2%) 188.5 (-32.9%) 355.1 (-33.0%) 150

MRI 4 683 591 776 594 (-12.7%) 571 (-8.4%) 667 (-14%) 540

Table 1: Performance in the presence of computation load and network traffic with automatically selected nodes and random
nodes

importance of combining analytical and practical methods
to achieve a degree of confidence in resource management
methods that cannot be achieved by analysis or experimenta-
tion alone as both have their limitations.

5 Related Work

A number of systems for management of shared computa-
tion resources exist, some examples being Condor [14] and
LSF(Load Sharing Facility). However, they primarily fo-
cus on the availability of computation nodes and do not take
the communication constraints into account. Furthermore,
our work targets node assignments to maximize application
performance rather than system throughput.

More recently, resource management systems have been
designed for large scale internet-wide computing, e.g.,
Globus [8] and Legion [10]. These systems provide sup-
port for a wide range of functions such as resource location
and reservation, authentication, and remote process creation
mechanisms. The focus of this work is node selection which
is complementary to the contributions of these frameworks.

This research uses Remos [15] to measure the availabil-
ity of network resources, and simply uses the most recent
measurements as a forecast for the future. Research into
forecasting of network performance [26] and availability of
computation capacity [5] is orthogonal but relevant to this
research.

Scheduling applications over wide-area distributed sys-
tems has attracted considerable attention. AppleS [1] is de-
signed for application-centric scheduling of tasks over het-
erogeneous wide-area networks, and it relies on Network
Weather Service [26] for resource information. Research
with similar goals in the Legion framework is described
in [25]. In the process of application scheduling, these sys-
tems also address the problem of selecting nodes for execu-
tion. However, the specific resource selection problem that
we address is qualitatively different because we operate on
the logical network topology provided by Remos, rather than
the information on availability of communication resources
between pairs of nodes. This is an important advantage as

our algorithmcan directly eliminate busy links in the network
when selecting execution nodes. While the same result can be
obtained by examining communication bandwidth between
pairs of nodes, the availability of a logical network topology
offers a more efficient and scalable solution.

Many application specific network measurement and
adaptation systems have been developed, some examples be-
ing [13, 3, 21, 24]. An important goal of this research is
to develop a framework that can be used by a large class
of applications. A shared memory based approach to adap-
tive parallelism is explored in [18]. Node assignment and
scheduling algorithms in the literature typically do not treat
communication in realistic detail, but some recent exceptions
are [23, 2]. Several runtime support systems have been devel-
oped for partitioning and scheduling computation and com-
munication, an example being [20]. However, the primary
job of theses systems is not node selection but application
scheduling.

6 Concluding remarks

Automatic selection of network nodes for parallel and dis-
tributed programs is a hard problem and this paper introduces
a solution framework with a new node selection algorithm.
We have made a number of assumptions in order to develop
a manageable solution, and certainly more research and ex-
perimentation is needed for a more general solution to this
problem. However, we have obtained good results on real ap-
plications under a realistic load and traffic scenario. This is a
tough and realistic way to validate this research, even though
it does not establish the generality of the techniques. We
specifically demonstrate that our load selection framework
was effective in halving the effect of network congestion and
machine sharing on application turnaround time. Hence, we
believe that we have a good solution and this paper repre-
sents an important step towards making networked systems
like workstation clusters and metacomputers a practical and
attractive platform for performance sensitive applications.

This framework uses Remos for network status informa-
tion, and further development of tools like Remos and Globus

8

to manage and blend diverse information from wide-area and
local-area networks is crucial for further progress. Continued
research into forecasting future availability of network and
computation resources is also important. Our framework has
successfully used the state of the art in gaining information
about networks and helps understand how better information
will lead to better execution environments.

7 Acknowledgments

The Remulac and Darwin groups at Carnegie Mellon have
built the infrastructure used in this research. Special thanks
go to Peter Dinda, Thomas Gross, Nancy Miller, David
O’Hallaron, Tim Newsome, Peter Steenkiste, and Dean
Sutherland. We thank Bill Eddy, Kate Fissell, Greg Hood
and Joel Wellingof theFiascogroup for making the magnetic
resonance imaging application available to us and providing
excellent support for installation and experiments. We would
also like to thank the reviewers for insightful comments that
led to significant improvements in the paper.

This research is sponsored by the Advanced Research
Projects Agency and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-96-1-
0287. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Ad-
vanced Research Projects Agency, Rome Laboratory, or the
U.S. Government.

References

[1] BERMAN, F., WOLSKI, R., FIGUEIRA, S., SCHOPF, J.,
AND SHAO, G. Application-level scheduling on dis-
tributed heterogeneous networks. InProceedings of
Supercomputing ’96(Pittsburgh, PA, November 1996).

[2] BHATT, P., PRASANNA, V., AND RAGHAVENDRA, C.
Adaptive communication algorithms for distributed het-
erogrneous systems. InSeventh IEEE Symposium on
High-Performance Distributed Computing(Chicago,
IL, July 1998).

[3] BOLLIGER, J.,AND GROSS, T. A framework-based ap-
proach to the development of network-aware applica-
tions. IEEE Trans. Softw. Eng. 24, 5 (May 1998), 376
– 390.

[4] DEWITT, T., GROSS, T., LOWEKAMP, B., MILLER, N.,
STEENKISTE, P., SUBHLOK, J., AND SUTHERLAND, D.

Remos: A resource monitoring system for network-
aware applications. Tech. Rep. CMU-CS-97-194,
Carnegie Mellon University, Dec 1997.

[5] DINDA, P. Statistical properties of host load in a dis-
tributed environment. InFourth Workshop on Lan-
guages, Compilers, and Run-time Systems for Scalable
Computers(Pittsburgh, PA, May 1998).

[6] EDDY, W., FITZGERALD, M., GENOVESE, C., MOCKUS,
A., AND NOLL, D. Functional image analysis software
- computational olio. InProceedings in Computational
Statistics(Heidelberg, 1996), A. Prat, Ed., pp. 39–49.

[7] FAHRINGER, T., BASKO, R., AND ZIMA , H. Automatic
performance prediction to support parallelization of
Fortran programs for massively parallel systems. In
Proceedings of the1992 International Conference on
Supercomputing(Washington,DC,July 1992),pp.347–
56.

[8] FOSTER, I., AND KESSELMAN, K. Globus: A metacom-
puting infrastructure toolkit.Journal of Supercomputer
Applications 11, 2 (1997), 115–128.

[9] GODDARD, N., HOOD, G., COHEN, J., EDDY, W., GEN-
OVESE, C., NOLL, D.,AND NYSTROM, L. Online analysis
of functional MRI datasets on parallel platforms.The
Journal of Supercomputing 11(1997), 295–318.

[10] GRIMSHAW, A., WULF, W., AND LEGION TEAM. The
Legion vision of a worldwide virtual computer.Com-
munications of the ACM 40, 1 (January 1997).

[11] GROSS, T., P.STEENKISTE, AND SUBHLOK, J. Adaptive
distributed applications on heterogeneous networks. In
8th Heterogeneous Computing Workshop(Puerto Rico,
April 1999). Invited paper.

[12] HARCHOL-BALTER, M., AND DOWNEY, A. B. Exploiting
process lifetime distributions for dynamic load balanc-
ing. In 1996 ACM SIGMETRICS(May 1996), pp. 13–
24.

[13] INOUYE, J., CEN, S., PU, C., AND WALPOLE, J. System
support for mobile multimedia applications. InPro-
ceedings of the 7th International Workshop on Network
and Operating System Support for Digital Audio and
Video(St. Louis, May 1997), pp. 143–154.

[14] LITZKOW, M., LIVNY, M., AND MUTKA, M. Condor —
A hunter of idle workstations. InProceedings of the
Eighth Conference on Distributed Computing Systems
(San Jose, California, June 1988).

[15] LOWEKAMP, B., MILLER, N., SUTHERLAND, D., GROSS,
T., STEENKISTE, P., AND SUBHLOK, J. A resource

9

query interface for network-aware applications. In
Seventh IEEE Symposium on High-Performance Dis-
tributed Computing(Chicago, IL, July 1998).

[16] PAXSON, V., AND FLOYD, S. Wide-area traffic: The
failure of poisson modeling.IEEE/ACM Transactions
on Networking 3, 3 (June 1995), 226–244.

[17] PAXSON, V., AND FLOYD, S. Why we don’t know how
to simulate the internet. InProceedings of the1997
Winter Simulation Conference(1997).

[18] SCHERER, A., LU, H., GROSS, T., AND ZWAENEPOEL,
W. Transparent adaptive parallelism on NOWs using
OpenMP. InProceedings of the Seventh ACM Sympo-
sium on Principles and Practice of Parallel Program-
ming(Atlanta, GA, May 1999).

[19] SCHOPF, J., AND BERMAN, F. Performance prediction
in production environments. In12th International Par-
allel Processing Symposium(Orlando, FL, April 1998),
pp. 647–653.

[20] SHARMA, S., PONNUSAMY, R., MOON, B., HWANG, Y.,
DAS, R., AND SALTZ, J. Run-time and compile-time
support for adaptive irregular problems. InProceedings
of Supercomputing ’94(Washington, DC, Nov 1994),
pp. 97–106.

[21] STEMM, M., SESHAN, S., AND KATZ, R. Spand:
Shared passive network performance discovery. In
USENIX Symposium on Internet Technologies and Sys-
tems(Monterey, CA, June 1997).

[22] SUBHLOK, J., STEENKISTE, P., STICHNOTH, J., AND

LIEU, P. Airshed pollution modeling: A case study
in application development in an HPF environment. In
12th International Parallel Processing Symposium(Or-
lando, FL, April 1998).

[23] SUBHLOK, J., AND VONDRAN, G. Optimal latency–
throughput tradeoffs for data parallel pipelines. In
Eighth Annual ACM Symposium on Parallel Algorithms
and Architectures(Padua, Italy, June 1996), pp. 62–71.

[24] TANGMUNARUNKIT, H., AND STEENKISTE, P. Network-
aware distributed computing: A case study. InSecond
Workshop on Runtime Systems for Parallel Program-
ming (RTSPP)(Orlando, March 1998).

[25] WEISMANN, J. Metascheduling: A scheduling model
for metacomputing systems. InSeventh IEEE Sym-
posium on High-Performance Distributed Computing
(Chicago, IL, July 1998).

[26] WOLSKI, R., SPRING, N., AND PETERSON, C. Imple-
menting a performance forecasting system for meta-
computing: The Network Weather Service. InPro-
ceedings ofSupercomputing ’97(San Jose, CA, Nov
1997).

10

