
Principles of Robot Motion:

Theory, Algorithms, and Implementation

ERRATA!!!! 1

Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor,

Wolfram Burgard, Lydia Kavraki, and Sebastian Thrun

August 23, 2010

1(C) 2007, Choset, Lynch, Hutchinson, Kantor, Burgard, Kavraki, Thrun . Do
not copy or distribute without expressed permission from the authors. This is a
preliminary draft meant for review.

Chapter 1

Introduction

No bugs to report, yet!

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Bug Algorithms

Even a simple planner can present interesting and difficult issues. The Bug1
and Bug2 algorithms [289] are among the earliest and simplest sensor-based
planners with provable guarantees. These algorithms assume the robot is a
point operating in the plane with a contact sensor or a zero range sensor to
detect obstacles. When the robot has a finite range (non-zero range) sensor,
then the Tangent Bug algorithm [208] is a Bug derivative that can use that
sensor information to find shorter paths to the goal. The Bug and Bug-like
algorithms are straightforward to implement; moreover, a simple analysis
shows that their success is guaranteed, when possible. These algorithms
require two behaviors: move on a straight line and follow a boundary. To
handle boundary-following, we introduce a curve-tracing technique based on
the implicit function theorem at the end of this chapter. This technique is
general to following any path, but we focus on following a boundary at a
fixed distance.

2.1 Bug1 and Bug2

Perhaps the most straight forward path planning approach is to move toward
the goal, unless an obstacle is encountered, in which case, circumnavigate the
obstacle until motion toward the goal is once again allowable. Essentially,
the Bug1 algorithm formalizes the “common sense” idea of moving toward
the goal and going around obstacles. The robot is assumed to be a point
with perfect positioning (no positioning error) with a contact sensor that can
detect an obstacle boundary if the point robot “touches” it. The robot can
also measure the distance d(x, y) between any two points x and y. Finally,
assume that the workspace is bounded . Let Br(x) denote a ball of radius

3

4 CHAPTER 2. BUG ALGORITHMS

r centered on x, i.e., Br(x) = {y ∈ R
2 | d(x, y) < r}. The fact that the

workspace is bounded implies that for all x ∈ W, there exists an r such that
W ⊂ Br(x).

The start and goal are labeled qstart and qgoal, respectively. Let qL0 =
qstart and the m-line be the line segment that connects qLi to qgoal. Ini-
tially, i = 0. The Bug1 algorithm exhibits two behaviors: motion-to-goal
and boundary-following. During motion-to-goal, the robot moves along the
m-line toward qgoal until it either encounters the goal or an obstacle. If
the robot encounters an obstacle, let qH1 be the point where the robot first
encounters an obstacle and call this point a hit point . The robot then cir-
cumnavigates the obstacle until it returns to qH1 . Then, the robot determines
the closest point to the goal on the perimeter of the obstacle and traverses to
this point. This point is called a leave point and is labeled qL1 . From qL1 , the
robot heads straight toward the goal again, i.e., it reinvokes the motion-to-
goal behavior. If the line that connects qL1 and the goal intersects the current
obstacle, then there is no path to the goal; note that this intersection would
occur immediately “after” leaving qL1 . Otherwise, the index i is incremented
and this procedure is then repeated for qLi and qHi until the goal is reached
or the planner determines that the robot cannot reach the goal (figures 2.1,
2.2). Finally, if the line to the goal “grazes” an obstacle, the robot need not
invoke a boundary following behavior, but rather continues onward toward
the goal. See algorithm 1 for a description of the Bug1 approach.

Like its Bug1 sibling, the Bug2 algorithm exhibits two behaviors:
motion-to-goal and boundary-following. During motion-to-goal, the robot
moves toward the goal on the m-line; however, in Bug2 the m-line connects
qstart and qgoal, and thus remains fixed. The boundary-following behavior
is invoked if the robot encounters an obstacle, but this behavior is different
from that of Bug1. For Bug2, the robot circumnavigates the obstacle until it
reaches a new point on the m-line closer to the goal than the initial point of
contact with the obstacle. At this time, the robot proceeds toward the goal,
repeating this process if it encounters an object. If the robot re-encounters
the original departure point from the m-line, then the robot concludes there
is no path to the goal (figures 2.3, 2.4).

Let x ∈ Wfree ⊂ R
2 be the current position of the robot, i = 1, and qL0 be

the start location. See algorithm 2 for a description of the Bug2 approach.

At first glance, it seems that Bug2 is a more effective algorithm than
Bug1 because the robot does not have to entirely circumnavigate the obsta-
cles; however, this is not always the case. This can be seen by comparing
the lengths of the paths found by the two algorithms. For Bug1, when

2.1. BUG1 AND BUG2 5

qstart

qgoal

WO1

WO2

qH1

qL1
qH2

qL2

Figure 2.1. The Bug1 algorithm successfully finds the goal.

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

qstart

qgoal

qH1

qL1

Figure 2.2. The Bug1 algorithm reports the goal is un-
reachable.

the ith obstacle is encountered, the robot completely circumnavigates the
boundary, and then returns to the leave point. In the worst case, the robot
must traverse half the perimeter, pi, of the obstacle to reach this leave point.
Moreover, in the worst case, the robot encounters all n obstacles. If there

6 CHAPTER 2. BUG ALGORITHMS

Algorithm 1 Bug1 Algorithm

Input: A point robot with a tactile sensor
Output: A path to the qgoal or a conclusion no such path exists

1: while Forever do
2: repeat

3: From qLi−1, move toward qgoal.
4: until qgoal is reached or an obstacle is encountered at qHi .
5: if Goal is reached then

6: Exit.
7: end if

8: repeat

9: Follow the obstacle boundary.
10: until qgoal is reached or qHi is re-encountered.
11: Determine the point qLi on the perimeter that has the shortest distance

to the goal.
12: Go to qLi .
13: if the robot were to move toward the goal then
14: Conclude qgoal is not reachable and exit.
15: end if

16: end while

are no obstacles, the robot must traverse a distance of length d(qstart, qgoal).
Thus, we obtain

LBug1 ≤ d(qstart, qgoal) + 1.5

n
∑

i=1

pi. (2.1)

For Bug2, the path length is a bit more complicated. Suppose that the
line through qstart and qgoal intersects the ith obstacle ni times. Then, there
are at most ni leave points for this obstacle, since the robot may only leave
the obstacle when it returns to a point on this line. It is easy to see that
half of these intersection points are not valid leave points because they lie
on the “wrong side” of the obstacle, i.e., moving toward the goal would
cause a collision. In the worst case, the robot will traverse nearly the entire
perimeter of the obstacle for each leave point. Thus, we obtain

LBug2 ≤ d(qstart, qgoal) +
1

2

n
∑

i=1

nipi. (2.2)

Naturally, (2.2) is an upper-bound because the summation is over all of the

2.1. BUG1 AND BUG2 7

Algorithm 2 Bug2 Algorithm

Input: A point robot with a tactile sensor
Output: A path to qgoal or a conclusion no such path exists

1: while True do

2: repeat

3: From qLi−1, move toward qgoal along m-line.
4: until

qgoal is reached or

an obstacle is encountered at hit point qHi .
5: Turn left (or right).
6: repeat

7: Follow boundary
8: until

9: qgoal is reached or

10: qHi is re-encountered or

11: m-line is re-encountered at a point m such that
12: m 6= qHi (robot did not reach the hit point),
13: d(m, qgoal) < d(m, qHi) (robot is closer), and
14: if robot moves toward goal, it would not hit the obstacle
15: if Goal is reached then

16: Exit.
17: end if

18: if qHi is re-encountered then

19: Conclude goal is unreachable
20: end if

21: Let qLi+1 = m
22: Increment i
23: end while

obstacles as opposed to over the set of obstacles that are encountered by the
robot.

A casual examination of (2.1) and (2.2) shows that LBug2 can be arbi-
trarily longer than LBug1. This can be achieved by constructing an obstacle
whose boundary has many intersections with the m-line. Thus, as the “com-
plexity” of the obstacle increases, it becomes increasingly likely that Bug1
could outperform Bug2 (figure 2.4).

In fact, Bug1 and Bug2 illustrate two basic approaches to search prob-
lems. For each obstacle that it encounters, Bug1 performs an exhaustive
search to find the optimal leave point. This requires that Bug1 traverse

8 CHAPTER 2. BUG ALGORITHMS

qstart

qgoal

qH1

qL1

qH2

qL2

WO1

WO2

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

qstart

qgoal

qH1

Figure 2.3. (Top) The Bug2 algorithm finds a path to the
goal. (Bottom) The Bug2 algorithm reports failure.

the entire perimeter of the obstacle, but having done so, it is certain to
have found the optimal leave point. In contrast, Bug2 uses an opportunistic
approach. When Bug2 finds a leave point that is better than any it has
seen before, it commits to that leave point. Such an algorithm is also called
greedy , since it opts for the first promising option that is found. When the
obstacles are simple, the greedy approach of Bug2 gives a quick payoff, but
when the obstacles are complex, the more conservative approach of Bug1
often yields better performance.

2.2 Tangent Bug

Tangent Bug [207] serves as an improvement to the Bug2 algorithm in that it

2.2. TANGENT BUG 9

qstart qgoalqH1

qL1

qH2

qL2

Figure 2.4. Bug2 Algorithm.

determines a shorter path to the goal using a range sensor with a 360 degree
infinite orientation resolution. Sometimes orientation is called azimuth. We
model this range sensor with the raw distance function ρ : R2 × S1 → R.
Consider a point robot situated at x ∈ R

2 with rays radially emanating
from it. For each θ ∈ S1, the value ρ(x, θ) is the distance to the closest
obstacle along the ray from x at an angle θ. More formally,

ρ(x, θ) = min
λ∈[0,∞]

d(x, x+ λ[cos θ, sin θ]T),

such that x+ λ[cos θ, sin θ]T ∈
⋃

i

WOi. (2.3)

Note that there are infinitely many θ ∈ S1 and hence the infinite resolu-
tion. This assumption is approximated with a finite number of range sensors
situated along the circumference of a circular mobile robot which we have
modeled as a point.

Since real sensors have limited range, we define the saturated raw distance
function , denoted ρR : R2 × S1 → R, which takes on the same values as ρ
when the obstacle is within sensing range, and has a value of infinity when

10 CHAPTER 2. BUG ALGORITHMS

the ray lengths are greater than the sensing range, R, meaning that the
obstacles are outside the sensing range. More formally,

ρR(x, θ) =

{

ρ(x, θ), if ρ(x, θ) < R
∞, otherwise.

The set of points within sensing range of the robot can be denoted by

VR(x) = {y ∈ Qfree|d(x, y) < Randλx+ (1− λ)y ∈ Wfreefor allλ ∈ [0, 1]}

The Tangent Bug planner assumes that the robot can detect discon-
tinuities in ρR as depicted in figure ??. For a fixed x ∈ R

2, an interval
of continuity is defined to be a connected set of points on ∂V (x) where ρR
varies continuously and is finite. These are the points x+ρ(x, θ)[cos θ, sin θ]T

on the boundary of the free space where ρR(x, θ) is finite and continuous
with respect to θ.

The endpoints of these intervals occur where ρR(x, θ) loses continuity,
either as a result of one obstacle blocking another or the sensor reaching
its range limit. The endpoints are denoted Oi. Figure 2.5 contains an
example where ρR loses continuity. The points O1, O2, O3, O5, O6, O7, and
O8 correspond to losses of continuity associated with obstacles blocking other
portions of Wfree; note the rays are tangent to the obstacles here. The point
O4 is a discontinuity because the obstacle boundary falls out of range of the
sensor. The sets of points on the boundary of the free space between O1

and O2, O3 and O4, O5 and O6, O7 and O8 are the intervals of continuity.
Just like the other Bugs, Tangent Bug (algorithm 3) iterates between

two behaviors: motion-to-goal and boundary-following. However, these be-
haviors are different than in the Bug1 and Bug2 approaches. Although
motion-to-goal directs the robot to the goal, this behavior may have a phase
where the robot follows the boundary. Likewise, the boundary-following
behavior may have a phase where the robot does not follow the boundary.

The robot initially invokes the motion-to-goal behavior, which itself has
two parts. First, the robot attempts to move in a straight line toward the
goal until it senses an obstacle R units away and directly between it and the
goal. This means that a line segment connecting the robot and goal must
intersect an interval of continuity. For example, in figure 2.6, WO2 is within
sensing range, but does not block the goal, but WO1 does. When the robot
initially senses an obstacle, the circle of radius R becomes tangent to the
obstacle. Immediately after, this tangent point splits into two Oi’s, which
are the endpoints of the interval. If the obstacle is in front of the robot,
then this interval intersects the segment connecting the robot and the goal.

2.2. TANGENT BUG 11

x

O1

O2

O3

O4

O5

O6

O7

O8

qgoal

Figure 2.5. The points of discontinuity of ρR(x, θ) corre-
spond to points Oi on the obstacles. The thick solid curves
represent connected components of the range of ρR(x, θ),
i.e., the intervals of continuity. In this example, the robot,
to the best of its sensing range, believes there is a straight-
line path to the goal.

Consider the Oi where d(Oi, qgoal) < d(x, qgoal). The robot then moves
toward one of these Oi that maximally decreases a heuristic distance to the
goal. An example of a heuristic distance is the sum d(x,Oi) + d(Oi, qgoal).
(The heuristic distance can be more complicated when factoring in available
information with regard to the obstacles.) In figure 2.7 (left), the robot sees
WO1 and drives to O2 because i = 2 minimizes d(x,Oi)+d(Oi, qgoal). When
the robot is located at x, it cannot know that WO2 blocks the path from O2

to the goal. In figure 2.7(right), when the robot is located at x but the goal
is different, it has enough sensor information to conclude that WO2 indeed
blocks a path from O2 to the goal, and therefore drives toward O4. So, even
though driving toward O2 may initially minimize d(x,Oi)+d(Oi, qgoal) more
than driving toward O4, the planner effectively assigns an infinite cost to
d(O2, qgoal) because it has enough information to conclude that any path
through O2 will be suboptimal.

12 CHAPTER 2. BUG ALGORITHMS

O1

O2

O3

O4

WO1

WO2

qgoal

Figure 2.6. The vertical represents the path of the robot
and the dotted circle its sensing range. Currently, the
robot is located at the “top” of the line segment. The
points Oi represent the points of discontinuity of the sat-
urated raw distance function. Note that the robot passes
by WO2.

O1

O2
O3

O4

WO1

WO2

x qgoal

O1

O2
O3

O4

WO1

WO2

x

qgoal

Figure 2.7. (Left) The planner selects O2 as a subgoal for
the robot. (Right) The planner selects O4 as a subgoal
for the robot. Note the line segment between O4 and qgoal
cuts through the obstacle.

The set {Oi} is continuously updated as the robot moves toward a par-
ticular Oi, which can be seen in figure 2.8. At t = 1, the robot has not

2.2. TANGENT BUG 13

t = 1 t = 2 t = 3 t = 4

Figure 2.8. Demonstration of motion-to-goal behavior for
a robot with a finite sensor range moving toward a goal
which is “above” the light gray obstacle.

sensed the obstacle, hence the robot moves toward the goal. At t = 2, the
robot initially senses the obstacle, depicted by a thick solid curve. The robot
continues to move toward the goal, but off to the side of the obstacle heading
toward the discontinuity in ρ. For t = 3 and t = 4, the robot senses more
of the obstacle and continues to decrease distance toward the goal while
hugging the boundary.

The robot undergoes motion-to-goal until it can no longer decrease the
heuristic distance to the goal following the rules of motion-to-goal. Put
differently, it finds a point that is like a local minimum of d(·, Oi)+d(Oi, qgoal)
restricted to the path that motion-to-goal dictates.

When the robot switches to boundary-following, it determines the point
M on the currently sensed portion of the blocking obstacle that has the
shortest distance to the goal. The robot then moves in the same direction
as if it were in the motion - to - goal behavior. It continuously moves
toward the Oi on the blocking obstacle in the chosen direction (figure 2.9).
While undergoing this motion, the planner also updates two values: dmin

and dleave. The value dmin is the shortest distance between the goal and
any point on the blocking obstacle boundary that has been sensed thus far.
The value dleave is the shortest distance between the goal and any point in
the currently sensed environment at that robot location, i.e., ∂VR(x). Let
dleave(x) = miny∈V (x)d(x, y). When dleave(x) < dmin, the robot terminates
the boundary-following behavior.

14 CHAPTER 2. BUG ALGORITHMS

WO1

WO2

qgoal

M

Figure 2.9. The workspace is the same as in figure 2.6.
The solid and dashed segments represent the path gen-
erated by motion-to-goal and the dotted path represents
the boundary-following path. Note that M is the “local
minimum” point.

Note that in many cases, when the robot terminates the boundary-
following behavior, it will drive toward the goal. In such a case, there is no
blocking obstacle; define T to be the point where a circle, centered at x of
radius R, intersects the segment that connects x and qgoal. This is the point
on the periphery of the sensing range that is closest to the goal when the
robot is located at x. When there is no blocking obstacle, dleave = d(T, qgoal).
Otherwise, T is undefined and dleave is constantly updated to be the shortest
distance between the goal and any point on an obstacle boundary that is
viewable within the robot’s current sensor range.

Figure 2.10 contains a path for a robot with zero sensor range. Here
the robot invokes a motion-to-goal behavior until it encounters the first
obstacle at hit point H1. Unlike Bug1 and Bug2, encountering a hit point
does not change the behavior mode for the robot. The robot continues with
the motion-to-goal behavior by turning right and following the boundary of
the first obstacle. The robot turned right because that direction minimized
its heuristic distance to the goal. The robot departs this boundary at a
depart point D1. The robot continues with the motion-to-goal behavior,
maneuvering around a second obstacle, until it encounters the third obstacle
at H3. The robot turns left and continues to invoke the motion-to-goal
behavior until it reaches M3, a minimum point. Now, the planner invokes

2.2. TANGENT BUG 15

Algorithm 3 Tangent Bug Algorithm

Input: A point robot with a range sensor
Output: A path to the qgoal or a conclusion no such path exists

1: while True do

2: repeat

3: Continuously move toward the point n ∈ {T,Oi} which minimizes
d(x, n) + d(n, qgoal) where d(n, qgoal) < d(x, qgoal)

4: until

• the goal is encountered or

• The direction that minimizes d(x, n) + d(n, qgoal) begins to increase
d(x, qgoal), i.e., the robot detects a “local minimum” of d(·, qgoal).

5: Choose a boundary following direction which continues in the same direc-
tion as the most recent motion-to-goal direction.

6: repeat

7: Continuously update dleave, dmin, and {Oi}.
8: Continuously moves toward n ∈ {Oi} that is in the chosen boundary

direction.
9: until

• The goal is reached.

• The robot completes a cycle around the obstacle in which case the
goal cannot be achieved.

• dleave < dmin

10: end while

the boundary-following behavior until the robot reaches L3. Note that since
we have zero sensing range, dleave is the distance between the robot and the
goal. The procedure continues until the robot reaches the goal. Only at Mi

and Li does the robot switch between behaviors.

Figures 2.11 and 2.12 contain examples where the robot has finite and
infinite sensing ranges, respectively. Note that in these examples, since the
robot has a non-zero sensor range, it does not reach anMi but rather reaches
an swi where it detects its corresponding Mi. The swi are sometimes called
switch points.

Figures 2.13 demonstrates a situation in which the robot invokes bound-

16 CHAPTER 2. BUG ALGORITHMS

H1

H2

H3

H4

D1
D2

L3

L4

M3
qstart qgoal

M4

Figure 2.10. The path generated by Tangent Bug with zero
sensor range. The dashed lines correspond to the mo-
tion - to - goal behavior and the dotted lines correspond
to boundary-following.

qstart
H1

H2 H3

H4

D1
D2

L3

L4

M3

M4

sw3

sw4

qgoal

Figure 2.11. Path generated by Tangent Bug with finite
sensor range. The dashed lines correspond to the mo-
tion - to - goal behavior and the dotted lines correspond
to boundary-following. The dashed-dotted circles corre-
spond to the sensor range of the robot.

ary following at a minimum point M1 but must update the value for dmin

when it encounters another minimum M2. The boundary following behavior
in this case continues until the robot reaches L2.

2.3. IMPLEMENTATION 17

replacemen

H1

H2
H3

D1

D2

D3

qstart

qgoal

Figure 2.12. Path generated by Tangent Bug with infinite
sensor range. The dashed-lines correspond to the motion -
to - goal behavior and there is no boundary-following.

H1

M1

M2

L2

qstart

qgoal

Figure 2.13. Path generated by Tangent Bug with zero
sensor range and an update to dmin due to two minima in
the blocking obstacle.

2.3 Implementation

Essentially, the bug algorithms have two behaviors: drive toward a point and
follow an obstacle. The first behavior is simply a form of gradient descent
of d(·, n) where n is either qgoal or an Oi. The second behavior, boundary-
following, presents a challenge because the obstacle boundary is not known
a priori. Therefore, the robot planner must rely on sensor information

18 CHAPTER 2. BUG ALGORITHMS

to determine the path. However, we must concede that the full path will
not be determined from one sensor reading: the sensing range of the robot
may be limited and the robot may not be able to “see” the entire world
from one vantage point. So, the robot planner has to be incremental. We
must determine first what information the robot requires and then where
the robot should move to acquire more information. This is indeed the
challenge of sensor-based planning. Ideally, we would like this approach to
be reactive with sensory information feeding into a simple algorithm that
outputs translational and rotational velocity for the robot.

There are three questions: What information does the robot require to
circumnavigate the obstacle? How does the robot infer this information
from its sensor data? How does the robot use this information to determine
(locally) a path?

2.3.1 What Information: The Tangent Line

If the obstacle were flat, such as a long wall in a corridor, then following
the obstacle is trivial: simply move parallel to the obstacle. This is readily
implemented using a sensing system that can determine the obstacle’s sur-
face normal n(x), and hence a direction parallel to its surface. However, the
world is not necessarily populated with flat obstacles; many have non-zero
curvature. However, the robot can follow a path that is consistently orthog-
onal to the surface normal; this direction can be written as n(x)⊥ and the
resulting path satisfies ċ(t) = v where v is a basis vector in (n (c (t)))⊥. The
sign of v is based on the “previous” direction of ċ.

Consistently determining the surface normal can be quite challenging
and therefore for implementation, we can assume that obstacles are “locally
flat.” This means the sensing system determines the surface normal, the
robot moves orthogonal to this normal for a short distance, and then the
process repeats. In a sense, the robot determines the sequence of short
straight-line segments to follow based on sensor information.

This flat line, loosely speaking, is the tangent (figure 2.14). It is a linear
approximation of the curve at the point where the tangent intersects the
curve. The tangent can also be viewed as a first-order approximation to the
function that describes the curve. Let c : [0, 1] → Qfree be the function that
defines a path. Let x = c(s0) for a s0 ∈ [0, 1]. The tangent at x is dc

ds

∣

∣

s=s0
.

The tangent space can be viewed as a line whose basis vector is dc
ds

∣

∣

s=s0
, i.e.,

{

α dc
ds

∣

∣

s=s0

∣

∣ α ∈ R

}

.

2.3. IMPLEMENTATION 19

W∗

T
an

gen
t

WOi

Off
set

Cu
rve

∇D(x)x

Figure 2.14. The solid curve is the offset curve. The
dashed line represents the tangent to the offset curve at
x.

2.3.2 How to Infer Information with Sensors: Distance and

Gradient

The next step is to infer the tangent from sensor data. Instead of thinking
of the robot as a point in the plane, let’s think of it as a circular base which
has a fine array of tactile sensors radially distributed along its circumference
(figure 2.15). When the robot contacts an obstacle, the direction from the
contacted sensor to the robot’s center approximates the surface normal.
With this information, the robot can determine a sequence of tangents to
follow the obstacle.

Unfortunately, using a tactile sensor to prescribe a path requires the
robot to collide with obstacles, which endangers the obstacles and the robot.
Instead, the robot should follow a path at a safe distance W∗ ∈ R from the
nearest obstacle. Such a path is called an offset curve [360]. Let D(x) be
the distance from x to the closest obstacle, i.e.,

D(x) = minc∈
⋃

i WOi
d(x, c). (2.4)

To measure this distance with a mobile robot equipped with an onboard
range sensing ring, we use the raw distance function again. However, instead
of looking for discontinuities, we look for the global minimum. In other
words, D(x) = mins ρ(x, s) (figure 2.16).

We will need to use the gradient of distance. In general, the gradient is
a vector that points in the direction that maximally increases the value of

20 CHAPTER 2. BUG ALGORITHMS

Obstacle

Robot

n(t)

Tactile Ring

Figure 2.15. A fine-resolution tactile sensor.

a function. See appendix ?? for more details. Typically, the ith component
of the gradient vector is the partial derivative of the function with respect
to its ith coordinate. In the plane, ∇D(x) = [∂D(x)

∂x1

∂D(x)
∂x2

]T which points
in the direction that increases distance the most. Finally, the gradient is
the unit direction associated with the smallest value of the raw distance
function. Since the raw distance function seemingly approximates a sensing
system with individual range sensing elements radially distributed around
the perimeter of the robot, an algorithm defined in terms of D can often be
implemented using realistic sensors.

There are many choices for range sensors; here, we investigate the use of
ultrasonic sensors (figure 2.17), which are commonly found on mobile robots.
Conventional ultrasonic sensors measure distance using time of flight. When
the speed of sound in air is constant, the time that the ultrasound requires
to leave the transducer, strike an object, and return is proportional to the
distance to the point of reflection on the object [106]. This object, however,
can be located anywhere along the angular spread of the sonar sensor’s
beam pattern (figure 2.18). Therefore, the distance information that sonars

2.3. IMPLEMENTATION 21

WO1

WO2

WO3

WO4

D(x)

θ

Robot
xx

Figure 2.16. The global minimum of the rays determines
the distance to the closest obstacle; the gradient points in
a direction away from the obstacle along the ray.

provide is fairly accurate in depth, but not in azimuth. The beam pattern
can be approximated with a cone (figure 2.19). For the commonly used
Polaroid transducer, the arcbase is 22.5 degrees. When the reading of the
sensor is d, the point of reflection can be anywhere along the arc base of
length 2πd22.5

360 .

Initially, assume that the echo originates from the center of the sonar
cone. We acknowledge that this is a naive model, hence we term this the cen-
terline model (figure 2.19). The ultrasonic sensor with the smallest reading
approximates the global minimum of the raw distance function, and hence
D(x). The direction that this sensor is facing approximates the negated gra-
dient −∇D(x) because this sensor faces the closest obstacle. The tangent is
then the line orthogonal to the direction associated with the smallest sensor
reading.

2.3.3 How to Process Sensor Information: Continuation

Methods

The tangent to the offset curve is (∇D(x))⊥, the line orthogonal to ∇D(x)
(figure 2.14). The vector ∇D(x) points in the direction that maximally in-
creases distance; likewise, the vector −∇D(x) points in the direction that

22 CHAPTER 2. BUG ALGORITHMS

Figure 2.17. The disk on the right is the standard Polaroid
ultrasonic transducer found on many mobile robots; the
circuitry on the left drives the transducer.

Figure 2.18. Beam pattern for the Polaroid transducer.

maximally decreases distance; they both point along the same line, but in
opposite directions. Therefore, the vector (∇D(x))⊥ points in the direc-
tion that locally maintains distance; it is perpendicular to both ∇D(x) and
−∇D(x). This would be the tangent of the offset curve which maintains
distance to the nearby obstacle.

Another way to see why (∇D(x))⊥ is the tangent is to look at the def-

2.3. IMPLEMENTATION 23

Obstacle

Beam Pattern

Sensor Measurement Axis

d

Point
Sensor

Robot

Figure 2.19. Centerline model.

inition of the offset curve. For a safety distance W∗, we can define the
offset curve implicitly as the set of points where G(x) = D(x) −W∗ maps
to zero. The set of nonzero points (or vectors) that map to zero is called
the null space of a map. For a curve implicitly defined by G, the tangent
space at a point x is the null space of DG(x), the Jacobian of G [388]. In
general, the i, jth component of the Jacobian matrix is the partial derivative
of the ith component function with respect to the jth coordinate and thus
the Jacobian is a mapping between tangent spaces. Since in this case, G
is a real-valued function (i = 1), the Jacobian is just a row vector DD(x).
Here, we are reusing the symbol D. The reader is forced to use context to
determine if D means distance or differential.

In Euclidean spaces, the ith component of a single-row Jacobian equals
the ith component of the gradient and thus ∇D(x) = (DD(x))T . Therefore,
since the tangent space is the null space ofDD(x), the tangent for boundary-
following in the plane is the line orthogonal to ∇D(x), i.e., (∇D(x))⊥, and
can be derived from sensor information.

Using distance information, the robot can determine the tangent direc-
tion to the offset curve. If the obstacles are flat, then the offset curve is also
flat, and simply following the tangent is sufficient to follow the boundary
of an unknown obstacle. Consider, instead, an obstacle with curvature. We
can, however, assume that the obstacle is locally flat. The robot can then
move along the tangent for a short distance, but since the obstacle has cur-
vature, the robot will not follow the offset curve, i.e., it will “fall off” of the
offset curve. To reaccess the offset curve, the robot moves either toward or
away from the obstacle until it reaches the safety distance W∗. In doing so,

24 CHAPTER 2. BUG ALGORITHMS

Figure 2.20. The dashed line is the actual path, but the
robot follows the thin black lines, predicting and correct-
ing along the path. The black circles are samples along
the path.

the robot is moving along a line defined by ∇D(x), which can be derived
from sensor information.

Essentially, the robot is performing a numerical procedure of prediction
and correction. The robot uses the tangent to locally predict the shape of
the offset curve and then invokes a correction procedure once the tangent
approximation is not valid. Note that the robot does not explicitly trace
the path but instead “hovers” around it, resulting in a sampling of the path,
not the path itself (figure 2.20).

A numerical tracing procedure can be posed as one which traces the
roots of the expression G(x) = 0, where in this case G(x) = D(x) − W∗.
Numerical curve-tracing techniques rest on the implicit function theorem
[6, 222, 294] which locally defines a curve that is implicitly defined by a
map G : Y × R → Y . Specifically, the roots of G locally define a curve
parameterized by λ ∈ R. See appendix ?? for a formal definition.

For boundary following at a safety distance W∗, the function G(y, λ) =
D(y, λ)−W∗ implicitly defines the offset curve. Note that the λ-coordinate
corresponds to a tangent direction and the y-coordinates to the line or hy-
perplane orthogonal to the tangent. Let Y denote this hyperplane and DY G
be the matrix formed by taking the derivative of G(x) = D(x)−W∗ = 0 with
respect to the y-coordinates. It takes the form DY G(x) = DY D(x) where
DY denotes the gradient with respect to the y-coordinates. If DY G(y, λ)
is surjective at x = (λ, y)T , then the implicit function theorem states that
the roots of G(y, λ) locally define a curve that follows the boundary at a
distance W∗ as λ is varied, i.e., y(λ).

By numerically tracing the roots of G, we can locally construct a path.
While there are a number of curve tracing techniques [222], let us consider
an adaptation of a common predictor-corrector scheme. Assume that the

2.3. IMPLEMENTATION 25

robot is located at a point x which is a fixed distance W∗ away from the
boundary. The robot takes a “small” step, ∆λ, in the λ-direction (i.e., the
tangent to the local path). In general, this prediction step takes the robot
off the offset path. Next, a correction method is used to bring the robot
back onto the offset path. If ∆λ is small, then the local path will intersect a
correcting plane, which is a plane orthogonal to the λ-direction at a distance
∆λ away from the origin.

The correction step finds the location where the offset path intersects the
correcting plane and is an application of the Newton convergence theorem
[222]. See appendix ?? for a more formal definition of this theorem. The
Newton convergence theorem also requires that DY G(y, λ) be full rank at
every (y, λ) in a neighborhood of the offset path. This is true because for
G(x) = D(x) − W∗, [0 DY G(y, λ)]T = DG(y, λ). Since DG(y, λ) is full
rank, so must be DY G(y, λ) on the offset curve. Since the set of nonsingular
matrices is an open set, we know there is a neighborhood around each (y, λ)
in the offset path where DG(y, λ) is full rank and hence we can use the
iterative Newton method to implement the corrector step. If yh and λh are
the hth estimates of y and λ, the h+ 1st iteration is defined as

yh+1 = yh − (DY G)−1 G(yh, λh), (2.5)

where DY G is evaluated at (yh, λh). Note that since we are working in a
Euclidean space, we can determine DY G solely from distance gradient, and
hence, sensor information.

Problems

1. Prove that D(x) is the global minimum of ρ(x, s) with respect to s.

2. What are the tradeoffs between the Bug1 and Bug2 algorithms?

3. Extend the Bug1 and Bug2 algorithms to a two-link manipulator.

4. What is the difference between the Tangent Bug algorithm with zero
range detector and Bug2? Draw examples.

5. What are the differences between the path in figure 2.10 and the paths
that Bug1 and Bug2 would have generated?

6. The Bug algorithms also assume the planner knows the location of the
goal and the robot has perfect positioning. Redesign one of the Bug
algorithms to relax the assumption of perfect positioning. Feel free

26 CHAPTER 2. BUG ALGORITHMS

to introduce a new type of “reasonable” sensor (not a high-resolution
Global Positioning System).

7. In the Bug1 algorithm, prove or disprove that the robot does not
encounter any obstacle that does not intersect the disk of radius
d(qstart, qgoal) centered at qgoal.

8. What assumptions do the Bug1, Bug2, and Tangent Bug algorithms
make on robot localization, both in position and orientation?

9. Prove the completeness of the Tangent Bug algorithm.

10. Adapt the Tangent Bug algorithm so that it has a limited field of view
sensor, i.e., it does not have a 360 degree field of view range sensor.

11. Write out DY G for boundary following in the planar case.

12. Let G1(x) = D(x) + 1 and let G2(x) = D(x) + 2. Why are their
Jacobians the same?

13. Let G(x, y) = y3 + y − x2. Write out a y as a function of x in an
interval about the origin for the curve defined by G(x, y) = 0.

Chapter 3

Configuration Space

• Page 56, in the paragraph

As an example, consider the one-
dimensional manifold S1 = {x=(x1, x2)∈R

2 |
x21 +x22 =1}. For any point x ∈ S1 we can define a neighborhood that
is diffeomorphic to R. For example, consider the upper portion of the
circle, U1 = {x ∈ S1 |x2 > 0}. The chart φ1 : U1 → (0, 1) is given
by φ1(x) = x1, and thus x1 can be used to define a local coordinate
system for the upper semicircle. In the other direction, the upper
portion of the circle can be parameterized by z ∈ (0, 1) ⊂ R, with

φ−1
1 (z) = (z, (1−z)

1

2), which maps the open unit interval to the upper
semicircle. But S1 is not globally diffeomorphic to R

1; we cannot find
a single chart whose domain includes all of S1.

– All of the (0, 1)’s should be (−1, 1).

– The φ−1
1 (z) = (z, (1 − z)

1

2) should read φ−1
1 (z) = (z, (1 − z2)

1

2)

• Page 57, the

φ−1
1 (z) = (z, 1 − z2)

φ−1
2 (z) = (z, z2 − 1)

φ−1
3 (z) = (1− z2, z)

φ−1
4 (z) = (z2 − 1, z).

27

28 CHAPTER 3. CONFIGURATION SPACE

should read

φ−1
1 (z) = (z, (1 − z2)

1

2)

φ−1
2 (z) = (z, (z2 − 1)

1

2)

φ−1
3 (z) = ((1 − z2)

1

2 , z)

φ−1
4 (z) = ((z2 − 1)

1

2 , z).

• Page 58, the 1− z2 should read (1− z2)
1

2

• Page 71, in the Jacobian matrix, element (2, 3) lower right-hand cor-
ner, the element should not be dφ3

dq2
, but instead it should be dφ3

dq2
, so

the Jacobian at the end of the chapter (before the problems) which
currently reads

J(q) =
∂φ

∂q
=

[

∂φ1

∂q1

∂φ1

∂q2

∂φ1

∂q3

∂φ2

∂q1

∂φ2

∂q2

∂φ3

∂q2

]

=

[

1 0 −r1 sin q3 − r2 cos q3
0 1 r1 cos q3 − r2 sin q3

]

.

should read

J(q) =
∂φ

∂q
=

[

∂φ1

∂q1

∂φ1

∂q2

∂φ1

∂q3

∂φ2

∂q1

∂φ2

∂q2

∂φ2

∂q3

]

=

[

1 0 −r1 sin q3 − r2 cos q3
0 1 r1 cos q3 − r2 sin q3

]

.

Chapter 4

Potential Functions

• On Pg 78, the Hessian matrix has the indices in the lower left corner
incorrect. The ∂2U

∂q1∂qn
should read ∂2U

∂qn∂q1
, so the matrix

∂2U
∂q2

1

. . .¸ ∂2U
∂q1∂qn

...
. . .

...
∂2U

∂q1∂qn
· · · ∂2U

∂q2n

.

should read

∂2U
∂q2

1

. . .¸ ∂2U
∂q1∂qn

...
. . .

...
∂2U

∂qn∂q1
· · · ∂2U

∂q2n

.

• On page 103 eq. 4.26(there are two equations) are wrong. The u’s
should be upper case and the double summation notation should be
consistent.

u(q) =
∑

j

uattj +
∑

ij

urepij

=
∑

j

JT
j (q)∇uattij(q) +

∑

i

∑

j

JT
j (q)∇urepij (4.1)

should read

29

30 CHAPTER 4. POTENTIAL FUNCTIONS

U(q) =
∑

j

Uattj +
∑

i

∑

j

Urepij

=
∑

j

JT
j (q)∇Uattj(q) +

∑

i

∑

j

JT
j (q)∇Urepij (4.2)

Chapter 5

Roadmaps

• Chap 5, pg 145, an z should be replaced by a q, so

Qλ = {x ∈ Q|π1(q) = λ}

should read
Qλ = {q ∈ Q|π1(q) = λ}

31

32 CHAPTER 5. ROADMAPS

Chapter 6

Cell Decompositions

Bugs coming soon!

33

34 CHAPTER 6. CELL DECOMPOSITIONS

Chapter 7

Sampling-Based Algorithms

Bugs coming soon!

35

36 CHAPTER 7. SAMPLING-BASED ALGORITHMS

Chapter 8

Kalman Filtering

• Apparently, there is an AppendixJ with no space but I cannot find it
again

• Page 276, 7 lines from the bottom, the line H(k + 1)TK(y(k + 1) −
H(k+1)x(k+1|k)). should be replaced with H(k+1)TK(y(k+1)−
H(k + 1)x̂(k + 1|k)).
There was missing hat on the x(k + 1|k).

• Page 277, the ∆x = Kv below eq. 8.7 should read ∆x = HTKv

• Page 285, eq. 8.30 has an extra right parenthesis

• Page 286, second line of eq. 8.34 , Gx(k) + w(k) should be replaced
with , Hx(k) + w(k)

• Page 287, fig 8.5 - bold circle is an ellipse but looks like a circle because
the axes were scaled incorrectly.

• Page 291, the phrase

the process model for this robot nonlinear, i.e.,

is missing “is”.

• Page 297, eq. 8.48 y(k)i should be replaced with yi(k).

• on page 293, ninth line from the top χ2
ij = νijS

−1
ij νTij should be replaced

with χij2 = νTijS
−1
ij νij .

37

38 CHAPTER 8. KALMAN FILTERING

Chapter 9

Bayesian Methods

• on page 308, in the first sentence of Section 9.1.1, P (x | u(0 : k −
1), y(1 : k)) should have an x(k) not an x so should read

P (x(k) | u(0 : k − 1), y(1 : k))

• on page 319, eq. 9.18

xi = xi +

xir + d′ cos(θir + α′)
yir + d′ sin(θir + α′)

θir + α′ + β′

should be replaced with

xi = xi +

d′ cos(θir + α′)
d′ sin(θir + α′)

α′ + β′

• on page 325, the hij below eq. (9.23) should real hi,j.

39

40 CHAPTER 9. BAYESIAN METHODS

Chapter 10

Robot Dynamics

• page 362, section 10.4.1 Planar Rotation, sentence 3. There is a re-
peated “to.”

41

42 CHAPTER 10. ROBOT DYNAMICS

Chapter 11

Trajectory Planning

Bugs coming soon!

43

44 CHAPTER 11. TRAJECTORY PLANNING

Chapter 12

Nonholonomic and

Underactuated Systems

Bugs coming soon!

45

46CHAPTER 12. NONHOLONOMIC AND UNDERACTUATED SYSTEMS

Appendix A

Mathematical Notation

No bugs to report, yet!

47

48 APPENDIX A. MATHEMATICAL NOTATION

Appendix B

Basic Set Definitions

No bugs to report, yet!

49

50 APPENDIX B. BASIC SET DEFINITIONS

Appendix C

Topology and Metric Spaces

No bugs to report, yet!

51

52 APPENDIX C. TOPOLOGY AND METRIC SPACES

Appendix D

Mathematical Notation

No bugs to report, yet!

53

54 APPENDIX D. MATHEMATICAL NOTATION

Appendix E

Representations of

Orientation

No bugs to report, yet!

55

56 APPENDIX E. REPRESENTATIONS OF ORIENTATION

Appendix F

Polyhedra Robots in

Polyhedra Worlds

No bugs to report, yet!

57

58 APPENDIX F. POLYHEDRA ROBOTS IN POLYHEDRA WORLDS

Appendix G

Analysis of Algorithms and

Complexity Classes

No bugs to report, yet!

59

60APPENDIX G. ANALYSIS OF ALGORITHMS AND COMPLEXITYCLASSES

I believe that there were so many mistakes in the graph search appendix,
that we just rewrote the whole thing. This files needs to replace the MIT
Press official file.

Appendix H

Graph Representation and

Basic Search

H.1 Graphs

Thus far, we have been operating on grids without taking full advantage of
the neighboring relationships among the cells. A grid, as well as other maps,
can be represented by a graph which encodes these neighboring relationships.
A graph is a collection of nodes and edges, i.e., G = (V,E). Sometimes,
another term for a node is vertex, and this chapter uses the two terms
interchangeably. We use G for graph, V for vertex (or node), and E for
edge. Typically in motion planning, a node represents a salient location
and an edge connects two nodes that correspond to locations that have
an important relationship. This relationship could be that the nodes are
mutually accessible from each other, two nodes are within line of sight of
each other, two cells are next to each other in a grid, etc. This relationship
does not have to be mutual: if the robot can traverse from nodes V1 to V2,
but not from V2 to V1, we say that the edge E12 connecting V1 and V2 is
directed. Such a collection of nodes and edges is called a directed graph.
If the robot can travel from V1 to V2 and vica versa, then we connect V1

and V2 with two directed edges E12 and E21. If for each vertex Vi that is
connected to Vj, both Eij and Eji exist, then instead of connecting Vi and
Vj with two directed edges, we connect them with a single undirected edge.
Such a graph is called an undirected graph. Sometimes, edges are annotated
with a non-negative numerical value reflective of the costs of traversing this
edge. Such values are called weights.

A path or walk in a graph is a sequence of nodes {Vi} such that for

61

62APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

V1

V2

V3

V4

V5

V7

V8

E3 E4

E6
E2

E1
E5

E7

V6

V1

V2

V3

V4

V5

V7

V8

E3

E6
E2

E5

E7

V6

E4

E8

E1

Figure H.1. A graph is a collection of nodes and edges.
Edges are either directed (left) or undirected (right).

Root V1

V2

V3

V4

V5

V6

V7
V8

E1

E2

E3
E4

E5

E6

E7

Figure H.2. A tree is a type of directed acyclic graph with
a special node called the root . A cycle in a graph is a path
through the graph that starts and ends at the same node.

adjacent nodes Vi and Vi+1, Ei i+1 exists (and thus connects Vi and Vi+1).
A graph is connected if for all nodes Vi and Vj in the graph, there exists
a path connecting Vi and Vj . A cycle is a path of n vertices such that
first and last nodes are the same, i.e., V1 = Vn (figure H.2). Note that the
“direction” of the cycle is ambiguous for undirected graphs, which in many
situations is sufficient. For example, a graph embedded in the plane can have
an undirected cycle which could be both clockwise and counterclockwise,
whereas a directed cycle can have one orientation.

A tree is a connected directed graph without any cycles (figure H.2).
The tree has a special node called the root , which is the only node that
possesses no incoming arc. Using a parent-child analogy, a parent node has
nodes below it called children; the root is a parent node but cannot be a
child node. A node with no children is called a leaf . The removal of any

H.1. GRAPHS 63

1

2

3 8 10

9

4

5 6

7

1

2

87

43

5 6

10

9

Figure H.3. depth-first search vs. breadth-first search.
The numbers on each node reflect the order in which nodes
are expanded in the search.

non-leaf node breaks the connectivity of the graph.

Typically, one searches a tree for a node with some desired properties
such as the goal location for the robot. A depth-first search starts at the
root, chooses a child, then that node’s child, and so on until finding either
the desired node or a leaf. If the search encounters a leaf, the search then
backs up a level and then searches through an unvisited child until finding
the desired node or a leaf, repeating this process until the desired node is
found or all nodes are visited in the graph (figure H.3).

Breadth-first search is the opposite; the search starts at the root and
then visits all of the children of the root first. Next, the search then visits
all of the grandchildren, and so forth. The belief here is that the target node
is near the root, so this search would require less time (figure H.3).

A grid induces a graph where each node corresponds to a cell and an edge
connects nodes of cells that neighbor each other. Four-point connectivity
will only have edges to the north, south, east, and west, whereas eight-point
connectivity will have edges to all cells surrounding the current cell. See
figure H.4.

As can be seen, the graph that represents the grid is not a tree. However,
the breadth-first and depth-first search techniques still apply. Let the link
length be the number of edges in a path of a graph. Sometimes, this is
referred to as edge depth. Link length differs from path length in that
the weights of the edges are ignored; only the number of edges count. For
a general graph, breadth-first search considers each of the nodes that are
the same link length from the start node before going onto child nodes.
In contrast, depth-first search considers a child first and then continues

64APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

n1 n2 n3

n6n5n4

n7 n8 n9

n1 n2 n3

n6n5n4

n7 n8 n9

n1 n2 n3

n6n5n4

n7 n8 n9

n1 n2 n3

n6n5n4

n7 n8 n9

Figure H.4. Four-point connectivity assumes only four
neighbors, whereas eight-point connectivity has eight.

Push here Pop here Push and pop here

StackQueue

Figure H.5. Queue vs. stack.

through the children successively considering nodes of increasing link length
away from the start node until it reaches a childless or already visited node
(i.e., a cycle). In other words, termination of one iteration of the depth-first
search occurs when a node has no unvisited children.

The wave-front planner (chapter ??, section ??) is a breadth-first search.
Breadth-first search, in general, is implemented with a list where the children
of the current node are placed into the list in a first-in, first-out FIFO
(manner). This construction is commonly called a queue and forces all
nodes of the same linklength from the start to be visited first (figure H.5).
The breadth-first search starts with placing the start node in the queue.
This node is then expanded by it being popped off (i.e., removed from the
front) the queue and all of its children being placed onto it. This procedure
is then repeated until the goal node is found or until there are no more nodes
to expand, at which time the queue is empty. Here, we expand all nodes
of the same level (i.e., link length for the start) first before expanding more
deeply into the graph.

Figure H.6 displays the resulting path of breadth-first search. Note that
all paths produced by breadth-first search in a grid with eight-point connec-
tivity are optimal with respect to the the “eight-point connectivity metric.”
Figure H.7 displays the link lengths for all shortest paths between each cell

H.1. GRAPHS 65

Figure H.6. White cells denote the path that was deter-
mined with breadth-first search.

Figure H.7. A plot of link length values from the start
(upper - left corner) node where colored cells correspond
to link length (where the lighter the cell the greater the
link length in the graph) and black cells correspond to
obstacles.

and the start cell in the free space in Figure H.6. A path can then be deter-
mined using this information via a gradient descent of link length from the
goal cell to the start through the graph as similarly done with the wavefront
algorithm.

Depth-first search contrasts breadth-first search in that nodes are placed
in a list in a last-in, first-out LIFO (manner). This construction is commonly

66APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Figure H.8. White cells denote the path that was deter-
mined with depth-first search.

called a stack and forces nodes that are of greater and greater link length
from the start node to be visited first. Now the expansion procedure sounds
the same but is a little bit different; here, we pop the stack and push all of
its children onto the stack, except popping and pushing occur on the same
side of the list (figure H.5). Again, this procedure is repeated until the goal
node is found or there are no more nodes to expand. Here, we expand nodes
in a path as deep as possible before going onto a different path.

Figure H.8 displays the resulting path of depth-first search. In this ex-
ample, depth-first search did not return an optimal path but it afforded a
more efficient search in that the goal was found more quickly than breadth-
first search. Figure H.9 is similar to figure H.7, except the link lengths here
do not correspond to the shortest path to the start; instead, the link lengths
correspond to the paths derived by the depth-first search. Again, we can
use a depth-first search algorithm to fill up such a map and then determine
a path via gradient descent from the goal cell to the start.

Another common search is called a greedy search which expands nodes
that are closest to the goal. Here, the data structure is called a priority
queue in that nodes are placed into a sorted list based on a priority value.
This priority value is a heuristic that measures distance to the goal node.

H.2. A∗ ALGORITHM 67

Figure H.9. A plot of linklength values from the start (up-
per - left corner) node where colored cells correspond to
link lengths of paths defined by the depth-first search. The
lighter the cell the greater the linklengths in the graph;
black cells correspond to obstacles.

H.2 A
∗ Algorithm

Breadth-first search produces the shortest path to the start node in terms of
link lengths. Since the wave-front planner is a breadth-first search, a four-
point connectivity wave-front algorithm produces the shortest path with
respect to the Manhattan distance function. This is because it implicitly
has an underlying graph where each node corresponds to a cell and neigh-
boring cells have an edge length of one. However, shortest-path length is not
the only metric we may want to optimize. We can tune our graph search
to find optimal paths with respect to other metrics such as energy, time,
traversability, safety, etc., as well as combinations of them.

When speaking of graph search, there is another opportunity for opti-
mization: minimize the number of nodes that have to be visited to locate the
goal node subject to our path-optimality criteria. To distinguish between
these forms of optimality, let us reserve the term optimality to measure the
path and efficiency to measure the search, i.e., the number of nodes visited
to determine the path. There is no reason to expect depth-first and breadth-
first search to be efficient, even though breadth-first search can produce an
optimal path.

Depth-first and breadth-first search in a sense are uninformed, in that the
search just moves through the graph without any preference for or influence

68APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

on where the goal node is located. For example, if the coordinates of the
goal node are known, then a graph search can use this information to help
decide which nodes in the graph to visit (i.e., expand) to locate the goal
node.

Alas, although we may have some information about the goal node,
the best we can do is define a heuristic which hypothesizes an expected,
but not necessarily actual, cost to the goal node. For example, a graph
search may choose as its next node to explore one that has the shortest
Euclidean distance to the goal because such a node has highest possibility,
based on local information, of getting closest to the goal. However, there is
no guarantee that this node will lead to the (globally) shortest path in the
graph to the goal. This is just a good guess. However, these good guesses
are based on the best information available to the search.

The A∗ algorithm searches a graph efficiently, with respect to a cho-
sen heuristic. If the heuristic is “good,” then the search is efficient; if the
heuristic is “bad,” although a path will be found, its search will take more
time than probably required and possibly return a suboptimal path. A∗

will produce an optimal path if its heuristic is optimistic. An optimistic, or
admissible, heuristic always returns a value less than or equal to the cost of
the shortest path from the current node to the goal node within the graph.
For example, if a graph represented a grid, an optimistic heuristic could be
the Euclidean distance to the goal because the L2 distance is always less
than or equal to the L1 distance in the plane (figure H.10).

First, we will explain the A∗ search via example and then formally in-
troduce the algorithm. See figure H.11 for a sample graph. The A∗ search
has a priority queue which contains a list of nodes sorted by priority. This
priority is determined by the sum of the distance from the start node to the
current node and the heuristic at the current node.

The first node to be put into the priority queue is naturally the start
node. Next, we expand the start node by popping the start node and putting
all adjacent nodes to the start node into the priority queue sorted by their
corresponding priorities. Since node B has the highest priority, it is ex-
panded next, i.e., it is popped from the queue and its neighbors are added
(figure H.12). Note that only unvisited nodes are added to the priority
queue, i.e., do not re-add the start node.

Now, we expand node H because it has the highest priority. It is popped
off of the queue and all of its neighbors are added. However, H has no
neighbors, so nothing is added to the queue. Since no new nodes are added,
no more action or expansion will be associated with node H (figure H.12).
Next, we pop off the node with highest priority, i.e., node A, and expand it,

H.2. A∗ ALGORITHM 69

he
ur

ist
ic

dis
tan

ce

actual

d
is
ta
n
ce

Figure H.10. The heuristic between two nodes is the Eu-
clidean distance, which is less than the actual path length
in the grid, making this heuristic optimistic.

adding all of its adjacent neighbors to the priority queue (figure H.12).

Next, node E is expanded which gives us a path to the goal of cost 5.
Note that this cost is the real cost, i.e., the sum of the edge costs to the goal.
At this point, there are nodes in the priority queue which have a priority
value greater than the cost to the goal. Since these priority values are lower
bounds on path cost to the goal, all paths through these nodes will have a
higher cost than the cost of the path already found. Therefore, these nodes
can be discarded (figure H.12).

The explicit path through the graph is represented by a series of back
pointers. A back pointer represents the immediate history of the expansion
process. So, the back pointers from nodes A, B, and C all point to the
start. Likewise, the back pointers to D, E, and F point to A. Finally, the
back pointer of goal points to E. Therefore, the path defined with the back
pointers is start, A, E, and goal. The arrows in figure H.12 point in the
reverse direction of the back pointers.

Even though a path to the goal has been determined, A∗ is not finished
because there could be a better path. A∗ knows this is possible because

70APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

GOAL

3

3 3

3

3

3 3

1

1 22

3

3

3

2

2

0 Start

2

2
4

1

1

1 1

1

1 1

1
1

A

B

CD

E F

G H I

J K

L

Figure H.11. Sample graph where each node is labeled by
a letter and has an associated heuristic value which is
contained inside the node icon. Edge costs are represented
by numbers adjacent to the edges and the start and goal
nodes are labeled. We label the start node with a zero to
emphasize that it has the highest priority at first.

the priority queue still contains nodes whose values are smaller than that
of the goal state. The priority queue at this point just contains node C
and is then expanded adding nodes J, K, and L to the priority queue. We
can immediately remove J and L because their priority values are greater
than or equal the cost of the shortest path found thus far. Node K is then
expanded finding the goal with a path cost shorter than the previously found
path through node E. This path becomes the current best path. Since at
this point the priority queue does not possess any elements whose values
are smaller than that of the goal node, this path results in the best path

H.2. A∗ ALGORITHM 71

Figure H.12. (Left) Priority queue after the start is ex-
panded. (Middle) Priority queue after the second node,
B, is expanded. (Right) Three iterations of the prior-
ity queue are displayed. Each arrow points from the ex-
panded node to the nodes that were added in each step.
Since node H had no unvisited adjacent cells, its arrow
points to nothing. The middle queue corresponds to two
actions. Node E points to the goal which provides the
first candidate path to the goal. Note that nodes D, I, F,
and G are shaded out because they were discarded.

Figure H.13. Four displayed iterations of the priority
queue with arrows representing the history of individual
expansions. Here, the path to the goal is start, C, K, goal.

(figure H.13).

H.2.1 Basic Notation and Assumptions

Now, we can more formally define the A∗ algorithm. The input for A∗ is the
graph itself. These nodes can naturally be embedded into the robot’s free
space and thus can have coordinates. Edges correspond to adjacent nodes
and have values corresponding to the cost required to traverse between the
adjacent nodes. The output of the A∗ algorithm is a back-pointer path,
which is a sequence of nodes starting from the goal and going back to the

72APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

start.

We will use two additional data structures, an open set O and a closed
set C. The open set O is the priority queue and the closed set C contains
all processed nodes. Other notation includes

• Star(n) represents the set of nodes which are adjacent to n.

• c(n1, n2) is the length of edge connecting n1 and n2.

• g(n) is the total length of a backpointer path from n to qstart.

• h(n) is the heuristic cost function, which returns the estimated cost of
shortest path from n to qgoal.

• f(n) = g(n) + h(n) is the estimated cost of shortest path from qstart
to qgoal via n.

The algorithm can be found in algorithm 4.

Algorithm 4 A∗ Algorithm

Input: A graph
Output: A path between start and goal nodes

1: repeat

2: Pick nbest from O such that f(nbest) ≤ f(n),∀n ∈ O.
3: Remove nbest from O and add to C.
4: If nbest = qgoal, EXIT.
5: Expand nbest: for all x ∈ Star(nbest) that are not in C.
6: if x /∈ O then

7: add x to O.
8: else if g(nbest) + c(nbest, x) < g(x) then
9: update x’s backpointer to point to nbest

10: end if

11: until O is empty

The A∗ algorithm searches for a path from the start to the goal. In such
a case, the g function is sometimes called the cost-to-come or cost-from-start
function. If the search were to occur in reverse, from goal to start, then the
g function is called the cost-to-go function which measures the path cost
to the goal. Likewise, the heuristic then becomes an estimated cost of the
shortest path from the current node to the start. The objective function f
is still the sum of g and h.

H.2. A∗ ALGORITHM 73

H.2.2 Discussion: Completeness, Efficiency, and Optimality

Here is an informal proof of completeness for A∗. A∗ generates a search tree,
which by definition, has no cycles. Furthermore, there are a finite number of
acyclic paths in the tree, assuming a bounded world. Since A∗ uses a tree,
it only considers acyclic paths. Since the number of acyclic paths is finite,
the most work that can be done, searching all acyclic paths, is also finite.
Therefore A∗ will always terminate, ensuring completeness.

This is not to say A∗ will always search all acyclic paths since it can
terminate as soon as it explores all paths with greater cost than the minimum
goal cost found. Thanks to the priority queue, A∗ explores paths likely to
reach the goal quickly first. By doing so, it is efficient. If A∗ does search
every acyclic path and does not find the goal, the algorithm still terminates
and simply returns that a path does not exist. Of course, this also makes
sense if every possible path is searched.

Now, there is no guarantee that the first path to the goal found is the
cheapest/best path. So, in the quest for optimality (once again, with respect
to the defined metric), all branches must be explored to the extent that a
branch’s terminating node cost (sum of edge costs) is greater than the lowest
goal cost. Effectively, all paths with overall cost lower than the goal must
be explored to guarantee that an even shorter one does not exist. Therefore,
A∗ is also optimal (with respect to the chosen metric).

H.2.3 Greedy-Search and Dijkstra’s Algorithm

There are variations or special cases of A∗. When f(n) = h(n), then the
search becomes a greedy search because the search is only considering what
it “believes” is the best path to the goal from the current node. When
f(n) = g(n), the planner is not using any heuristic information but rather
growing a path that is shortest from the start until it encounters the goal.
This is a classic search called Dijkstra’s algorithm. Figure H.14 contains a
graph which demonstrates Dijkstra’s Algorithm. In this example, we also
show backpointers being updated (which can also occur with A∗). The
following lists the open and closed sets for the Dijkstra search.

1. O = {S}

2. O = {1, 2, 4, 5}; C = {S} (1, 2, 4, 5 all point back to S)

3. O = {1, 4, 5}; C = {S, 2} (there are no adjacent nodes not in C)

74APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

1

1

1

2

22

2

3

33

4

4 5S

G

Figure H.14. Dijkstra Graph Search Example

4. O = {1, 5, 3};C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4; C =
{S, 2, 4, 1}

5. O = {3, G};C = {S, 2, 4, 1} (goal points to 5 which points to 4 which
points to S)

H.2.4 Example of A∗ on a Grid

Figure H.15 contains an example of a grid world with a start and goal
identified accordingly. We will assume that the free space uses eight-point
connectivity, and thus cell (3, 2) is adjacent to cell (4, 3), i.e., the robot can
travel from (3, 2) to (4, 3). Each of the cells also has its heuristic distance to
the goal where we use a modified metric which is not the Manhattan or the
Euclidean distance. Instead, between free space cells, a vertical or horizontal
step has length 1 and a diagonal has length 1.4 (our approximation of

√
2).

The cost of traveling from a free space cell to an obstacle cell is made to
be arbitrarily high; we chose 10000. So one cell step from a free space to
an obstacle cell along a vertical or horizontal direction costs 10000 and one
cell step along a diagonal direction costs 10000.4. Here, we are assuming
that our graph connects all cells in the grid, not just the free space, and
the prohibitively high cost of moving into an obstacle will prevent the robot
from collision (figure H.16).

Note that this metric, in the free space, does not induce a true Euclidean
metric because two cells sideways and one cell up is 2.4, not

√
5. However,

this metric is quite representative of path length within the grid. This
heuristic is optimistic because the actual cost to current cell to the goal will
always be greater than or equal to the heuristic. Thus far, in figure H.15
the back pointers and priorities have not been set.

The start cell is put on the priority queue with a priority equal to its
heuristic. See figure H.17. Next, the start node is expanded and the pri-

H.2. A∗ ALGORITHM 75

7654321r/c

1

2

3

4

5

6

h =5

f =

b=()

h =5.4

f =

b=()

h =5.8

f =

b=()

h=6.2

f=

b=()

h =6.6

f =

b=()

h =7.0

f =

b=()

h =8.0

f =

b=()

h =4

f =

b=()

h =4.4

f =

b=()

h =4.8

f =

b=()

h =5.2

f =

b=()

h =5.6

f =

b=()

h =6.6

f =

b=()

h =7.6

f =

b=()

h =3

f =

b=()

h =3.4

f =

b=()

h =3.8

f =

b=()

h =4.2

f =

b=()

h =5.2

f =

b=()

h =6.2

f =

b=()

h =7.2

f =

b=()

h =2

f =

b=()

h =2.4

f =

b=()

h =2.8

f =

b=()

h =3.8

f =

b=()

h =4.8

f =

b=()

h =5.8

f =

b=()

h =6.8

f =

b=()

h =1

f =

b=()

h =1.4

f =

b=()

h =2.4

f =

b=()

h =3.4

f =

b=()

h =4.4

f =

b=()

h =5.4

f =

b=()

h =6.4

f =

b=()

h =0

f =

b=()

h =1

f =

b=()

h =2

f =

b=()

h =3

f =

b=()

h =4

f =

b=()

h =5

f =

b=()

h =6

f =

b=()

Start

Goal

Figure H.15. Heuristic values are set, but backpointers
and priorities are not.

c(x1,x2)=1

x5x6x7

x4x1x8

x3x2x9
c(x1,x9)=1.4

c(x1,x8)=10000,if x8 is in
obstacle,x1 is a freecell

c(x1,x9)=10000.4, if x9 is in
obstacle, x1 is a freecell

Figure H.16. Eight-point connectivity and possible cost
values.

ority values for each of the start’s neighbors are determined. They are
all put on the priority queue sorted in ascending order by priority. See fig-
ure H.18(left). Cell (3, 2) is expanded next, as depicted in figure H.18(right).
Here, cells (4, 1), (4, 2), (4, 3), (3, 3), and (2, 3) are added onto the priority
queue because our graph representation of the grid includes both free space
and obstacle cells. However, cells (4, 2), (3, 3), and (2, 3) correspond to ob-
stacles and thus have a high cost. If a path exists in the free space or the

76APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

longest path in the free space has a traversal cost less than our arbitrarily
high number chosen for obstacles (figure H.16), then these cells will never
be expanded. Therefore, in the figures below, we did not display them on
the priority queue.

Eventually, the goal cell is reached (figure H.19 (left)). Since the pri-
ority value of the goal is less than the priorities of all other cells in the
priority queue, the resulting path is optimal and A∗ terminates. A∗ traces
the backpointers to find the optimal path from start to goal (figure H.19
(right)).

H.2.5 Nonoptimistic Example

Figure H.20 contains an example of a graph whose heuristic values are
nonoptimistic and thus force A∗ to produce a nonoptimal path. A∗ puts
node S on the priority queue and then expands it. Next, A∗ expands node
A because its priority value is 7. The goal node is then reached with pri-
ority value 8, which is still less than node B’s priority value of 13. At this
point, node B will be eliminated from the priority queue because its value
is greater than the goal’s priority value. However, the optimal path passes
through B, not A. Here, the heuristic is not optimistic because from B to
G, h = 10 when the actual edge length was 2.

H.3 D
∗ Algorithm

So far we have only considered static environments where only the robot
experiences motion. However, we can see that many worlds have moving
obstacles, which could be other robots themselves. We term such environ-
ments dynamic. We can address dynamic environments by initially invoking
the A∗ algorithm to determine a path from start to goal, follow that path
until an unexpected change occurs (see (4, 3) in figure H.21(left)) and then
reinvoke the A∗ algorithm to determine a new path. This, however, can be-
come quite inefficient if many cells are changing from obstacle to free space
and vice versa. The D∗ algorithm was devised to “locally repair” the graph
allowing for an efficient updated searching in dynamic environments, hence
the term D∗ [376].

The D∗ algorithm (algorithm 5) uses the notation found in table H.1.
Just like A∗, D∗ has a data structure called the open list O. However, D∗

may process states after they are removed from the open list, so t(X) is
used to classify states as NEW , OPEN , and CLOSED to mean X has

H.3. D∗ ALGORITHM 77

h =5

f =

b=()

h =5.4

f =

b=()

h =5.8

f =

b=()

h=6.2

f=

b=()

h =6.6

f =

b=()

h =7.0

f = 7.0

b=()

h =8.0

f =

b=()

h =4

f =

b=()

h =4.4

f =

b=()

h =4.8

f =

b=()

h =5.2

f =

b=()

h =5.6

f =

b=()

h =6.6

f =

b=()

h =7.6

f =

b=()

h =3

f =

b=()

h =3.4

f =

b=()

h =3.8

f =

b=()

h =4.2

f =

b=()

h =5.2

f =

b=()

h =6.2

f =

b=()

h =7.2

f =

b=()

h =2

f =

b=()

h =2.4

f =

b=()

h =2.8

f =

b=()

h =3.8

f =

b=()

h =4.8

f =

b=()

h =5.8

f =

b=()

h =6.8

f =

b=()

h =1

f =

b=()

h =1.4

f =

b=()

h =2.4

f =

b=()

h =3.4

f =

b=()

h =4.4

f =

b=()

h =5.4

f =

b=()

h =6.4

f =

b=()

h =0

f =

b=()

h =1

f =

b=()

h =2

f =

b=()

h =3

f =

b=()

h =4

f =

b=()

h =5

f =

b=()

h =6

f =

b=()

fState

7.0(2,1)

Figure H.17. Start node is put on priority queue, displayed
in upper right.

h =5

f =

b=()

h =5.4

f =

b=()

h =5.8

f =

b=()

h=6.2

f=

b=()

h =6.6

f =7.6

b=(2,1)

h =7.0

f = 7.0

b=()

h =8.0

f =9.0

b=(2,1)

h =4

f =

b=()

h =4.4

f =

b=()

h =4.8

f =

b=()

h =5.2

f =

b=()

h =5.6

f =7.0

b=(2,1)

h =6.6

f =7.6

b (2,1)

h =7.6

f =9.0

b=(2,1)

h =3

f =

b=()

h =3.4

f =

b=()

h =3.8

f =

b=()

h =4.2

f =

b=()

h =5.2

f =

b=()

h =6.2

f =

b=()

h =7.2

f =

b=()

h =2

f =

b=()

h =2.4

f =

b=()

h =2.8

f =

b=()

h =3.8

f =

b=()

h =4.8

f =

b=()

h =5.8

f =

b=()

h =6.8

f =

b=()

h =1

f =

b=()

h =1.4

f =

b=()

h =2.4

f =

b=()

h =3.4

f =

b=()

h =4.4

f =

b=()

h =5.4

f =

b=()

h =6.4

f =

b=()

h =0

f =

b=()

h =1

f =

b=()

h =2

f =

b=()

h =3

f =

b=()

h =4

f =

b=()

h =5

f =

b=()

h =6

f =

b=()

fState

9.0(1,1)

9.0(1,2)

7.6(3,1)

7.6(2,2)

7.0(3,2)

h =5

f =

b=()

h =5.4

f =

b=()

h =5.8

f =

b=()

h=6.2

f=9.0

b=(3,2)

h =6.6

f =7.6

b=(2,1)

h =7.0

f = 7.0

b=()

h =8.0

f =9.0

b=(2,1)

h =4

f =

b=()

h =4.4

f =

b=()

h =4.8

f =

b=()

h =5.2

f=106.6

b=(3,2)

h =5.6

f =7.0

b=(2,1)

h =6.6

f =7.6

b=(2,1)

h =7.6

f =9.0

b=(2,1)

h =3

f =

b=()

h =3.4

f =

b=()

h =3.8

f =

b=()

h =4.2

f =7.0

b=(3,2)

h =5.2

f =106.6

b=(3,2)

h =6.2

f =107.2

b=(3,2)

h =7.2

f =

b=()

h =2

f =

b=()

h =2.4

f =

b=()

h =2.8

f =

b=()

h =3.8

f =

b=()

h =4.8

f =

b=()

h =5.8

f =

b=()

h =6.8

f =

b=()

h =1

f =

b=()

h =1.4

f =

b=()

h =2.4

f =

b=()

h =3.4

f =

b=()

h =4.4

f =

b=()

h =5.4

f =

b=()

h =6.4

f =

b=()

h =0

f =

b=()

h =1

f =

b=()

h =2

f =

b=()

h =3

f =

b=()

h =4

f =

b=()

h =5

f =

b=()

h =6

f =

b=()

fState

9.0(1,1)

9.0(1,2)

9.0(4,1)

7.6(3,1)

7.6(2,2)

7.0(4,3)

Figure H.18. (Left) The start node is expanded, the prior-
ity queue is updated, and the backpointers are set, which
are represented by the right bottom icon. b = (i, j) points
to cell (i, j). (Right) Cell (3, 2) was expanded. Note that
cells (3, 3), (2, 3), and (4, 2) are not displayed in the pri-
ority queue because they correspond to obstacles.

never been in O, X is currently in 0, and X was in O but currently is not,
respectively.

The function h(X) measures path cost from the goal to X; this is some-

78APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

h =5

f =

b=()

h =5.4

f =

b=()

h =5.8

f =

b=()

h=6.2

f=9.0

b=(3,2)

h =6.6

f =7.6

b=(2,1)

h =7.0

f = 7.0

b=()

h =8.0

f =9.0

b=(2,1)

h =4

f =

b=()

h =4.4

f =

b=()

h =4.8

f =9.0

b=(4,3)

h =5.2

f =106.6

b=(3,2)

h =5.6

f =7.0

b=(2,1)

h =6.6

f =7.6

b=(2,1)

h =7.6

f =9.0

b=(2,1)

h =3

f =

b=()

h =3.4

f =9.0

b=(5,4)

h =3.8

f =7.6

b=(4,3)

h =4.2

f =7.0

b=(3,2)

h =5.2

f =106.6

b=(3,2)

h =6.2

f =107.2

b=(3,2)

h =7.2

f =

b=()

h =2

f =9.0

b=(6,5)

h =2.4

f =7.6

b=(5,4)

h =2.8

f =7.0

b=(4,3)

h =3.8

f =7.6

b=(4,3)

h =4.8

f =108

b=(3,2)

h =5.8

f =

b=()

h =6.8

f =

b=()

h =1

f =7.6

b=(6,5)

h =1.4

f =7.0

b=(5,4)

h =2.4

f =7.6

b=(5,4)

h =3.4

f =9.0

b=(5,4)

h =4.4

f =

b=()

h =5.4

f =

b=()

h =6.4

f =

b=()

h =0

f =7.0

b=(6,5)

h =1

f =7.6

b=(6,5)

h =2

f =9.0

b=(6,5)

h =3

f =

b=()

h =4

f =

b=()

h =5

f =

b=()

h =6

f =

b=()

7.0(7,6)

fState

9.0(1,1)

9.0(1,2)

9.0(4,1)

9.0(5,2)

9.0(6,3)

9.0(4,5)

9.0(7,4)

9.0(5,6)

7.6(3,1)

7.6(2,2)

7.6(5,3)

7.6(4,4)

7.6(6,4)

7.6(5,5)

7.6(7,5)

7.6(6,6)

Start

Goal

Figure H.19. (Left) The goal state is expanded. (Right)
Resulting path.

2

44

2

S G

h = 10

h = 3

h = 2 h = 0

f = 13

f = 7

f = 8

A

B

Figure H.20. A nonoptimistic heuristic leads to a non-
optimal path with A∗.

times called cost-to-go. Ultimately, the D∗ planner uses h to determine the
path in the graph; when sequencing through the path to the goal, the values
of h decrease. Note that some notation may get confusing here because A∗

uses h as the heuristic function whereas D∗ uses h as the cost-to-go function.

The D∗ algorithm uses the k values to determine the priority of the
nodes in the open list. The k value for a particular node X is the smallest
h value for that node since it was most recently inserted onto the open list.

H.3. D∗ ALGORITHM 79

State Functions

State X Stored cost from Y to X c(X,Y)
Current State Xc Cost from Y to X based on sensors r(X,Y)
Neighbor State Xn Cost from X to goal h(X)
Start S Minimum cost from X to goal k(X)
Goal G Tag t(X)
List of all States L Parent state (predecessor) of X b(X)
Open List O

Table H.1. Common notation used in D∗

This means if X were inserted into the open list, if its h value changes, then
the k value is the smallest of the h values while X remains in the open list.
However, once X is removed from the open list, if it is re-inserted, k(X)
starts off with the new h value.

The significance of k(X) is that it distinguishes raise states, those where
k(X) > h(X) from lower states, those where k(X) = h(X). It is possible
for obstacle nodes to be placed on the open list, but they will have high
k values meaning they will probably never be processed. After the initial
search, the k-values are identical to the h values.

We once again consider a directed graph where a node corresponds to a
robot state and an edge connects the nodes of adjacent states. Note that
two states may not physically lie side-by-side, so an edge really corresponds
to two nodes for which a robot can traverse from one state X to another
state Y for some edge cost c(Y,X). It is possible that c(X,Y) 6= c(Y,X).

After some initialization, D∗ performs a modified Dijkstra’s search us-
ing INIT − PLAN (algorithm 6), which calls PROCESS − STATE (al-
gorithm 14) to expand nodes. The initial search starts by placing the goal
node onto the open list and ends when the start node is labeled as closed.
Once the search is complete, the robot begins to follow the optimal path
to the goal. This happens in PREPARE − REPAIR (algorithm 7) and
REPAIR−REPLAN (algorithm 8). Effectively, PREPARE−REPAIR
looks for changes in the environment that affects the costs among nodes
within sensor range and if such a changes exist, REPAIR − REPLAN
locally repairs the graph by readjusting the backpointers, so a new opti-
mal path can be found. If no change exists, REPAIR−REPLAN simply
directs the robot along the current optimal path.

The actual repairing of the backpointers and directed motion of the

80APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Algorithm 5 D∗ Algorithm

Input: List of all states L
Output: The goal state, if it is reachable, and the list of states L are
updated so that the backpointer list describes a path from the start to
the goal. If the goal state is not reachable, return NULL.

1: for each X ∈ L do

2: t(X) = NEW
3: end for

4: h(G) = 0
5: INSERT (O,G, h(G))
6: Xc = S
7: P = INIT − PLAN(O,L,Xc, G) (algorithm 6)
8: if P = NULL then

9: Return (NULL)
10: end if

11: while Xc 6= G do

12: PREPARE −REPAIR(O,L,Xc) (algorithm 7)
13: P = REPAIR−REPLAN(O,L,Xc, G) (algorithm 8)
14: if P = NULL then

15: Return (NULL)
16: end if

17: Xc = the second element of P {Move to the next state in P}.
18: end while

19: Return (Xc)

Algorithm 6 INIT − PLAN(O,L,Xc, G)

Input: Open list O, List of all states L, Current Position Xc, Goal G
Output: A list of states to goal as described by back pointers in the
list of states L; Open List O is modified

1: repeat

2: kmin = PROCESS − STATE(O,L)
3: until (kmin = −1) or (t(Xc) = CLOSED)
4: P = GET −BACKPOINTER− LIST (L,Xc, G) (algorithm 9)
5: Return (P)

robot occurs in REPAIR − REPLAN . Notice that INIT − PLAN and
REPAIR − REPLAN look quite similar except the “until” terminating
condition is different. This is because INIT − PLAN only accesses one

H.3. D∗ ALGORITHM 81

part of PROCESS − STATE since t(X) = NEW whereas REPAIR −
REPLAN uses all parts of PROCESS − STATE. The repairing process
terminates when k value of any node in the open list is greater than or equal
to h(Xc). In other words, the process terminates when the minimum path
cost from any node in the open list to the goal is greater than or equal to
the the path cost from the current robot position Xc to the goal. This is
the terminating condition in REPAIR−REPLAN which is different from
the terminating condition in INIT − PLAN .

There is one piece of terminology which should be made clear at this
point. In actuality, D∗ is not considering actual path costs but rather the
perceived path costs which are derived from the robot’s current understand-
ing of the graph being searched. If the edges of the graph are incorrect, say
due to a change in the environment, then the D∗ algorithm does not use the
updated information until the robot discovers a change in the environment,
i.e., until the robot discovers a change in an edge cost. The D∗ literature
hence uses the term estimated path cost to reflect this, but such terminology
could be confusing because a heuristic also estimates path cost and there
are many other ways to estimate path cost. Therefore, this description of
D∗ avoids the use of this term but the reader should be aware of it when
reading the literature. Later on, the focused D∗ algorithm was developed to
include a heuristic function for guiding, or focusing, the repairing process.
Typically for D∗, g is used as the heuristic function switching the g and h
notation convention from A∗. Often, when people speak of D∗, they really
mean focused D∗, but this section focuses, no pun intended, on the original
D∗ algorithm.

At this point instead of directly explaining the details of PROCESS −
STATE, we give an example of the entire D∗ algorithm. Consider the grid
environment in figure H.21(left) which is identical to the one in figure H.15,
except cell (4, 3) is a gate which can either be a free-space cell or an obstacle
cell. Assume it starts as a free-space cell. Finally, a node in the search graph
corresponds to a cell, regardless if it is obstacle or free space, and since this
graph is directed, a pair of nodes corresponding to adjacent cells have two
directed edges.

To achieve the initial Dijkstra-like search from the goal back to the start,
the goal node is first placed on the open list (figure H.21(right)) with h = 0.
It is then expanded (figure H.22(left)), adding (6, 6), (6, 5), and (7, 5) onto
the queue (algorithm 14, lines 17-19). D∗ increments the k and h values
according to the metric described in figure H.16. Unless stated otherwise,
when a node is expanded, it is automatically put on the closed list, so the
goal is expanded and then put on the closed list.

82APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Algorithm 7 PREPARE −REPAIR(O,L,Xc)

Input: Open list O, List of all states L, Current Position Xc

Output: Open List O is modified

1: for each state X ∈ L within sensor range of Xc and Xc do

2: for each neighbor Y of X do

3: if r(Y,X) 6= c(Y,X) then
4: MODIFY −COST (O,Y,X, r(Y,X))
5: end if

6: end for

7: for each neighbor Y of X do

8: if r(X,Y) 6= c(X,Y) then
9: MODIFY −COST (O,X, Y, r(X,Y))

10: end if

11: end for

12: end for

Algorithm 8 REPAIR−REPLAN(O,L,Xc, G)

Input: Open list O, List of all states L, Current Position Xc, Goal G
Output: A list of states to goal as described by back pointers in the
list of states L; Open List O is modified

1: repeat

2: kmin = PROCESS − STATE(O,L)
3: until (kmin ≥ h(Xc)) or (kmin = −1)
4: P = GET −BACKPOINTER− LIST (L,Xc, G)
5: Return (P)

Next, node (6, 6) is expanded adding nodes (5, 6) and (5, 5) onto the
open list (figure H.22(right)). The node (7, 5) is then expanded adding
nodes (6, 4) and (7, 4) into the open list. (figure H.23(left)). More nodes are
expanded until we arrive at node (4, 6) (figure H.23(right)). When (4, 6) is
expanded, nodes (3, 6) and (3, 5), which are obstacle nodes, are placed onto
the open list, but with high k and h values figure H.23(right). Since the h
values of the expanded obstacle nodes are high, they will most likely never
be expanded, which makes sense because they are obstacle nodes.

The Dijkstra-like search is complete when the start node (2, 1) is ex-
panded (figure H.24(left)). Note that some cells may not have been consid-
ered by the D∗ algorithm. The optimal path from start to goal (assuming
that the gate cell (4, 3) is not an obstacle) is found by traversing the back-

H.3. D∗ ALGORITHM 83

Figure H.21. (Left) A cell world similar to figure H.15,
except it has a gate, h values and k values. (Right) Put
goal node on open list.

Figure H.22. (Left) Expand the Goal Node (Right) Node
(6, 6) is expanded.

pointers starting from the start node to the goal node (figure H.24(right)).
The optimal path is (2, 1) −→ (3, 2) −→ (4, 3) −→ (5, 4) −→ (6, 5) −→
(7, 6). Note that nodes (1, 1), (1, 2), (1, 3), (2, 3), (3, 3), (3, 4), (3, 5), (3, 6)
and (4, 2) are still on the open list.

The robot then starts tracing the optimal path from the start node to the
goal node. In figure H.25(left), the robot moves from node (2, 1) to (3, 2).
When the robot tries to move from node (3, 2) to (4, 3), it finds that the

84APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Figure H.23. (Left) Expand (7, 5). (Right) Expand (4, 6).

gate node (4, 3) is an obstacle (figure H.25(left)). In the initial search for an
optimal path, we had assumed that the gate node was a free space node, and
hence the current path is not feasible. At this stage, instead of re-planning
for an optimal path from the current node (3, 2) to goal node, D∗ tries to
make local repairs to the graph until a new optimal path is found.

There is one subtlety about the sensor range which should be noted.
When we assume the robot has a sensor range of one cell, does this mean
that the robot can see all neighboring cells, the current cell, and the edge
costs among all such cells, or does this mean that it can see all such cells and
all of the edges costs associated with these cells. If the latter, then some
edges may be considered “out of sensor range” because such edge costs
are between a cell within sensor range and a cell outside of sensor range.
However, it is reasonable to expect such edge costs to change because the
cell within sensor range has changed. In this example, we assume that the
robot infers that the peripheral edge costs change as well. Either assumption
is fine, as long as the implementation is consistent.

To address the fact that (4, 3) is now an obstacle, D∗ increases by a large
number the transition cost to and from (4, 3) for all nodes adjacent to (4, 3).
Actually, in our example, we simply set the transition cost to a high number,
say 10, 000. Next, all nodes affected by the increased transition costs (all
eight neighbors and (4, 3)) are put on the open list (algorithm 7). Recall
that D∗ is repairing a directed graph, so MODIFY − COST is called 16
times, once for each neighbor and eight times on (4, 3) but (4, 3) is put onto
the open list only once. See figure H.25 (right). Note that some neighbors

H.3. D∗ ALGORITHM 85

of (4,3), and (4,3) itself have lower k values than most elements on the open
list already. Therefore, these nodes will be popped first.

The node (5, 4) is now popped because its k value is the smallest. Since
its k and h are the same, consider each neighbor of (5, 4). One such neighbor
is (4, 3). The node (4, 3) has a back pointer which points to (5, 4) but
its original h value is no longer the sum of the h value of (5, 4) and the
transition cost, which was just raised due to the obstacle (algorithm 14,
line 17). Therefore, (4, 3) is put on the open list but with a high h value
(algorithm 14, line 19). Note that since (4, 3) is already on the open list, its
k value remains the same and hence the node (4, 3) is a raise state because
h > k. See figure H.26 (left). Next, (5, 3) is popped but this will not affect
anything because none of the surrounding nodes are new, and the h values of
the surrounding nodes are correct. A similar non-action happens for (4, 4).
See figure H.26 (right).

Now, the node (4, 3) is popped off the open list and since k < h, the
objective is to try to decrease the h value (algorithm 14, line 7). This is akin
to finding a better path via (4, 3) to the goal, but this is not possible because
(4, 3) is an obstacle. Looking more carefully at the algorithm, consider node
(5, 3), which is a neighbor of (4, 3) and has an h value which is less than
the k value of (4, 3) but h value of (4, 3) “equals” the sum of the h value of
(5, 3) and the transition cost. This means that nothing is improved coming
from (4, 3) to (5, 3). This is also true for (5, 4) and (4, 4). See figure H.27
(left). Note that our notion of equality is not precise in that any two “large”
numbers are equal; so for example, 10000 = 10001.4.

So, we cannot find a path through any of the neighbors of (4, 3) to reduce
h. Therefore, the node (4, 3) is expanded next, which places all nodes whose
back pointers point to (4, 3), which in this case is only (3, 2), onto the open
list with a high h value (algorithm 14, line 17). Now, (3, 2) is also a raise
state. Note that the k value of (3, 2) is set to the minimum of its old and new
h values (this setting happens in the insert function). Next, we pop (5, 2)
but this will not affect anything because none of the surrounding nodes are
new, and the h values of the surrounding nodes are correct. See figure H.27
(left).

Now, node (3, 2) is popped off the open list. Since k < h, D∗ looks for
a neighbor whose h value is less than the k value of (3, 2) (algorithm 14,
line 9). If such a neighbor exists, then D∗ would redirect the backpointer
through this neighbor. However, no such neighbor exists.

Next, D∗ looks for neighboring nodes whose back pointers point to (3, 2)
and have an “incorrect” h value, i.e., all neighboring nodes with h values
not equal to the h value of (3, 2) plus its associated transition cost. Such

86APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

nodes are also placed onto the open list with a high h value, making them
raise states (algorithm 14, line 24). These are (3, 1), (2, 1), and (2, 2). Note
that the k values of these nodes are set to the minimum of the new h value
and the old h value.

Also, D∗ looks for neighboring nodes whose back pointer does not point
to (3, 2), whose h value plus the transition cost is less than the h value of
(3, 2), which is on the closed list, and whose h value is greater than the k
value of (3, 2) (algorithm 14, line 29). The only such neighbor is (4, 1). This
could potentially lead to a lower cost path. So, the neighbor (4, 1) is put on
the open list with its current h value because it could potentially reduce the
h value of (3, 2). It is called a lower state because h = k. See figure H.27
(right).

Continuing with the lowest k value node, the node (4, 1) is popped off
the open list and expanded. Since the h and k values of (4, 1) are the same,
D∗ considers the neighbors whose pack pointers do not point to (4, 1) to see
if passing through (4, 1) reduces any of the neighbors h values (algorithm 14,
line 17). This redirects the backpointers of (3, 2) and (3, 1) to pass through
(4, 1); moreover, these nodes are then put onto the open list. However,
since (3, 2) was “closed,” its new k value is the smaller of its old and new
h values, making it a lower state (since k = h). Similarly, since (3, 1) was
“open” (already on the open list), its new k value is the smaller of its old k
value and its new h value. See figure H.28 (left).

Next, the node (3, 1) is popped off the open list. Since its k value 6.6
is less than its h value 7.2, D∗ looks for a neighbor whose h value is less
than the k value of (3, 1) (algorithm 14, line 9). The only such neighbor
is (4, 1). This gives us hope that there is a lower cost path through (4, 1).
However, since the sum of the transition cost to (4, 1) and the h value of
(4, 1) is greater than the h value of (3, 1), no such improved path exist and
nothing happens. However, the node (3, 1) can be used to form a reduced
cost path for its neighbors, so (3, 1) is put back on the open list but with
a k value set to the minimum of its old h value and new h value. Thus, it
now also becomes a lower state. See figure H.28 (right).

The node (2, 2) is then popped off the open list and expanded. This
increases the h values of the nodes that pass through (2, 2) and puts them
back on the open list. When the nodes (1, 1), (1, 2) and (1, 3) are put back
onto the open list, their k values are unaffected, hence their position in the
open list remains the same, but their h values are increased making them
raise states (algorithm 14, line 24). See figure H.29 (left). Next the node
(2, 1) is popped off the queue and since k < h and it cannot reduce the cost
to any of its neighbors, so this has no effect. See figure H.29 (right).

H.3. D∗ ALGORITHM 87

Now, the node (3, 1) is popped off the open list and expanded. This has
the effect of redirecting the back pointers of (2, 2) and (2, 1) through (3, 1)
and putting them back on the open list with a k value equal to the minimum
of the old and new h values (algorithm 14, line 17). Because k equals h,
they are now lower states. See figure H.30 (left). Now, kmin = h(Xc) which
is the h-value of the current robot position, the terminating condition of
REPAIR−REPLAN (algorithm 8). Note that Xc is still on the open list
and this should not be a concern because even if Xc were popped off of the
open list, no improvement can be made because the current path cost h is
already optimal. Finally, the new path is determined via gradient descent
of the h values (figure H.30 (right)), and then the robot follows the path to
the goal (figure H.31).

Algorithm 9 GET −BACKPOINTER− LIST (L,S,G)

Input: A list of states L and two states (start and goal)
Output: A list of states from start to goal as described by the back-
pointers in the list of states L

1: if path exists then
2: Return (The list of states)
3: else

4: Return (NULL)
5: end if

Algorithm 10 INSERT (O,X, hnew)

Input: Open list, a state, and an h-value
Output: Open list is modified

1: if t(X) = NEW then

2: k(X) = hnew
3: else if t(X) = OPEN then

4: k(X) = min(k(X), hnew)
5: else if t(X) = CLOSED then

6: k(X) = min(h(X), hnew)
7: end if

8: h(X) = hnew
9: t(X) = OPEN

10: Sort O based on increasing k values

88APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Algorithm 11 MODIFY −COST (O,X, Y, cval)

Input: The open list, two states and a value
Output: A k-value and the open list gets updated

1: c(X,Y) = cval
2: if t(X) = CLOSED then

3: INSERT (O,X, h(X))
4: end if

5: Return GET −KMIN(O) (algorithm 13)

Algorithm 12 MIN − STATE(O)

Input: The open list O
Output: The state with minimum k value in the list related values

1: if O = ∅ then

2: Return (−1)
3: else

4: Return (argminY ∈Ok(Y))
5: end if

Algorithm 13 GET −KMIN(O)

Input: The open list O
Output: Lowest k-value of all states in the open list

1: if O = ∅ then

2: Return (−1)
3: else

4: Return (minY ∈O k(Y))
5: end if

H.3. D∗ ALGORITHM 89

Figure H.24. (Left) Termination of initial search phase:
start cell is expanded. (Right) Tracing backpointers yields
the optimal path, or is it?

Figure H.25. (Left) The robot physically starts tracing
the optimal path. (Right) The robot cannot trace the
assumed optimal path: gate (4, 3) prevents passed. All
nodes surrounding (4, 3) are put on the open list.

90APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Figure H.26. (Left) Pop (5, 4) off of the open list and ex-
pand; node (4, 3) becomes a raise state. (Right) Pop (5, 3)
off of open list but this has not effect.

Figure H.27. (Left) Pop (4, 3) off of open list, and try to
find a better path through it; none exist. Eventually (3, 2)
is put on the open list as a raise state. (Right) Pop (3, 2)
off of open list.

H.3. D∗ ALGORITHM 91

Figure H.28. (Left) Pop (4, 1) off of open list (Right) Pop
(3, 1) off of open list.

Figure H.29. (Left) Pop (2,2) off the queue and expand it
(Right) Pop (2, 1) off of open list.

92APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Figure H.30. (Left) Pop (3,1) off the queue and expand it.
(Right) Determine optimal path from the current location
to the goal by following gradient of h values.

Figure H.31. Robot moves to goal from its current loca-
tion.

H.3. D∗ ALGORITHM 93

Algorithm 14 PROCESS − STATE

Input: List of all states L and the list of all states that are open O
Output: A kmin, an updated list of all states, and an updated open list

1: X = MIN − STATE(O) (algorithm 12)
2: if X = NULL then

3: Return (−1)
4: end if

5: kold = GET −KMIN(O) (algorithm 13)
6: DELETE(X)
7: if kold < h(X) then
8: for each neighbor Y ∈ L of X do

9: if t(Y) 6= NEW and h(Y) ≤ kold and h(X) > h(Y)+c(Y,X) then
10: b(X) = Y
11: h(X) = h(Y) + c(Y,X);
12: end if

13: end for

14: end if

15: if kold = h(X) then
16: for each neighbor Y ∈ L of X do

17: if (t(Y) = NEW) or (b(Y) = X and h(Y) 6= h(X) + c(X,Y)) or
(b(Y) 6= X and h(Y) > h(X) + c(X,Y)) then

18: b(Y) = X
19: INSERT (O,Y, h(X) + c(X,Y)) (algorithm 10)
20: end if

21: end for

22: else

23: for each neighbor Y ∈ L of X do

24: if (t(Y) = NEW) or (b(Y) = X and h(Y) 6= h(X)+c(X,Y)) then
25: b(Y) = X
26: INSERT (O,Y, h(X) + c(X,Y))
27: else if b(Y) 6= X and h(Y) > h(X) + c(X,Y) then
28: INSERT (O,X, h(X))
29: else if (b(Y) 6= X and h(X) > h(Y) + c(Y,X)) and (t(Y) =

CLOSED) and (h(Y) > kold) then
30: INSERT (O,Y, h(Y))
31: end if

32: end for

33: end if

34: Return GET −KMIN(O) (algorithm 13)

94APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

H.4 D
∗ Lite

The D∗ Lite algorithm is perhaps an easier-to-understand advancement over
the D∗ approach and is therefore more often used. One need not know the
details of D∗ to understand D∗ Lite, however we make some comparisons
here for the sake of explanation. Just like D∗, D∗ Lite has the effect of locally
repairing the graph when a change occurs. However, D∗ Lite does not have
any back pointers to determine a path; instead each D∗ Lite node contains
additional values: an objective function g and a “look ahead” function rhs.
In general, g is a type of cost-to-goal function.

Nodes are called consistent if their g and rhs values are the same and
likewise are inconsistent if their g and rhs functions differ. If g > rhs, then
a node is over-consistent and if g < rhs, the a node is under-consistent.
This notion of consistency is analogous to the raise and lower states of D∗.
Finally, there is a heuristic function h, which has the same meaning as h
from A∗ and is therefore different from the h in D∗.

The graph being search is assumed to be a directed graph where c(u, v) is
the cost to traverse a directed edge from the source node u to the destination
v (D∗ defined c(u, v) to be the cost from v to u). Hence, the Succ(u) and
the Pred(u) are the successors and predecessors, respectively, of the node
u. With these terms in-hand, the rhs function is defined as

rhs(u) = min
s′∈Succ(u)

(c(u, s′) + g(s′))

There is an open list (again sometimes called a priority queue) U whose
key k is now a two-vector, as opposed to the real k values as before. This
key is

k(s) =

[

min(g(s), rhs(s)) + h(sstart, s)
min(g(s), rhs(s))

]

Sometimes, the first and second components of the key are called the primary
key and secondary key, respectively. If the primary key of u is less than the
primary key of v, then k(u) < k(v). If the primary keys are equal, then the
secondary keys are used as a tie breaker.

The D∗ Lite algorithm (algorithm 15) takes as input a directed graph,
the edge costs (which can be modified), a start state and a goal state. In
general, after an initial search, D∗ Lite determines a path by performing
gradient descent on the sum of the edge costs and objective function g, i.e.,
chose the next node whose g value in addition to the cost to get there is
smallest. This procedure terminates either when the robot reaches the goal
or detects a change in edge cost. At this point, the edge costs are repaired

H.4. D∗ LITE 95

and the rhs and g values are updated to reflect these changes. Once all of the
changes are computed, D∗ Lite continues with gradient descent to follow the
optimal path. Ultimately, algorithm 15 does not output anything, per say,
but the search graph is updated so that the rhs and g values are assigned
appropriately.

Now, let us take a closer look at algorithm 15. Assume without loss
of generality that the start and goal nodes initially differ, so the objective
is to move from the start to the goal. First, algorithm 16 initializes the
open list to empty, sets all of the rhs and g values to infinity, assigns the
rhs value of the goal to zero, and places the goal on the open list. This
makes the goal inconsistent, specifically over-consistent. Therefore, when
ComputeShortestPath (algorithm 17) is called, the highest priority element,
i.e., the lowest key value, of the open list is the goal. Naturally, the goal’s
key value is less than the key value of the start. ComputeShortestPath then
makes the goal consistent by setting the g value equal to its rhs value and
for all nodes with outgoing edges that terminate at the goal, each node has
its rhs value updated. This process repeats until the start node is consistent
and the top key on the open list is not less than the key of the start node.
At this point, the loop terminates and an optimal path can be determined.

While the current and goal nodes are not the same, the robot moves
from the current node toward the goal. At each step, the planner directs
the robot to the successor node whose g value summed with cost to traverse
the edge to that successor node is minimal over all successor nodes, i.e.,
from u, chose the next node such that c(u, s′) + g(s′) is minimized over all
s′ ∈ Succ(u).

In the process of following the optimal path to the goal, if there are any
changes in the graph, or more specifically if there are any changes in the
graph within sensor range of the robot, D∗ Lite first updates these edge
costs, updates the source nodes of the affected edges, updates the keys of
the appropriate nodes in the open list, and then calls ComputeShortestPath
again to make the appropriate nodes consistent. This last action has the
ultimate effect of locally repairing the optimal path by altering the g and
rhs values. This entire process continues until the current and goal states
are the same.

The ComputeShortestPath (algorithm 17) does nothing unless the start
node is inconsistent or the lowest priority node in the open list has a key value
less than the start’s key value. If this is the case, the lowest priority state u
is popped off the open list. If it is over-consistent, ComputeShortestPath
makes u consistent and updates all of the nodes with edges terminating
at u. If u is under-consistent, then ComputeShortestPath makes u over-

96APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Algorithm 15 D∗Lite(S, sstart, sgoal)

Input: A graph of nodes S and two nodes (start and goal)
Output: A modified graph of nodes S with their k and rhs values
properly set.

1: scurrent = sstart
2: Initialize() (algorithm 16)
3: ComputeShortestPath() (algorithm 17)
4: while scurrent 6= sgoal do
5: if g(scurrent) = ∞ then

6: Break (No path exists)
7: end if

8: scurrent = argmins′∈Succ(scurrent)(c(scurrent, s
′) + g(s′))

9: Move to scurrent
10: Scan graph for any changed costs (within sensor limits)
11: if any edge cost changed then

12: for each directed edge (u, v) with changed cost do
13: Update edge cost c(u, v)
14: UpdateV ertex(u)
15: end for

16: for each s ∈ U do

17: Update(U, s,CalculateKey(s)
18: end for

19: ComputShortestPath()
20: end if

21: end while

Algorithm 16 Initialize()

Input: The start sstart, scurrent, goal sgoal, open list U and graph of
states S are global variables.
Output: A modified open list U and modified graph of states S with
updated rhs and g values.

1: U = ∅
2: for each s ∈ S do

3: rhs(s) = g(s) = ∞
4: end for

5: rhs(sgoal) = 0
6: Insert(U, sgoal, CalculateKey(sgoal))

H.4. D∗ LITE 97

Algorithm 17 ComputeShortestPath()

Input: The start sstart, scurrent, goal sgoal, open list U and graph of
states S are global variables.
Output: A modified open list U and modified graph of states S with
updated rhs and g values.

1: while (TopKey(U) < CalculateKey(scurrent)) or (rhs(scurrent) 6=
g(scurrent)) do

2: u = Pop(U)
3: if g(u) > rhs(u) then
4: g(u) = rhs(u)
5: for each s ∈ Pred(u) do
6: UpdateV ertex(s)
7: end for

8: else

9: g(u) = ∞
10: for each s ∈ Pred(u)

⋃{u} do

11: UpdateV ertex(s)
12: end for

13: end if

14: end while

consistent and updates u, as well as all nodes with edges terminating at
u. The nodes are updated in algorithm 18 and the keys are calculated in
algorithm 19.

Algorithm 18 UpdateV ertex(u)

Input: A node u, and the start sstart, scurrent, goal sgoal, and open list
U are global variables.
Output: A modified node u and a modified open list U .

if u 6= sgoal then
rhs(u) = mins′∈Succ(u)(c(u, s

′) + g(s′))
end if

if u ∈ U then

Remove(U, u)
end if

if g(u) 6= rhs(u) then
Insert(U, u,CalculateKey(u))

end if

98APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Algorithm 19 CalculateKey(s)

Input: A node s.
Output: A key for s.

Return (min(g(s), rhs(s)) + h(scurrent, s);min(g(s), rhs(s)))

Figure H.32. Eight connected grids with pairwise directed
edges between neighboring cells.

Let’s consider the example where D∗ Lite searches a grid of cells. Each
node in the graph corresponds to a cell and each pair of neighboring nodes
u and v has a pair of directed edges: one from u to v and visa versa. The
cost to travel from one free cell to a neighboring free cell is 1 if it is an up,
down, left or right motion, and is 1.4 if it is a diagonal motion. The cost of
travel either from an obstacle cell or to an obstacle cell infinite, as depicted
in figure H.32.

Initially, all of the nodes’ rhs and g values are set to infinity, except for
the goal whose rhs value is set to zero and its g value is set to infinity. Since
the goal is now inconsistent, it is put on the open list. See figure H.33.

D∗ Lite then calls ComputeShortestPath which immediately pops the
goal off of the open list, and since it is over-consistent, makes it consistent
with rhs and g values of zero. Now, ComputeShortestPath expands the
popped node by calling UpdateV ertex on all of its predecessors. This com-
putes rhs values for the predecessors and puts them on the open list, but
only if they become inconsistent. Node (1, 1) is a predecessor but not put
on the open list because it remained consistent. See figure H.34 where the
small arrows indicate which node is used to compute the rhs value, e.g., the

H.4. D∗ LITE 99

Figure H.33. (Left) Goal rhs value set to zero and all other
rhs and g values to infinity (Right) Goal is put on open
list. Arrows are not back pointers but rather represent
gradient directions.

Figure H.34. (Left) The goal is popped of the open list.
(Right) The goal is expanded and the resulting inconsis-
tent nodes are put the on open list.

rhs value of (0, 1) is computed using the g value of (0, 0) and the transition
cost from (1, 0) to (0, 0), i.e., 1 = 0 + 1.

Continue in ComputeShortestPath by popping (0, 1), which is tied with
(1, 0) for the minimum node in the open list. Here, UpdateV ertex is called
on all of the predecessors of the popped node. When UpdateV ertex is called

100APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Figure H.35. (Left) Pop minimum node off of list but do
not expand any neighbors on open list. (Right) Pop mini-
mum node off of open list and put inconsistent neighboring
nodes on the open list.

on each predecessor node, the rhs value of each predecessor is updated by
examining the g-values of each of the predecessor’s successors in the graph.
Since, (0, 1) is over-consistent, it is made consistent and all predecessors of
(0, 1) have their rhs values updated via UpdateV ertex. Two of its prede-
cessors become inconsistent and are put on the open list. Again, the rhs
values of the predecessors (0, 0) and (1, 1) did not change, and as such, did
not become inconsistent and are not put on the open list. The rhs value of
(1, 0) did not also did not change but was already inconsistent and on the
open list. See figure H.35. Now, (1, 0) is expanded but no predecessors of
(1, 0) are put on the open list because they remained consistent after calling
UpdateV ertex.

This Dijkstra-like search continues until the start node is effectively ex-
panded and made consistent. In figure H.36, (3, 1) is popped and expanded,
and all of its predecessors, which become inconsistent, are put on the open
list. Note that the start was already on the open list. At this point, the start
has the lowest key value, so is popped off the open list and made consistent.
In this case, none of the predecessors of the start become inconsistent, so are
not put on the open list, although some were already on the open list. At
this point, since the start node is consistent and the top key on the open list
is not less than the key of the start node, an optimal path exists. This al-
lows the ComputeShortestPath loop to terminate. Finally, note that some

H.4. D∗ LITE 101

Figure H.36. (Left) Pop minimum node off of open list
and put inconsistent neighboring nodes on the open list.
(Right) Pop start off of the open list, make it consistent,
but no nodes are put on the open list.

nodes remain on the open list and for examples with larger graphs, some
nodes may not have been considered at all.

The robot then follows the negated gradient of g from the start to the
goal until the robot detects an obstacle at (2, 2). See figure H.37. The
algorithm dictates that for all directed edges (u, v) with changed edge costs,
UpdateV ertex(u) is called. Since the edges are directed and in this example
all neighboring cells u and v have two edges, one from u to v and visa versa,
(2, 2) has 16 affected edges. See figure H.38.

Let’s consider the outgoing and incoming edges to (2, 2) separately. For
each of the outgoing edges, UpdateV ertex is called on (2, 2). First, the
outgoing edge to (2, 3) is called. Since the edge cost is now infinite, the rhs
value of (2, 2) is raised to infinity making it inconsistent and hence (2, 2) is
put on the open list. Now, when UpdateV ertex is called for the rest of the
outgoing edges of (2, 2), nothing happens because (2, 2) remains inconsistent.

Now, consider the incoming edges to (2, 2). One of the predecessors of
the incoming edge to (2, 2) is (3, 3), so UpdateV ertex is called on (3, 3). The
minimum possible rhs value of (3, 3) is still 4.8, but this value is based on
the g value of (2, 3), not (2, 2). The node (3, 3) is still consistent, so it is
not put on the open list. Another incoming edge to (2, 2) comes from (3, 2),
so UpdateV ertex is called on this node. Since the transition cost to (2, 2)
increased, the minimum possible rhs value of (3, 2) is now 5.2, computed

102APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Figure H.37. (Left) Follow optimal path via gradient de-
scent of g. (Right) The robot discovers that (2, 2) is an
obstacle.

Figure H.38. (Left) Outgoing edges to (2, 2). (Right) In-
coming edges to (2, 2).

based on the g value of (2, 3) where 5.2 = 3.8 + 1.4. See figure H.39.

Another incoming edge to (2, 2) comes from (3, 1). The minimum pos-
sible rhs value of (3, 1) is now 5.4, computed based on the g value of (3, 2).
Again, note that the rhs value of a node is always computed using the g,
not a rhs, values of its successors. The remaining five nodes – (1, 1), (1, 2),
(1, 3), (2, 3) and (2, 1) – remain consistent and hence are not put on the
open list. See figure H.40.

H.4. D∗ LITE 103

Figure H.39. Incoming edges to (2, 2) (Left) Node (3, 3) is
considered. (Right) Node (3, 2) is considered

Figure H.40. Incoming edges to (2, 2) (Left) Node (3, 1) is
considered. (Right) The remaining nodes are considered

Note that the processing order of (3, 2) versus (3, 1) does not matter
because when (3, 2) is processed, its rhs-value, not its g-value, is updated.
Then, when (3, 1) is updated, its rhs-value is updated and is based on the
g-value of (3, 2), which has not changed, and not its rhs value. As such, we
will get the same effect whether we process (3, 2) before (3, 1) or vice versa.

Now, D∗ Lite goes back to CompteShortestPath until a new optimal
path is found. Note that the current robot position is inconsistent and does
not have the smallest key value in the open list. This indicates an optimal

104APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Figure H.41. (Left) Node (2, 2) is considered. (Right)
Node (3, 2) is considered.

path, based on all available information, has not been determined. The node
with the minimum key is (2, 2). It is under-consistent, so its g value is set
to infinity and UpdateV ertex is called on all of its predecessors. This does
not make any of the predecessors inconsistent, so none are put on the open
list. See figure H.41.

Next, (3, 2) is popped and it is under-consistent, so its g is set to infinity.
Next, its predecessors are updated: (4, 2) becomes inconsistent, (3, 1) is
updated but remains inconsistent, (4, 1) remains inconsistent but its rhs
value does not change and is now computed from the g value of (3, 1). Also,
(3, 2) is updated, remains inconsistent and is put back on the open list. See
figure H.42.

Still in the ComputeShortestPath procedure, (3, 1) is popped off the
open list and since it is under-consistent, its g value is made infinite and its
predecessors are updated: (4, 1) is updated and remains inconsistent, while
(3, 0) and (4, 0) are updated but are now consistent since both g and rhs
are infinite. See figure H.43.

Also, since (3, 1) is under-consistent, ComputeShortest path calls
UpdateV ertex on (3, 1), which results in putting (3, 1) back on the open
list since it remains inconsistent. Now, (3, 2) has the smallest key value, so
it is popped off of the open list and since it is over-consistent, its g value is
set to its rhs value. See figure H.44. When its predecessors are updated,
(3, 1) is modified but still remains inconsistent, so it stays on the open list.
See figure H.45 (left).

H.4. D∗ LITE 105

Figure H.42. Expand (3, 2) and update its predecessors
and it.

Figure H.43. (Left) Node (3, 1) is popped. (Right) The
predecessor nodes of (3, 1) are updated.

Once again, the node corresponding to the robots current position is
consistent and the top key on the open list is not less than the key of
current position. Therefore, a new optimal path has been found and
ComputeShortestPath breaks out of its loop. Once again, the optimal
path is determined by following the gradient of g. See figure H.45.

106APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Figure H.44. (Left) Node (3, 1) remains on the open list
(Right) Node (3, 2) is expanded.

Figure H.45. (Left) Update the predecessors of (3, 2)
(Right) A new optimal path has been found.

H.5 A Comment on Reverse Searching

The search starts at the goal, and works backward, for good reason. After
the initial search, the back pointers form a search tree which is rooted at the
goal. Bearing in mind that the robot detects changes in edge costs near its
current position, one could easily see that if the root of the search tree were
the start node, then the search tree would have be drastically recomputed.
With the goal node at the root of the tree, when an edge cost changes,

H.5. A COMMENT ON REVERSE SEARCHING 107

only a subtree that contains the current robot position is repaired where
part of that subtree will be redirected to nodes in a neighboring subtree.
In fact, in general, the entire subtree is not repaired; the repairing process
terminates when an optimal path from the current robot position to the goal
is determined.

A change in the environment is just one reason why a robot may need
to replan its path. Another has to do with the stochastic nature of the
robot’s motion. For example, error in control or unforeseen slippage may
cause the robot to fall off its intended path. The benefit of performing the
reverse search is that for small perturbations, an optimal path to the goal for
nearby nodes was already computed during the initial Dijkstra-like search.
In fact, one can determine the best action for all nodes in the graph, not
just the ones along the shortest path.

A mapping from nodes to actions is called a universal plan, or policy.
Techniques for finding optimal policies are known as universal planners and
can be computationally more involved than the shortest path techniques
surveyed here. One simple way to attain a universal plan to a goal is to
run Dijkstra’s algorithm backward (as in D∗): After completion, we know
for each node in the graph the length of an optimal path to the goal, along
with the appropriate action. Generalizations of this approach are commonly
used in stochastic domains, where the outcome of actions is modeled by a
probability distribution over nodes in the graph.

108APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Appendix I

Statistics Primer

• On Pg 548, the ∧ should be a ∩. So
Pr(E1 ∩E2) = Pr(E1) · Pr(E2)

should read

Pr(E1 ∩E2) = Pr(E1) · Pr(E2)

• On pg 549, cumulative is misspelled, twice.

109

110 APPENDIX I. STATISTICS PRIMER

Appendix J

Linear Systems and Control

• The dot over x(k+1) should not be there in eq (J.10). So the ẋ(k+1)
should read x(k + 1).

111

112 APPENDIX J. LINEAR SYSTEMS AND CONTROL

Bibliography

[1] http://www.aemdesign.com.

[2] http://www.sbsi-sol-optimize.com/NPSOL.htm.

[3] http://www.vni.com.

[4] http://www.nag.com.

[5] Webster’s Ninth New Collegiate Dictionary. Merriam-Webster, Inc.,
Springfield, MA, 1990.

[6] R. Abraham, J. Marsden, and T. Ratiu. Manifolds, Tensor Analysis,
and Applications. Springer-Verlag, New York, 2 edition, 1988.

[7] R. Abraham and J. E. Marsden. Foundations of Mechanics. Addison-
Wesley, 1985.

[8] E. U. Acar and H. Choset. Sensor-based coverage of unknown envi-
ronments: Incremental construction of Morse decompositions. Inter-
national Journal of Robotics Research, 21:345–366, April 2002.

[9] E. U. Acar, H. Choset, A. A. Rizzi, P. Atkar, and D. Hull. Morse
decompositions for coverage tasks. International Journal of Robotics
Research, 21:331–344, April 2002.

[10] M. Akinc, K. E. Bekris, B. Chen, A. Ladd, E. Plaku, and L. E.
Kavraki. Probabilistic roadmaps of trees for parallel computation of
multiple query roadmaps. In International Symposium on Robotics
Research, 2003. Book to appear.

[11] R. Alami, J. Laumond, and T. Siméon. Two manipulation planning
algorithms. In K. Goldberg, D. Halperin, J. C. Latombe, and R. Wil-
son, editors, Algorithmic Foundations of Robotics, pages 109–125. A.K.
Peters, 1995.

113

114 BIBLIOGRAPHY

[12] R. Alami, T. Siméon, and J. P. Laumond. A geometrical approach to
planning manipulation tasks. In International Symposium on Robotics
Research, pages 113–119, 1989.

[13] P. Allen and I. Stamos. Integration of range and image sensing for
photorealistic 3D modeling. In IEEE International Conference on
Robotics and Automation, 2000.

[14] N. M. Amato, B. Bayazit, L. Dale, C. Jones, and D. Vallejo. OBPRM:
An obstacle-based PRM for 3d workspaces. In P. Agarwal, L. E.
Kavraki, and M. Mason, editors, Robotics: The Algorithmic Perspec-
tive, pages 156–168. AK Peters, 1998.

[15] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo.
Choosing good distance metrics and local planners for probabilistic
roadmap methods. In IEEE International Conference on Robotics
and Automation, pages 630–637, 1998.

[16] N. M. Amato, K. Dill, and G. Song. Using motion planning to map
protein folding landscapes and analyze folding kinetics of known native
structures. In International Conference on Research in Computational
Molecular Biology, pages 2–11, April 2002.

[17] N. M. Amato and G. Song. Using motion planning to study protein
folding pathways. In International Conference on Research in Com-
putational Molecular Biology, pages 287–296, 2001.

[18] E. Anshelevich, S. Owens, F. Lamiraux, and L. E. Kavraki. De-
formable volumes in path planning applications. In IEEE Inter-
national Conference on Robotics and Automation, pages 2290–2295,
2000.

[19] M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, J. Latombe, and
C. Varm. Stochastic roadmap simulation: An efficient representation
and algorithm for analyzing molecular motion. Journal of Computa-
tional Biology, 10:257–281, 2003.

[20] M. Apaydin, C. Guestrin, C. Varma, D. Brutlag, and J. Latombe.
Studying protein-ligand interactions with stochastic roadmap simula-
tion. Bioinformatics, 18(2):18–26, 2002.

[21] M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, and J. C. Latombe.
Stochastic roadmap simulation: An efficient representation and algo-
rithm for analyzing molecular motion. In International Conference

BIBLIOGRAPHY 115

on Research in Computational Molecular Biology, pages 12–21, April
2002.

[22] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-
Verlag, 1989.

[23] K. Arras, N. Tomatis, B. Jensen, and R. Siegwart. Multisensor on-
the-fly localization: Precision and reliability for applications. Robotics
and Autonomous Systems, 34(2-3):131–143, 2001.

[24] K. Arras and S. Vestli. Hybrid, high-precision localization for the
mail distributing mobile robot system MOPS. In IEEE International
Conference on Robotics and Automation, 1998.

[25] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on
particle filters for on-line non-linear/non-Gaussian Bayesian tracking.
IEEE Transactions on Signal Processing, 50(2):174–188, 2002.

[26] F. Aurenhammer. Voronoi diagrams — A survey of a fundamental
geometric structure. ACM Computing Surveys, 23:345–405, 1991.

[27] D. Avots, E. Lim, R. Thibaux, and S. Thrun. A probabilistic tech-
nique for simultaneous localization and door state estimation with
mobile robots in dynamic environments. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2002.

[28] B. Baginski. Local motion planning for manipulators based on shrink-
ing and growing geometry models. In IEEE International Conference
on Robotics and Automation, pages 3303 –3308, 1996.

[29] J. Baillieul and B. Lehman. Open-loop control using oscillatory inputs.
In CRC Control Handbook, pages 967–980. CRC Press, Boca Raton,
FL, 1996.

[30] D. J. Balkcom and M. T. Mason. Time optimal trajectories for dif-
ferential drive vehicles. International Journal of Robotics Research,
21(3):199–217, Mar. 2002.

[31] J. Barraquand and P. Ferbach. A penalty function method for con-
strained motion planning. In IEEE International Conference on
Robotics and Automation, pages 1235–1242, 1994.

[32] J. Barraquand, L. E. Kavraki, J. C. Latombe, T.-Y. Li, R. Motwani,
and P. Raghavan. A random sampling scheme for robot path planning.
International Journal of Robotics Research, 16(6):759–774, 1997.

116 BIBLIOGRAPHY

[33] J. Barraquand, B. Langlois, and J. Latombe. Numerical potential field
techniques for robot path planning. IEEE Transactions on Man and
Cybernetics, 22(2):224–241, Mar/Apr 1992.

[34] J. Barraquand and J. C. Latombe. Robot motion planning: A dis-
tributed representation approach. Technical Report STAN-CS-89-
1257, Stanford University, Stanford CA, 1989.

[35] J. Barraquand and J. C. Latombe. Robot motion planning: A dis-
tributed representation approach. International Journal of Robotics
Research, 10(6):628–649, Dec. 1991.

[36] J. Barraquand and J. C. Latombe. Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles. Algorithmica, 10:121–155, 1993.

[37] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic
Geometry. Springer-Verlag, 2003.

[38] K. E. Bekris, B. Chen, A. Ladd, E. Plaku, and L. Kavraki. Multiple
query motion planning using single query primitives. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 656–
661, 2003.

[39] J. Bentley. Multidimensional divide and conquer. Communications of
the ACM, 23(4), 1980.

[40] D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont,
MA, second edition, 1999.

[41] P. Besl and N. McKay. A method for registration of 3D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(14):239–256, 1992.

[42] P. Bessiere, E. Mazer, and J.-M. Ahuactzin. Planning in continu-
ous space with forbidden regions: The ariadne’s clew algorithm. In
K. Goldberg, K. Goldberg, R. Wilson, and D. Halperin, editors, Algo-
rithmic Foundations of Robotics (WAFR), pages 39–47. A.K. Peters,
Wellsley MA, 1995.

[43] P. Bessiere, E. Mazer, and J.-M. Ahuactzin. The ariadne’s clew algo-
rithm. Journal of Artificial Intelligence Research (JAIR), 9:295–316,
1998.

BIBLIOGRAPHY 117

[44] J. T. Betts. Survey of numerical methods for trajectory optimization.
AIAA Journal of Guidance, Control, and Dynamics, 21(2):193–207,
March-April 1998.

[45] A. M. Bloch. Nonholonomic Mechanics and Control. Springer, New
York, 2003.

[46] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control
of robotic manipulators along specified paths. International Journal
of Robotics Research, 4(3):3–17, Fall 1985.

[47] R. Bohlin. Path planning in practice: Lazy evaluation on a multi-
resolution grid. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2001.

[48] R. Bohlin and L. E. Kavraki. Path planning using lazy PRM. In IEEE
International Conference on Robotics and Automation, pages 521–528,
2000.

[49] R. Bohlin and L. E. Kavraki. A randomized algorithm for robot path
planning based on lazy evaluation. In P. Pardalos, S. Rajasekaran,
and J. Rolim, editors, Handbook on Randomized Computing, pages
221–249. Kluwer Academic Publishers, 2001.

[50] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.
John Wiley and Sons Inc., New York, NY, 2000.

[51] B. Bonnard. Contrôlabilité des systèmes nonlinéaires. C. R. Acad.
Sci. Paris, 292:535–537, 1981.

[52] V. Boor, N. H. Overmars, and A. F. van der Stappen. The Gaussian
sampling strategy for probabilistic roadmap planners. In IEEE Inter-
national Conference on Robotics and Automation, pages 1018–1023,
1999.

[53] W. M. Boothby. An Introduction to Differentiable Manifolds and Rie-
mannian Geometry. Academic Press, 1986.

[54] J. Borenstein, B. Everett, and L. Feng. Navigating Mobile Robots:
Systems and Techniques. A.K. Peters, Ltd., Wellesley, MA, 1996.

[55] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang. Quasi-
randomized path planning. In IEEE International Conference on
Robotics and Automation, pages 1481–1487, 2001.

118 BIBLIOGRAPHY

[56] G. E. Bredon. Topology and Geometry. Springer-Verlag, New York,
NY, 1993.

[57] T. Bretl, J. C. Latombe, and S. Rock. Toward autonomous free climb-
ing robots. In International Symposium on Robotics Research, 2003.
Book to appear.

[58] R. W. Brockett. Nonlinear systems and differential geometry. Pro-
ceedings of the IEEE, 64(1):61–72, Jan. 1976.

[59] R. W. Brockett. Control theory and singular Riemannian geometry.
In P. J. Hilton and G. S. Young, editors, New Directions in Applied
Mathematics, pages 11–27. Springer-Verlag, 1982.

[60] R. Brooks and T. Lozano-Pérez. A subdivision algorithm in configu-
ration space for findpath with rotation. IEEE Transactions Systems,
Man, and Cybernetics, 15:224–233, 1985.

[61] R. A. Brooks. Solving the find-path problem by good representation
of free space. IEEE Transactions on Systems, Man, and Cybernetics,
13(3):190–197, 1983.

[62] R. C. Brost. Analysis and Planning of Planar Manipulation Tasks.
PhD thesis, Carnegie Mellon University, Jan. 1991. Available as Tech-
nical Report CMU-CS-91-149.

[63] R. C. Brost. Computing the possible rest configurations of two inter-
acting polygons. In IEEE International Conference on Robotics and
Automation, pages 686–693, Apr. 1991.

[64] A. E. Bryson. Dynamic Optimization. Addison-Wesley, 1998.

[65] A. E. Bryson and Y. C. Ho. Applied Optimal Control. Hemisphere
Publishing, New York, 1975.

[66] J. Buhmann, W. Burgard, A. Cremers, D. Fox, T. Hofmann, F. Schnei-
der, J. Strikos, and S. Thrun. The mobile robot RHINO. AI Magazine,
16(2):31–38, Summer 1995.

[67] F. Bullo. Series expansions for the evolution of mechanical control
systems. SIAM Journal on Control and Optimization, 40(1):166–190,
2001.

[68] F. Bullo. Averaging and vibrational control of mechanical systems.
SIAM Journal on Control and Optimization, 41:542–562, 2002.

BIBLIOGRAPHY 119

[69] F. Bullo, N. E. Leonard, and A. D. Lewis. Controllability and motion
algorithms for underactuated Lagrangian systems on Lie groups. IEEE
Transactions on Automatic Control, 45(8):1437–1454, 2000.

[70] F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems.
Springer, 2004.

[71] F. Bullo, A. D. Lewis, and K. M. Lynch. Controllable kinematic re-
ductions for mechanical systems: Concepts, computational tools, and
examples. In 2002 International Symposium on the Mathematical The-
ory of Networks and Systems, Aug. 2002.

[72] F. Bullo and K. M. Lynch. Kinematic controllability for decoupled tra-
jectory planning of underactuated mechanical systems. IEEE Trans-
actions on Robotics and Automation, 17(4):402–412, Aug. 2001.

[73] F. Bullo and M. Z̆efran. On mechanical control systems with non-
holonomic constraints and symmetries. Systems and Control Letters,
45(2):133–143, Jan. 2002.

[74] W. Burgard, A. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. Experiences with an interactive museum
tour-guide robot. Artificial Intelligence, 114(1-2), 2000.

[75] W. Burgard, A. Derr, D. Fox, and A. Cremers. Integrating global po-
sition estimation and position tracking for mobile robots: the dynamic
Markov localization approach. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1998.

[76] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the
absolute position of a mobile robot using position probability grids.
In Proc. of the National Conference on Artificial Intelligence (AAAI),
1996.

[77] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun. Sonar-
based mapping of large-scale mobile robot environments using EM. In
Proc. of the International Conference on Machine Learning (ICML),
1999.

[78] L. Bushnell, D. Tilbury, and S. Sastry. Steering three-input non-
holonomic systems: The fire-truck example. International Journal
of Robotics Research, 14(4):366–381, 1995.

120 BIBLIOGRAPHY

[79] Z. J. Butler, A. A. Rizzi, and R. L. Hollis. Contact sensor-based cov-
erage of rectilinear environments. In Proc. of IEEE Int’l Symposium
on Intelligent Control, Sept. 1999.

[80] P. E. Caines and E. S. Lemch. On the global controllability of Hamilto-
nian and other nonlinear systems: Fountains and recurrence. In IEEE
International Conference on Decision and Control, pages 3575–3580,
1998.

[81] S. Cameron. Collision detection by four-dimensional intersection test-
ing. IEEE Transactions on Robotics and Automation, pages 291–302,
1990.

[82] S. Cameron. Enhancing GJK: Computing minimum distance and pen-
etration distanses between convex polyhedra. In IEEE International
Conference on Robotics and Automation, pages 3112–3117, 1997.

[83] J. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

[84] J. Canny. Constructing roadmaps of semi-algebraic sets I: Complete-
ness. Artificial Intelligence, 37:203–222, 1988.

[85] J. Canny. Computing roadmaps of general semi-algebraic sets. The
Computer Journal, 35(5):504–514, 1993.

[86] J. Canny and M. Lin. An opportunistic global path planner. Algo-
rithmica, 10:102–120, 1993.

[87] J. Canny, J. Reif, B. Donald, and P. Xavier. On the complexity of
kinodynamic planning. In IEEE Symposium on the Foundations of
Computer Science, pages 306–316, White Plains, NY, 1988.

[88] J. F. Canny. Some algebraic and geometric computations in pspace.
In Proc. 20th ACM Symposium on the Theory of Computing, pages
460–469, 1998.

[89] Z. L. Cao, Y. Huang, and E. Hall. Region filling operations with ran-
dom obstacle avoidance for mobile robots. Journal of Robotic systems,
pages 87–102, February 1988.

[90] J. Carpenter, P. Clifford, and P. Fernhead. An improved particle
filter for non-linear problems. IEE Proceedings on Radar and Sonar
Navigation, 146(2-7), 1999.

BIBLIOGRAPHY 121

[91] A. Casal. Reconfiguration Planning for Modular Self-Reconfigurable
Robots. PhD thesis, Stanford University, Stanford, CA, 2002.

[92] J. Castellanos, J. Montiel, J. Neira, and J. Tardós. The SPmap: A
probabilistic framework for simultaneous localization and map build-
ing. IEEE Transactions on Robotics and Automation, 15(5):948–953,
1999.

[93] J. Castellanos and J. Tardós. Mobile Robot Localization and Map
Building: A Multisensor Fusion Approach. Kluwer Academic Publish-
ers, Boston, MA, 2000.

[94] P. C. Chen and Y. K. Hwang. SANDROS: A motion planner with
performance proportional to task difficulty. IEEE International Con-
ference on Robotics and Automation, pages 2346–2353, 1992.

[95] P. C. Chen and Y. K. Hwang. SANDROS:a dynamic graph search
algorithm for motion planning. IEEE Transactions on Robotics and
Automation, 14(3):390–403, June 1998.

[96] P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized
trajectory design. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 43–48, 2001.

[97] H. Choset. Nonsmooth analysis, convex analysis, and their applica-
tions to motion planning. Special Issue of the Int. Jour. of Comp.
Geom. and Apps., 1998.

[98] H. Choset and J. Burdick. Sensor based motion planning: Incremental
construction of the hierarchical generalized Voronoi graph. Interna-
tional Journal of Robotics Research, 19(2):126–148, February 2000.

[99] H. Choset and J. Burdick. Sensor based motion planning: The hier-
archical generalized Voronoi graph. International Journal of Robotics
Research, 19(2):96–125, February 2000.

[100] H. Choset and J. Y. Lee. Sensor-based construction of a retract-like
structure for a planar rod robot. IEEE Transaction of Robotics and
Automation, 17, 2001.

[101] H. Choset and K. Nagatani. Topological simultaneous localization and
mapping (T-SLAM). IEEE Transactions on Robotics Automation, 17,
April 2001.

122 BIBLIOGRAPHY

[102] H. Choset, K. Nagatani, and A. Rizzi. Sensor based planning: Using
a honing strategy and local map method to implement the generalized
Voronoi graph. In SPIE Conference on Systems and Manufacturing,
Pittsburgh, PA, 1997.

[103] H. Choset and P. Pignon. Coverage path planning: The boustrophe-
don decomposition. In Proceedings of the International Conference on
Field and Service Robotics, Canberra, Australia, December 1997.

[104] P. Choudhury and K. M. Lynch. Trajectory planning for second-order
underactuated mechanical systems in the presence of obstacles. In
J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, edi-
tors, Algorithmic Foundations of Robotics V, pages 559–575. Springer-
Verlag, 2002.

[105] W.-L. Chow. Uber systemen von linearen partiellen differentialgle-
ichungen erster ordnung. Math. Ann., 117:98–105, 1939.

[106] S. Ciarcia. An ultrasonic ranging system. Byte Magazine, pages 113–
123, October 1984.

[107] F. H. Clarke. Optimization and Nonsmooth Analysis. Society of In-
dustrial and Applied Mathematics, Philadelphia, PA, 1990.

[108] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-
COLLIDE: An interactive and exact collision detection system for
large-scale environments. In Symposium on Interactive 3D Graphics,
pages 189–196, 218, 1995.

[109] J. Colegrave and A. Branch. A case study of autonomous household
vacuum cleaner. In AIAA/NASA CIRFFSS, 1994.

[110] G. E. Collins. Quantifier elimination for real closed fields by cylindri-
cal algebraic decomposition. In Lecture Notes in Computer Science,
volume 33, pages 134–183. Springer-Verlag, 1975.

[111] H. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[112] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2002.

[113] J. Cortes, S. Martinez, J. P. Ostrowski, and H. Zhang. Simple mechan-
ical control systems with constraints and symmetry. SIAM Journal on
Control and Optimization, 41(3):851–874, 2002.

BIBLIOGRAPHY 123

[114] J. Cortés, T. Simeon, and J.-P. Laumond. A random loop generator
for planning the motions of closed kinematic chains. In IEEE Inter-
national Conference on Robotics and Automation, pages 2141–2146,
2002.

[115] J. Crowley. World modeling and position estimation for a mobile
robot using ultrasound ranging. In IEEE International Conference on
Robotics and Automation, 1989.

[116] T. Danner and L. E. Kavraki. Randomized planning for short inspec-
tion paths. In IEEE International Conference on Robotics and Au-
tomation, pages 971–976, San Fransisco, CA, April 2000. IEEE Press.

[117] M. de Berg, M. van Kreveld, and M. Overmars. Computational Ge-
ometry: Algorithms and Applications. Springer, Berlin, 1997.

[118] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo Localiza-
tion for mobile robots. In IEEE International Conference on Robotics
and Automation, 1999.

[119] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun. Structure from motion
without correspondence. In Proc. of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2000.

[120] A. O. Dempster, A. N. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, Series B, 39(1):1–38, 1977.

[121] G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and
M. Csorba. A solution to the simultaneous localisation and map build-
ing (SLAM) problem. IEEE Transactions on Robotics and Automa-
tion, 2001.

[122] A. W. Divelbiss and J. Wen. Nonholonomic path planning with in-
equality constraints. In IEEE International Conference on Decision
and Control, pages 2712–2717, 1993.

[123] A. W. Divelbiss and J.-T. Wen. A path space approach to nonholo-
nomic motion planning in the presence of obstacles. IEEE Transac-
tions on Robotics and Automation, 13(3):443–451, 1997.

[124] M. P. do Carmo. Riemannian Geometry. Birkhäuser, Boston, MA,
1992.

124 BIBLIOGRAPHY

[125] B. Donald. A search algorithm for motion planning with six degrees
of freedom. Artificial Intelligence, 31:295–353, 1987.

[126] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic mo-
tion planning. Journal of the Association for Computing Machinery,
40(5):1048–1066, Nov. 1993.

[127] B. R. Donald and P. Xavier. Provably good approximation algorithms
for optimal kinodynamic planning for Cartesian robots and open chain
manipulators. Algorithmica, 4(6):480–530, 1995.

[128] B. R. Donald and P. Xavier. Provably good approximation algorithms
for optimal kinodynamic planning: robots with decoupled dynamics
bounds. Algorithmica, 4(6):443–479, 1995.

[129] A. Doucet. On sequential simulation-based methods for Bayesian fil-
tering. Technical report, Department of Engeneering, University of
Cambridge, 1998.

[130] A. Doucet, J. de Freitas, K. Murphy, and S. Russel. Rao-Blackwellised
particle filtering for dynamic Bayesian networks. In Proc. of the Con-
ference on Uncertainty in Artificial Intelligence (UAI), 2000.

[131] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo
Methods in Practice. Springer Verlag, 2001.

[132] D. Duff, M. Yim, and K. Roufas. Evolution of polybot: A modular
reconfigurable robot. In Proc. of the Harmonic Drive Intl. Symposium,
Nagano, Japan, 2001.

[133] S. Ehmann and M. C. Lin. Swift: Accelerated distance computa-
tion between convex polyhedra by multi-level Voronoi marching. In
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2000.

[134] S. A. Ehmann and M. C. Lin. Geometric algorithims: Accurate and
fast proximity queries between polyhedra using convex surface decom-
position. Computer Graphics Forum - Proc. of Eurographics, 20:500–
510, 2001.

[135] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Jour-
nal of Robotics and Automation, RA-3:249–265, June 1987.

BIBLIOGRAPHY 125

[136] A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot Per-
cepti on and Navigation. PhD thesis, Department of Electrical and
Computer Engineering, Carnegie Mellon University, 1989.

[137] A. Elfes. Using occupancy grids for mobile robot perception and nav-
igation. IEEE Computer, pages 46–57, 1989.

[138] S. Engelson. Passive Map Learning and Visual Place Recognition. PhD
thesis, Department of Computer Science, Yale University, 1994.

[139] C. Fernandes, L. Gurvits, and Z. Li. Optimal nonholonomic motion
planning for a falling cat. In Z. Li and J. Canny, editors, Nonholonomic
Motion Planning. Kluwer Academic, 1993.

[140] C. Fernandes, L. Gurvits, and Z. Li. Near-optimal nonholonomic mo-
tion planning for a system of coupled rigid bodies. IEEE Transactions
on Automatic Control, 30(3):450–463, Mar. 1994.

[141] R. Fitch, Z. Butler, and D. Rus. Reconfiguration planning for hetero-
geneous self-reconfiguring robots. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2003.

[142] S. Fleury, P. Souères, J.-P. Laumond, and R. Chatila. Primitives for
smoothing paths of mobile robots. In IEEE International Conference
on Robotics and Automation, volume 1, pages 832–839, 1993.

[143] S. Fleury, P. Souères, J.-P. Laumond, and R. Chatila. Primitives for
smoothing mobile robot trajectories. IEEE Transactions on Robotics
and Automation, 11:441–448, 1995.

[144] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. On differentially flat
nonlinear systems. In IFAC Symposium NOLCOS, pages 408–412,
1992.

[145] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of
nonlinear systems: Introductory theory and examples. International
Journal of Control, 61(6):1327–1361, 1995.

[146] A. T. Fomenko and T. L. Kunii. Topological Modeling for Visualiza-
tion. Springer-Verlag, Tokyo, 1997.

[147] M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based
hybrid motion planner. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2001.

126 BIBLIOGRAPHY

[148] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo localiza-
tion: Efficient position estimation for mobile robots. In Proc. of the
National Conference on Artificial Intelligence (AAAI), 1999.

[149] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic ap-
proach to collaborative multi-robot localization. Autonomous Robots,
8(3), 2000.

[150] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile
robots in dynamic environments. Journal of Artificial Intelligence
Research (JAIR), 11:391–427, 1999.

[151] T. Fraichard and J.-M. Ahuactzin. Smooth path planning for cars. In
IEEE International Conference on Robotics and Automation, pages
3722–3727, Seoul, Korea, 2001.

[152] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning
for agile autonomous vehicles. AIAA Journal of Guidance, Control,
and Dynamics, 25(1):116–129, 2002.

[153] C. Früh and A. Zakhor. 3D model generation for cities using aerial
photographs and ground level laser scans. In Proc. of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR), 2001.

[154] R. Geraerts and M. Overmars. A comparative study of probabilistic
roadmap planners. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and
S. Hutchinson, editors, Algorithmic Foundations of Robotics V, pages
43–58. Springer-Verlag, 2003.

[155] E. Gilbert, D. Johnson, and S. Keerthi. A fast procedure for computing
distance between complex objects in three-dimensional space. IEEE
Transactions on Robotics and Automation, 4:193–203, 1988.

[156] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization.
Academic Press, New York, 1981.

[157] B. Glavina. Solving findpath by combination of goal-directed and
randomized search. In IEEE International Conference on Robotics
and Automation, pages 1718–1723, 1990.

[158] N. Gordon, D. Salmond, and A. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEE Procedings
F, 140(2):107–113, 1993.

BIBLIOGRAPHY 127

[159] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical
structure for rapid interference detection. Computer Graphics, 30(An-
nual Conference Series):171–180, 1996.

[160] P. Grandjean and A. Robert de Saint Vincent. 3-D modeling of indoor
scenes by fusion of noisy range and stereo data. In IEEE International
Conference on Robotics and Automation, 1989.

[161] F. Gravoit, S. Cambon, and R. Alami. asymov: a planner that deals
with intricate symbolic and geometric problems. In International Sym-
posium on Robotics Research, 2003. Book to appear.

[162] L. J. Guibas, C. Holleman, and L. E. Kavraki. A probabilistic roadmap
planner for flexible objects with a workspace medial-axis- based sam-
pling approach. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 254–260, 1999.

[163] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Mot-
wani. A visibility-based pursuit-evasion problem. International Jour-
nal of Computational Geometry and Applications, 9(4/5):471–512, Au-
gust/October 1999.

[164] V. Guillemin and A. Pollack, editors. Differential Topology. Prentice-
Hall, Inc., New Jersey, 1974.

[165] K. Gupta and Z. Guo. Motion planning with many degrees of freedom:
sequential search with backtracking. IEEE Transactions on Robotics
and Automation, 6(11):897–906, 1995.

[166] L. Gurvits. Averaging approach to nonholonomic motion planning. In
IEEE International Conference on Robotics and Automation, pages
2541–2546, 1992.

[167] J. Gutmann and D. Fox. An experimental comparison of localiza-
tion methods continued. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2002.

[168] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimen-
tal comparison of localization methods. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1998.

[169] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proc. of the IEEE Int. Symp. on Computational
Intelligence in Robotics and Automation (CIRA), 1999.

128 BIBLIOGRAPHY

[170] J.-S. Gutmann and C. Schlegel. AMOS: Comparison of scan matching
approaches for self-localization in indoor environments. In Proc. of the
1st Euromicro Workshop on Advanced Mobile Robots. IEEE Computer
Society Press, 1996.

[171] J.-S. Gutmann, T. Weigel, and B. Nebel. A fast, accurate, and robust
method for self-localization in polygonal environments using laser-
range-finders. Advanced Robotics Journal, 14(8):651–668, 2001.

[172] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. A highly efficient
FastSLAM algorithm for generating cyclic maps of large-scale environ-
ments from raw laser range measurements. Submitted for publication.

[173] D. Hähnel, D. Schulz, and W. Burgard. Map building with mobile
robots in populated environments. In Proc. of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2002.

[174] D. Halperin and M. Sharir. A near-quadratic algorithm for planning
the motion of a polygon in a polygonal environment. Discrete Com-
putational Geometry, 16:121–134, 1996.

[175] L. Han and N. M. Amato. A kinematics-based probabilistic roadmap
for closed chain systems. In B. R. Donald, K. Lynch, and D. Rus,
editors, New Directions in Algorithmic and Computational Robotics,
pages 233–246. AK Peters, 2001.

[176] G. Heinzinger, P. Jacobs, J. Canny, and B. Paden. Time-optimal
trajectories for a robot manipulator: A provably good approximation
algorithm. In IEEE International Conference on Robotics and Au-
tomation, pages 150–156, 1989.

[177] G. Heinzinger and B. Paden. Bounds on robot dynamics. In IEEE
International Conference on Robotics and Automation, pages 1227–
1232, Scottsdale, Arizona, 1989.

[178] S. Hert, S. Tiwari, and V. Lumelsky. A Terrain-Covering Algorithm
for an AUV. Autonomous Robots, 3:91–119, 1996.

[179] J. Hertzberg and F. Kirchner. Landmark-based autonomous naviga-
tion in sewerage pipes. In Proc. of the First Euromicro Workshop on
Advanced Mobile Robots, 1996.

BIBLIOGRAPHY 129

[180] H. Hirukawa, B. Mourrain, and Y. Papegay. A symbolic-numeric sil-
houette algorithm. In Intelligent Robots and Systems, pages 2358 –
2365, Nov 2000.

[181] C. Hofner and G. Schmidt. Path planning and guidance techniques
for an autonomous mobile cleaning robot. Robotics and Autonomous
Systems, 14:199–212, 1995.

[182] C. Holleman and L. E. Kavraki. A framework for using the workspace
medial axis in PRM planners. In IEEE International Conference on
Robotics and Automation, pages 1408–1413, 2000.

[183] D. Hsu. Randomized Single-Query Motion Planning In Expansive
Spaces. PhD thesis, Department of Computer Science, Stanford Uni-
versity, 2000.

[184] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling
narrow passages with probabilistic roadmap planners. In IEEE Inter-
national Conference on Robotics and Automation, 2003.

[185] D. Hsu, L. E. Kavraki, J. C. Latombe, R. Motwani, and S. Sorkin.
On finding narrow passages with probabilistic roadmap planners. In
e. a. P. Agarwal, editor, Robotics: The Algorithmic Perspective, pages
141–154. A.K. Peters, Wellesley, MA, 1998.

[186] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Randomized kinody-
namic motion planning with moving obstacles. International Journal
of Robotics Research, 21(3):233–255, 2002.

[187] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. In IEEE International Conference on Robotics
and Automation, pages 2719–2726, 1997.

[188] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. International Journal of Computational Geom-
etry and Applications, 9(4/5):495–512, 1998.

[189] Y. Y. Huang, Z. L. Cao, and E. Hall. Region filling operations for
mobile robot using computer graphics. In Proceedings of the IEEE
Conference on Robotics and Automation, pages 1607–1614, 1986.

[190] T. C. Hudson, M. C. Lin, J. Cohen, S. Gottschalk, and D. Manocha.
V-COLLIDE: Accelerated collision detection for VRML. In R. Carey

130 BIBLIOGRAPHY

and P. Strauss, editors, VRML 97: Second Symposium on the Virtual
Reality Modeling Language, pages 119–125, New York City, NY, 1997.
ACM Press.

[191] S. Iannitti and K. M. Lynch. Exact minimum control switch motion
planning for the snakeboard. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2003.

[192] M. Isard and A. Blake. Condensation - conditional density propagation
for visual tracking. International Journal of Computer Vision, 29(1),
1998.

[193] A. Isidori. Nonlinear Control Systems: An Introduction. Springer-
Verlag, 1985.

[194] P. Isto. A two-level search algorithm for motion planning. In IEEE
International Conference on Robotics and Automation, pages 2025–
2031, 1997.

[195] P. Isto. Constructing probabilistic roadmaps with powerful local plan-
ning and path optimization. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2323–2328, 2002.

[196] P. Jacobs, G. Heinzinger, J. Canny, and B. Paden. Planning guar-
anteed near-time-optimal trajectories for a manipulator in a cluttered
workspace. In International Workshop on Sensorial Integration for
Industrial Robots: Architectures and Applications, Zaragoza, Spain,
1989.

[197] P. Jacobs, G. Heinzinger, J. Canny, and B. Paden. Planning guar-
anteed near-time-optimal trajectories for a manipulator in a cluttered
workspace. Technical Report RAMP 89-15, University of California,
Berkeley, Engineering Systems Research Center, Sept. 1989.

[198] K. Janich. Topology. Spring-Verlag, New York, NY, 1984.

[199] R. Jarvis. Collision free trajectory planning using distance transforms.
Mech Eng Trans of the IE Aust, ME10:197–191, 1985.

[200] P. Jensfelt and S. Kristensen. Active global localisation for a mo-
bile robot using multiple hypothesis tracking. IEEE Transactions on
Robotics and Automation, 17(5):748–760, Oct. 2001.

BIBLIOGRAPHY 131

[201] X. Ji and J. Xiao. Planning motion compliant to complex contact
states. International Journal of Robotics Research, 20(6):446–465,
2001.

[202] V. Jurdjevic. Geometric Control Theory. Cambridge University Press,
1997.

[203] V. Jurdjevic and H. J. Sussmann. Control systems on Lie groups.
Journal of Differential Equations, 12:313–329, 1972.

[204] L. Kaelbling, A. Cassandra, and J. Kurien. Acting under uncertainty:
Discrete Bayesian models for mobile-robot navigation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 1996.

[205] T. Kailath. Linear Systems. Prentice-Hall, 1980.

[206] R. Kalman. A new approach to linear filtering and prediction prob-
lems. Trans. of the ASME, Journal of basic engineering, 82:35–45,
March 1960.

[207] I. Kamon, E. Rimon, and E. Rivlin. Tangentbug: A range-sensor based
navigation algorithm. Int. Journal of Robotics Research, 17(9):934–
953, 1998.

[208] I. Kamon, E. Rivlin, and E. Rimon. A new range-sensor based glob-
ally convergent navigation for mobile robots. In IEEE Int’l. Conf. on
Robotics and Automation, Minneapolis, MN, April 1996.

[209] K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algo-
rithms for dynamic probabilistic networks. In Proc. of the 11th Annual
Conference on Uncertainty in AI (UAI), 1995.

[210] K. Kant and S. Zucker. Toward efficient trajectory planning: Path
velocity decomposition. International Journal of Robotics Research,
5:72–89, 1986.

[211] L. E. Kavraki. Random Networks in Configuration Space for Fast Path
Planning. PhD thesis, Stanford University, 1995.

[212] L. E. Kavraki, M. Kolountzakis, and J. C. Latombe. Analysis of proba-
bilistic roadmaps for path planning. In IEEE International Conference
on Robotics and Automation, pages 3020–3026, 1996.

132 BIBLIOGRAPHY

[213] L. E. Kavraki, M. N. Kolountzakis, and J. C. Latombe. Analysis
of probabilistic roadmaps for path planning. IEEE Transactions on
Robotics and Automation, 14(1):166–171, February 1998.

[214] L. E. Kavraki, F. Lamiraux, and C. Holleman. Towards planning for
elastic objects. In P. Agrawal, L. E. Kavraki, and M. Mason, editors,
Robotics: The Algorithmic Perspective, pages 313–325. A.K. Peters,
1998.

[215] L. E. Kavraki and J. C. Latombe. Randomized preprocessing of con-
figuration space for fast path planning. Technical Report STAN-CS-
93-1490, Dept. Comput. Sci., Stanford Univ., Stanford, CA, 1993.

[216] L. E. Kavraki and J. C. Latombe. Randomized preprocessing of con-
figuration space for path planning. In IEEE International Conference
on Robotics and Automation, pages 2138–2139, 1994.

[217] L. E. Kavraki and J. C. Latombe. Probabilistic roadmaps for robot
path planning. In K. Gupta and A. P. del Pobil, editors, Practical
Motion Planning in Robotics: Current Approaches and Future Chal-
lenges, pages 33–53. John Wiley, West Sussex, England, 1998.

[218] L. E. Kavraki, J. C. Latombe, R. Motwani, and P. Raghavan. Ran-
domized query processing in robot motion planning. In Proc. ACM
Symp. on Theory of Computing, pages 353–362, 1995.

[219] L. E. Kavraki, J. C. Latombe, R. Motwani, and P. Raghavan. Random-
ized query processing in robot path planning. Journal of Computer
and System Sciences, 57(1):50–60, August 1998.

[220] L. E. Kavraki, J. C. Latombe, and R. Wilson. On the complexity
of assembly partitioning. Information Processing Letters, 48:229–235,
1993.

[221] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, June 1996.

[222] H. Keller. Lectures on Numerical Methods in Bifurcation Problems.
Tata Institute of Fundamental Research, Bombay, India, 1987.

[223] S. D. Kelly and R. M. Murray. Geometric phases and robotic locomo-
tion. Journal of Robotic Systems, 12(6):417–431, 1995.

BIBLIOGRAPHY 133

[224] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 5:90–98, 1986.

[225] R. Kindel, D. Hsu, J. C. Latombe, and S. Rock. Kinodynamic motion
planning amidst moving obstacles. In IEEE International Conference
on Robotics and Automation, pages 537–543, 2000.

[226] D. E. Kirk. Optimal Control Theory. Prentice-Hall Inc., 1970.

[227] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, O. E., and H. Matsubara.
RoboCup: A challenge problem for AI. AI Magazine, 18(1):73–85,
1997.

[228] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan.
Efficient collision detection using bounding volume hierarchies of k-
DOPs. IEEE Transactions on Visualization and Computer Graphics,
4(1):21–36, 1998.

[229] D. E. Koditschek and E. Rimon. Robot navigation functions on man-
ifolds with boundary. Advances in Applied Mathematics, 11:412–442,
1990.

[230] S. Koenig and R. Simmons. A robot navigation architecture based
on partially observable Markov decision process models. In D. Ko-
rtenkamp, R. Bonasso, and R. Murphy, editors, Artificial Intelligence
and Mobile Robots. MIT/AAAI Press, Cambridge, MA, 1998.

[231] Y. Koga, K. Kondo, J. Kuffner, and J. C. Latombe. Planning motions
with intentions. Computer Graphics (SIGGRAPH’94), pages 395–408,
1994.

[232] Y. Koga and J. C. Latombe. Experiments in dual-arm manipulation
planning. In IEEE International Conference on Robotics and Automa-
tion, pages 2238–2245, 1992.

[233] Y. Koga and J. C. Latombe. On multi-arm manipulation planning.
In IEEE International Conference on Robotics and Automation, pages
945–952, 1994.

[234] K. Kondo. Motion planning with six degrees of freedom by multistrate-
gic bidirectional heuristic free-space enumeration. IEEE Transactions
on Robotics and Automation, 7:267–277, 1991.

134 BIBLIOGRAPHY

[235] K. Konolige. Markov localization using correlation. In Proc. of the In-
ternational Joint Conference on Artificial Intelligence (IJCAI), 1999.

[236] J. Kuffner. Effective sampling and distance metrics for 3D rigid body
path planning. In IEEE International Conference on Robotics and
Automation, 2004.

[237] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion
planning for humanoid robots under obstacle and dynamic balance
constraints. In IEEE International Conference on Robotics and Au-
tomation, pages 692–698, Seoul, Korea, May 2001.

[238] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Mo-
tion planning for humanoid robots. In International Symposium on
Robotics Research, 2003. Book to appear.

[239] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In IEEE International Conference on
Robotics and Automation, pages 995–1001, 2000.

[240] B. Kuipers and Y. Byan. A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations. Journal of
Robotics and Autonomous Systems, 8:47–63, 1991.

[241] A. Ladd and L. E. Kavraki. Motion planning for knot untangling. In
J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, editors,
Algorithmic Foundations of Robotics V, pages 7–24. Springer-Verlag,
2002.

[242] A. M. Ladd and L. E. Kavraki. Measure theoretic analysis of proba-
bilistic path planning. IEEE Transactions on Robotics and Automa-
tion, 20(2):229–242, 2004.

[243] G. Lafferriere and H. Sussmann. Motion planning for controllable
systems without drift. In IEEE International Conference on Robotics
and Automation, pages 1148–1153, Sacramento, CA, 1991.

[244] G. Lafferriere and H. J. Sussmann. A differential geometric approach
to motion planning. In Z. Li and J. Canny, editors, Nonholonomic
Motion Planning. Kluwer Academic, 1993.

[245] F. Lamiraux and L. Kavraki. Planning paths for elastic objects under
manipulation constraints. International Journal of Robotics Research,
20(3):188–208, 2001.

BIBLIOGRAPHY 135

[246] F. Lamiraux and J. P. Laumond. On the expected complexity of
random path planning. In IEEE International Conference on Robotics
and Automation, pages 3014–3019, 1996.

[247] F. Lamiraux and J.-P. Laumond. Smooth motion planning for car-like
vehicles. IEEE Transactions on Robotics and Automation, 17(4):498–
502, Aug. 2001.

[248] F. Lamiraux, S. Sekhavat, and J.-P. Laumond. Motion planning and
control for Hilare pulling a trailer. IEEE Transactions on Robotics
and Automation, 15(4):640–652, Aug. 1999.

[249] S. Land and H. Choset. Coverage path planning for landmine loca-
tion. In Third International Symposium on Technology and the Mine
Problem, Monterey, CA, April 1998.

[250] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity
queries with swept sphere volumes. Technical Report TR99-018, De-
partment of Computer Science, University of North Carolina at Chapel
Hill, North Carolina, 1999.

[251] J. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, MA, 1991.

[252] J.-C. Latombe. Personal communication.

[253] J. Laumond and R. Alami. A geometrical approach to planning ma-
nipulation tasks: The case of a circular robot and a movable circu-
lar object amidst polygonal obstacles. Report 88314, LAAS/CNRS,
Toulouse, France, 1989.

[254] J.-P. Laumond. Controllability of a multibody mobile robot. IEEE
Transactions on Robotics and Automation, 9(6):755–763, Dec. 1993.

[255] J.-P. Laumond. Robot motion planning and control. Springer, 1998.

[256] J.-P. Laumond, P. E. Jacobs, M. Täıx, and R. M. Murray. A mo-
tion planner for nonholonomic mobile robots. IEEE Transactions on
Robotics and Automation, 10(5):577–593, Oct. 1994.

[257] S. LaValle, J. Yakey, and L. E. Kavraki. Randomized path planning
for linkages with closed kinematics chains. IEEE Transactions on
Robotics and Automation, 17(6):951–959, 2001.

136 BIBLIOGRAPHY

[258] S. M. LaValle and M. S. Branicky. On the relationship between clas-
sical grid search and probabilistic roadmaps. In J.-D. Boissonnat,
J. Burdick, K. Goldberg, and S. Hutchinson, editors, Algorithmic
Foundations of Robotics V, pages 59–76. Springer-Verlag, 2002.

[259] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
In IEEE International Conference on Robotics and Automation, pages
473–479, 1999.

[260] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
International Journal of Robotics Research, 20(5):378–400, May 2001.

[261] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees:
Progress and prospects. In B. R. Donald, K. Lynch, and D. Rus,
editors, New Directions in Algorithmic and Computational Robotics,
pages 293–308. AK Peters, 2001.

[262] S. M. Lavalle, D. Lin, L. J. Guibas, J. C. Latombe, and R. Motwani.
Finding an unpredictable target in a workspace with obstacles. In
IEEE International Conference on Robotics and Automation, pages
1677–1682, 1997.

[263] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time
robot motion planning using rasterizing computer graphics hardware.
Computer Graphics, 24(4):327–335, 1990.

[264] S. Lenser and M. Veloso. Sensor resetting localization for poorly mod-
elled mobile robots. In IEEE International Conference on Robotics
and Automation, 2000.

[265] J. Leonard and H. Durrant-Whyte. Directed Sonar Sensing for Mobile
Robot Navigation. Kluwer Academic, Boston, MA, 1992.

[266] J. Leonard and H. Feder. A computationally efficient method for
large-scale concurrent mapping and localization. In J. Hollerbach and
D. Koditschek, editors, Proceedings of the Ninth International Sympo-
sium on Robotics Research, Salt Lake City, Utah, 1999.

[267] J. J. Leonard and H. Durrant-Whyte. Simultaneous map building and
localization for an autonomous mobile robot. In IEEE/RSJ Interna-
tional Workshop on Intelligent Robots and Systems, pages 1442–1447,
May 1991.

BIBLIOGRAPHY 137

[268] N. E. Leonard. Control synthesis and adaptation for an underactuated
autonomous underwater vehicle. IEEE Journal of Oceanic Engineer-
ing, 20(3):211–220, July 1995.

[269] N. E. Leonard and P. S. Krishnaprasad. Motion control of drift-free,
left-invariant systems on Lie groups. IEEE Transactions on Automatic
Control, 40(9):1539–1554, Sept. 1995.

[270] P. Leven and S. Hutchinson. Real-time path planning in changing
environments. International Journal of Robotics Research, 21(12):999–
1030, Dec. 2002.

[271] P. Leven and S. Hutchinson. Using manipulability to bias sampling
during the construction of probabilistic roadmaps. IEEE Transactions
on Robotics and Automation, 19(6):1020–1026, Dec. 2003.

[272] A. D. Lewis. When is a mechanical control system kinematic? In IEEE
Conference on Decision and Control, pages 1162–1167, Dec. 1999.

[273] A. D. Lewis. Simple mechanical control systems with constraints.
IEEE Transactions on Automatic Control, 45(8):1420–1436, 2000.

[274] A. D. Lewis and R. M. Murray. Configuration controllability of simple
mechanical control systems. SIAM Journal on Control and Optimiza-
tion, 35(3):766–790, May 1997.

[275] A. D. Lewis and R. M. Murray. Configuration controllability of simple
mechanical control systems. SIAM Review, 41(3):555–574, 1999.

[276] F. L. Lewis and V. L. Syrmos. Optimal Control. John Wiley and Sons,
Inc., 1995.

[277] Z. Li and J. Canny. Nonholonomic Motion Planning. Kluwer Aca-
demic, 1993.

[278] K. Lian, L. Wang, and L. Fu. Controllability of spacecraft systems in a
central gravitational field. IEEE Transactions on Automatic Control,
39(12):2426–2440, Dec. 1994.

[279] M. C. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision detec-
tion: Algorithms and applications. In J.-P. Laumond and M. Over-
mars, editors, Algorithms for Robotic Motion and Manipulation, pages
129–142. A K Peters, Wellesley, MA, 1997.

138 BIBLIOGRAPHY

[280] S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lat-
tice methods for motion planning. In IEEE International Conference
on Robotics and Automation, pages 2920–2927, 2003.

[281] G. Liu and Z. Li. A unified geometric approach to modeling and
control of constrained mechanical systems. IEEE Transactions on
Robotics and Automation, 18(4):574–587, Aug. 2002.

[282] Y. Liu and S. Arimoto. Path planning using a tangent graph for mobile
robots among polygonal and curved obstacles. International Journal
of Robotics Research, 11(4):376–382, 1992.

[283] C. Lobry. Controllability of nonlinear systems on compact manifolds.
SIAM Journal on Control, 12(1):1–4, 1974.

[284] I. Lotan, F. Schwarzer, D. Halperin, and J.-C. Latombe. Efficient
maintenance and self-collision testing for kinematic chains. In Pro-
ceedings of the 18th annual Symposium on Computational geometry,
pages 43–52. ACM Press, 2002.

[285] T. Lozano-Pérez. A simple motion-planning algorithm for general
robot manipulators. IEEE Journal of Robotics and Automation, RA-
3(3):224–238, 1987.

[286] T. Lozano-Perez and M. Wesley. An algorithm for planning collision-
free paths among polyhedral obstacles. Communications of the ACM,
22(10):560–570, 1979.

[287] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, 4:333–349, 1997.

[288] V. Lumelsky, S. Mukhopadhyay, and K. Sun. Dynamic path planning
in sensor-based terrain acquisition. IEEE Transactions on Robotics
and Automation, 6(4):462–472, August 1990.

[289] V. Lumelsky and A. Stepanov. Path planning strategies for point mo-
bile automaton moving amidst unknown obstacles of arbitrary shape.
Algorithmica, 2:403–430, 1987.

[290] K. M. Lynch. Controllability of a planar body with unilateral
thrusters. IEEE Transactions on Automatic Control, 44(6):1206–1211,
June 1999.

BIBLIOGRAPHY 139

[291] K. M. Lynch and C. K. Black. Recurrence, controllability, and stabi-
lization of juggling. IEEE Transactions on Robotics and Automation,
17(2):113–124, Apr. 2001.

[292] K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie. Collision-free tra-
jectory planning for a 3-DOF robot with a passive joint. International
Journal of Robotics Research, 19(12):1171–1184, Dec. 2000.

[293] D. K. M. Ben-Or and J. Reif. The complexity of elementary algebra
and geometry. Journal of Computational Sciences, 32:251–264, 1986.

[294] J. Marsden. Elementary Classical Analysis. W. H. Freeman and Com-
pany, New York, 1974.

[295] J. Marsden and T. Ratiu. Introduction to Mechanics and Symmetry.
Springer-Verlag, New York, 1994.

[296] P. Martin, R. M. Murray, and P. Rouchon. Flat systems. In G. Bastin
and M. Gevers, editors, 1997 European Control Conference Plenary
Lectures and Mini-Courses. 1997.

[297] S. Martinez, J. Cortés, and F. Bullo. A catalog of inverse-kinematics
planners for underactuated systems on matrix Lie groups. In
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2003.

[298] M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.

[299] P. Maybeck. The Kalman filter: An introduction to concepts. In
Autonomous Robot Vehicles. Springer verlag, 1990.

[300] M. B. Milam, K. Mushambi, and R. M. Murray. A new computational
approach to real-time trajectory generation for constrained mechanical
systems. In IEEE International Conference on Decision and Control,
2000.

[301] J. Milnor. Morse Theory. Princeton University Press, Princeton, NJ,
1963.

[302] B. Mirtich. V-clip: Fast and robust polyhedral collision detection.
ACM Transactions on Graphics, 17(3):177–208, 1998.

[303] M. Moll and L. E. Kavraki. Path planning for minimal energy curves
of constant length. In IEEE International Conference on Robotics and
Automation, pages 2826–2831, 2004.

140 BIBLIOGRAPHY

[304] M. Montemerlo and S. Thrun. Simultaneous localization and mapping
problem with unknown data association using FastSLAM. In IEEE
International Conference on Robotics and Automation, 2003.

[305] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to the simultaneous localization and mapping prob-
lem. In Proc. of the National Conference on Artificial Intelligence
(AAAI), 2002.

[306] M. Montemerlo, S. Thrun, and W. Whittaker. Conditional particle
filters for simultaneous mobile robot localization and people tracking.
In IEEE International Conference on Robotics and Automation, 2002.

[307] M. Morales, S. Rodriguez, and N. M. Amato. Improving the connectiv-
ity of prm roadmaps. In IEEE International Conference on Robotics
and Automation, pages 4427–4432, 2003.

[308] H. Moravec. Sensor fusion in certainty grids for mobile robots. AI
Magazine, pages 61–74, Summer 1988.

[309] H. Moravec and A. Elfes. High resolution maps from wide angle sonar.
In IEEE International Conference on Robotics and Automation, 1985.

[310] J. J. Moré and S. J. Wright. Optimization Software Guide. SIAM,
Philadelphia, PA, 1993.

[311] K. A. Morgansen. Temporal patterns in learning and control. PhD
thesis, Harvard University, 1999.

[312] K. A. Morgansen, P. A. Vela, and J. W. Burdick. Trajectory stabi-
lization for a planar carangiform robot fish. In IEEE International
Conference on Robotics and Automation, 2002.

[313] K. Murphy. Bayesian map learning in dynamic environments. In
Neural Info. Proc. Systems (NIPS), 1999.

[314] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction
to Robotic Manipulation. CRC Press, 1994.

[315] R. M. Murray, M. Rathinam, and W. Sluis. Differential flatness of
mechanical control systems: A catalog of prototype systems. In ASME
Int Mech Eng Congress and Expo, 1995.

BIBLIOGRAPHY 141

[316] R. M. Murray and S. S. Sastry. Nonholonomic motion planning:
Steering using sinusoids. IEEE Transactions on Automatic Control,
38(5):700–716, 1993.

[317] Y. Nakamura, T. Suzuki, and M. Koinuma. Nonlinear behavior and
control of a nonholonomic free-joint manipulator. IEEE Transactions
on Robotics and Automation, 13(6):853–862, 1997.

[318] P. Newman, J. Leonard, J. Neira, and J. Tardós. Explore and return:
Experimental validation of real time concurrent mapping and localiza-
tion. In IEEE International Conference on Robotics and Automation,
2002.

[319] C. Nielsen and L. E. Kavraki. A two level fuzzy PRM for manipula-
tion planning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1716–1722, Japan, 2000.

[320] C. Nissoux, T. Simeon, and J. Laumond. Visibility based probabilistic
roadmaps. Advanced Robotics Journal, 14(6), 2000.

[321] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Verlag,
1999.

[322] I. Nourbakhsh, R. Powers, and S. Birchfield. DERVISH an office-
navigating robot. AI Magazine, 16(2), 1995.

[323] C. Ó’Dúnlaing and C. Yap. A “retraction” method for planning the
motion of a disc. Algorithmica, 6:104–111, 1985.

[324] M. Ollis and A. Stentz. First results in vision-based crop line tracking.
In IEEE International Conference on Robotics and Automation, 1996.

[325] J. P. Ostrowski and J. W. Burdick. The geometric mechanics of undu-
latory robotic locomotion. International Journal of Robotics Research,
17(7):683–701, July 1998.

[326] J. P. Ostrowski, J. P. Desai, and V. Kumar. Optimal gait selection for
nonholonomic locomotion systems. International Journal of Robotics
Research, 19(3):225–237, Mar. 2000.

[327] M. Overmars. A random approach to motion planning. Technical
Report RUU-CS-92-32, Dept. Comput. Sci., Utrecht Univ., Utrecht,
the Netherlands, Oct. 1992.

142 BIBLIOGRAPHY

[328] M. Overmars and P. Švestka. A probabilistic learning approach to
motion planning. In K. Goldberg, D. Halperin, J. C. Latombe, and
R. Wilson, editors, Algorithmic Foundations of Robotics (WAFR),
pages 19–37. A. K. Peters, Ltd, 1995.

[329] R. Parr and A. Eliazar. DP-SLAM: Fast, robust simultaneous local-
ization and mapping without predetermined landmarks. In Proc. of
the International Joint Conference on Artificial Intelligence (IJCAI),
2003.

[330] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, Inc., 1988.

[331] F. Pfeiffer and R. Johanni. A concept for manipulator trajectory plan-
ning. IEEE Journal of Robotics and Automation, RA-3(2):115–123,
1987.

[332] J. Phillips, L. Kavraki, and N. Bedrossian. Spacecraft rendezvous and
docking with real-time, randomized optimization. In AIAA Guidance,
Navigation, and Control, 2003.

[333] A. Piazza, M. Romano, and C. G. L. Bianco. G3-splines for the path
planning of wheeled mobile robots. In European Control Conference,
2003.

[334] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path plan-
ning for a rigid body based on hardware accelarated Voronoi sampling.
In B. R. Donald, K. Lynch, and D. Rus, editors, New Directions in
Algorithmic and Computational Robotics. AK Peters, 2001.

[335] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko. The Mathematical Theory of Optimal Processes. Inter-
science Publishers, 1962.

[336] C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. P.Bessière, and
C. Laugier. Safe and autonomous navigation for a car-like robot among
pedestrian. In IARP Int. Workshop on Service, Assistive and Personal
Robots, 2003.

[337] F. Preparata and M. I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, 1985. p198-257.

BIBLIOGRAPHY 143

[338] S. Quinlan. Efficient distance computation between nonconvex objects.
In IEEE International Conference on Robotics and Automation, pages
3324–3329, 1994.

[339] N. Rao, N. Stolzfus, and S. Iyengar. A retraction method for learned
navigation in unknown terrains for a circular robot. IEEE Transac-
tions on Robotics and Automation, 7:699–707, October 1991.

[340] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both
forwards and backwards. Pacific Journal of Mathematics, 145(2):367–
393, 1990.

[341] J. Reif. Complexity of the mover’s problem and generalizations. In
Proc. 20th IEEE Symposium on Foundations of Computer Science,
pages 421–427, 1979.

[342] J. H. Reif and H. Wang. Nonuniform discretization for kinodynamic
motion planning and its applications. SIAM Journal of Computing,
30(1):161–190, 2000.

[343] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial
potential functions. IEEE Transactions on Robotics and Automation,
8(5):501–518, October 1992.

[344] T. Röfer. Using histogram correlation to create consistent laser scan
maps. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2002.

[345] H. Rohnert. Shortest path in the plane with convex polygonal obsta-
cles. Information Processing Letters, 23:71–76, 1986.

[346] G. Sánchez and J. C. Latombe. On delaying collision checking in prm
planning : Application to multi-robot coor dination. International
Journal of Robotics Research, 21(1):5–26, 2002.

[347] S. S. Sastry. Nonlinear Systems: Analysis, Stability, and Control.
Springer-Verlag, New York, 1999.

[348] D. H. Sattinger and O. L. Weaver. Lie Groups and Algebras with
Applications to Physics, Geometry, and Mechanics. Springer-Verlag,
1986.

144 BIBLIOGRAPHY

[349] A. Scheuer and T. Fraichard. Collision-free and continuous-curvature
path planning for car-like robots. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 1304–1311, Osaka,
Japan, 1997.

[350] B. Schiele and J. Crowley. A comparison of position estimation tech-
niques using occupancy grids. In IEEE International Conference on
Robotics and Automation, 1994.

[351] B. Schutz. Geometrical methods of mathematical physics. Cambridge
University Press, 1980.

[352] J. T. Schwartz and M. Sharir. On the piano movers’ problem: II. gen-
eral techniques for computing topological properties of real algebraic
manifolds. Advances in Applied Mathematics, 4:298–351, 1983.

[353] J. T. Schwartz and M. Sharir. On the piano movers’ problem: V.
the case of a rod moving in three-dimensional space amidst polyhe-
dral obstacles. Communications on Pure and Applied Mathematics,
37:815–848, 1984.

[354] J. T. Schwartz and M. Sharir. A survey of motion planning and related
geometric algorithms. Artificial Intelligence., 37:157–169, 1988.

[355] F. Schwarzer, M. Saha, and J. Latombe. Exact collision checking
of robot paths. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and
S. Hutchinson, editors, Algorithmic Foundations of Robotics V, pages
25–42. Springer-Verlag, 2002.

[356] S. Sekhavat and J.-P. Laumond. Topological property of trajectories
computed from sinusoidal inputs for nonholonomic chained form sys-
tems. In IEEE International Conference on Robotics and Automation,
pages 3383–3388, 1996.

[357] S. Sekhavat and J.-P. Laumond. Topological property for collision-
free nonholonomic motion planning: the case of sinusoidal inputs for
chained form systems. IEEE Transactions on Robotics and Automa-
tion, 14(5):671–680, Oct. 1998.

[358] S. Sekhavat, P. Švestka, J.-P. Laumond, and M. H. Overmars. Mul-
tilevel path planning for nonholonomic robots using semiholonomic
subsystems. International Journal of Robotics Research, 17(8):840–
857, Aug. 1998.

BIBLIOGRAPHY 145

[359] J.-P. Serre. Lie Algebras and Lie Groups. W. A. Benjamin, New York,
1965.

[360] J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge
University Press, Cambridge, UK, 1999.

[361] H. Shatkay and L. Kaelbling. Learning topological maps with weak
local odometric information. In Proceedings of IJCAI-97. IJCAI, Inc.,
1997. 1997.

[362] Z. Shiller and S. Dubowsky. On computing the global time-optimal
motions of robotic manipulators in the presence of obstacles. IEEE
Transactions on Robotics and Automation, 7(6):785–797, Dec. 1991.

[363] Z. Shiller and H.-H. Lu. Computation of path constrained time opti-
mal motions with dynamic singularities. ASME Journal of Dynamic
Systems, Measurement, and Control, 114:34–40, Mar. 1992.

[364] K. G. Shin and N. D. McKay. Minimum-time control of robotic ma-
nipulators with geometric path constraints. IEEE Transactions on
Automatic Control, 30(6):531–541, June 1985.

[365] R. Simmons and S. Koenig. Probabilistic robot navigation in partially
observable environments. In Proc. of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), 1995.

[366] A. Singh, J. C. Latombe, and D. Brutlag. A motion planning approach
to flexible ligand binding. In Intelligent Systems for Molecular Biology,
pages 252–261, 1999.

[367] J.-J. E. Slotine and H. S. Yang. Improving the efficiency of time-
optimal path-following algorithms. IEEE Transactions on Robotics
and Automation, 5(1):118–124, Feb. 1989.

[368] R. Smith and P. Cheeseman. On the representation and estimation of
spatial uncertainty. The International Journal of Robotics Research,
5(4):56–68, 1986.

[369] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial re-
lationships in robotics. In I. Cox and G. Wilfong, editors, Autonomous
Robot Vehicles. Springer Verlag, 1990.

[370] E. Sontag. Gradient techniques for systems with no drift: A classical
idea revisited. In IEEE International Conference on Decision and
Control, pages 2706–2711, 1993.

146 BIBLIOGRAPHY

[371] E. D. Sontag. Control of systems without drift via generic loops. IEEE
Transactions on Automatic Control, 40(7):1210–1219, July 1995.

[372] O. J. Sørdalen. Conversion of a car with n trailers into a chained form.
In IEEE International Conference on Robotics and Automation, pages
1382–1387, 1993.

[373] P. Souères and J.-D. Boissonnat. Optimal trajectories for nonholo-
nomic mobile robots. In J.-P. Laumond, editor, Robot Motion Plan-
ning and Control. Springer, 1998.

[374] P. Souères and J.-P. Laumond. Shortest paths synthesis for a car-like
robot. IEEE Transactions on Automatic Control, 41(5):672–688, May
1996.

[375] R. F. Stengel. Optimal control and estimation. Dover, New York,
1994.

[376] A. Stentz. Optimal and efficient path planning for unknown and dy-
namic environments. International Journal of Robotics and Automa-
tion, 10, 1995.

[377] G. Strang. Linear Algebra and Its Applications. Orlando: Academic
Press, 1980.

[378] H. Sussmann. A continuation method for nonholonomic path-finding
problems. In IEEE International Conference on Decision and Control,
pages 2718–2723, 1993.

[379] H. J. Sussmann. A general theorem on local controllability. SIAM
Journal on Control and Optimization, 25(1):158–194, Jan. 1987.

[380] H. J. Sussmann and W. Tang. Shortest paths for the Reeds-Shepp car:
a worked out example of the use of geometric techniques in nonlinear
optimal control. Technical Report SYCON-91-10, Rutgers University,
1991.

[381] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a
polygonal region. SIAM Journal of Computing, 21(5):863–888, Octo-
ber 1992.

[382] P. Švestka. A probabilistic approach to motion planning for car-like
robots. Technical Report RUU-CS-93-18, Dept. Comput. Sci., Utrecht
Univ., Utrecht, the Netherlands, 1993.

BIBLIOGRAPHY 147

[383] P. Švestka and M. H. Overmars. Coordinated motion planning for
multiple car-like robots using probabilistic roadmaps. In IEEE Inter-
national Conference on Robotics and Automation, pages 1631–1636,
1995.

[384] P. Švestka and J. Vleugels. Exact motion planning for tractor-trailer
robots. In IEEE International Conference on Robotics and Automa-
tion, pages 2445–2450, 1995.

[385] K. R. Symon. Mechanics. Addison-Wesley, 1971.

[386] X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. Amato.
Using motion planning to study rna folding kinetics. In International
Conference on Research in Computational Molecular Biology, 2004.

[387] M. Teodoro, G. N. Phillips, and L. E. Kavraki. Molecular docking: A
problem with thousands of degrees of freedom. In IEEE International
Conference on Robotics and Automation, pages 960–966, 2001.

[388] J. Thorpe. Elementary Topics in Differential Geometry. Springer-
Verlag, 1985.

[389] S. Thrun. Exploration and model building in mobile robot domains.
In Proc. of the IEEE International Conference on Neural Networks,
1993.

[390] S. Thrun. A probabilistic online mapping algorithm for teams of mo-
bile robots. International Journal of Robotics Research, 20(5):335–363,
2001.

[391] S. Thrun. Learning occupancy grids with forward sensor models. Au-
tonomous Robots, 2002.

[392] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox,
D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MIN-
ERVA: A second generation mobile tour-guide robot. In IEEE Inter-
national Conference on Robotics and Automation, 1999.

[393] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hen-
nig, T. Hofmann, M. Krell, and T. Schimdt. Map learning and high-
speed navigation in RHINO. In D. Kortenkamp, R. Bonasso, and
R. Murphy, editors, AI-based Mobile Robots: Case studies of success-
ful robot systems. MIT Press, Cambridge, MA, to appear.

148 BIBLIOGRAPHY

[394] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping. In
IEEE International Conference on Robotics and Automation, 2000.

[395] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to con-
current mapping and localization for mobile robots. Machine Learning
and Autonomous Robots (joint issue), 31(1-3):29–53, 1998.

[396] S. Thrun, J.-S. Gutmann, D. Fox, W. Burgard, and B. Kuipers. In-
tegrating topological and metric maps for mobile robot navigation: A
statistical approach. In Proc. of the National Conference on Artificial
Intelligence (AAAI), 1998.

[397] D. Tilbury, R. Murray, and S. Sastry. Trajectory generation for the
n-trailer problem using Goursat normal form. In IEEE International
Conference on Decision and Control, 1993.

[398] G. van den Bergen. Efficient collision detection of complex deformable
models using AABB trees. Journal of Graphics Tools: JGT, 2(4):1–14,
1997.

[399] G. van den Bergen. A fast and robust GJK implementation for collision
detection of convex objects. Journal of Graphics Tools: JGT, 4(2):7–
25, 1999.

[400] P. Vela and J. W. Burdick. Control of biomimetic locomotion via
averaging theory. In IEEE International Conference on Robotics and
Automation, 2003.

[401] P. A. Vela, K. A. Morgansen, and J. W. Burdick. Underwater loco-
motion from oscillatory shape deformations. In IEEE International
Conference on Decision and Control, 2002.

[402] G. Weiß, C. Wetzler, and E. von Puttkamer. Keeping track of position
and orientation of moving indoor systems by correlation of range-finder
scans. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 595–601, 1994.

[403] J. T. Wen. Control of nonholonomic systems. In W. S. Levine, editor,
The Control Handbook, pages 1359–1368. CRC Press, 1996.

[404] S. Wilmarth, N. M. Amato, and P. Stiller. MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of th e free space.

BIBLIOGRAPHY 149

In IEEE International Conference on Robotics and Automation, pages
1024–1031, 1999.

[405] R. Wilson and J. C. Latombe. Geometric reasoning about mechanical
assembly. Artificial Intelligence, 71:371–396, 1995.

[406] R. H. Wilson, L. E. Kavraki, J. C. Latombe, and T. Lozano-Pérez.
Two-handed assembly sequencing. International Journal of Robotics
Research, 14:335–350, 1995.

[407] B. Yamauchi and P. Langley. Place recognition in dynamic environ-
ments. Journal of Robotic Systems, 14(2):107–120, 1997.

[408] T. Yoshikawa. Manipulability of robotic mechanisms. International
Journal of Robotics Research, 4(2):3–9, Apr. 1985.

[409] M. Zhang and L. E. Kavraki. A new method for fast and accurate
derivation of molecular conformations. Journal of Chemical Informa-
tion and Computer Sciences, 42(1):64–70, 2002.

