Robotic Motion Planning:

curve tracing

Robotics Institute 16-735
http://voronoi.sbp.ri.cmu.edu/~motion
Howie Choset
http://voronoi.sbp.ri.cmu.edu/~choset

Move to Goal

- Distance $d(a, b)=\left(\left(a_{x}-b_{x}\right)^{2}+\left(a_{y}-b_{y}\right)^{2}\right)^{1 / 2}$
- Gradient descent of $d(a, b)$, i.e., decrease distance to the goal

[^0]
Circumnavigating Obstacles:
 Curve Tracing

Predict: Tangent
Correct: Something else

Normal (and hence Tangent) to Obstacle

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Circumnavigate Obstacles: Boundary Following

$D(x)=\min d(x, c)$
Normal is parallel to $\operatorname{VD}(x)$
Increase/Decrease/Same

Safety distance W*

Raw Distance Function

$$
\rho(x, \theta)=\min _{\lambda \in[0, \infty]} d\left(x, x+\lambda[\cos \theta, \sin \theta]^{T}\right),
$$

$$
\text { such that } x+\lambda[\cos \theta, \sin \theta]^{T} \in 1
$$

Saturated raw distance function

$$
\rho_{R}(x, \theta)=\left\{\begin{array}{cc}
\rho(x, \theta), & \text { if } \rho(x, \theta)<R \\
\infty, & \text { otherwise } .
\end{array}\right.
$$

Implicit Function Theorem

$$
G(x)=D(x)-W^{*}
$$

Roots of $\mathrm{G}(\mathrm{x})$ trace the offset curve
$\mathrm{DG}(\mathrm{x})=\mathrm{DD}(\mathrm{x})$, which is like a gradient in Euclidean spaces

Null of $\operatorname{DG}(x)$ is tangent, hence perp of $\operatorname{DD}(x)$ is too

```
THEOREM D.1.1 (Implicit Function Theorem) Let f: 笽 }\times\mp@subsup{\mathbb{R}}{}{n}->\mp@subsup{\mathbb{R}}{}{n}\mathrm{ be a smooth vector-valued function, \(f(x, y)\). Assume that \(D_{y} f\left(x_{0}, y_{0}\right)\) is invertible for some \(x_{0} \in \mathbb{R}^{m}, y_{0} \in \mathbb{R}^{n}\). Then there exist neighborhoods \(X_{0}\) of \(x_{0}\) and \(Z_{0}\) of \(f\left(x_{0}, y_{0}\right)\) and a unique, smooth map \(g: X_{0} \times Z_{0} \rightarrow \mathbb{R}^{n}\) such that
\(f(x, g(x, z))=z\)
for all \(x \in X_{0}, z \in Z_{0}\).
```


Correction

Theorem D. 2.1 (Newton-Raphson Convergence Theorem) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $f\left(y^{*}\right)=0$. For some $\rho>0$, let f satisfy

- $D f\left(y^{*}\right)$ is nonsingular with bounded inverse, i.e., $\left\|\left(D f\left(y^{*}\right)\right)^{-1}\right\| \leq \beta$
- $\|D f(x)-D f(y)\| \leq \gamma\|x-y\|$ for all $x, y \in B_{\rho}\left(y^{*}\right)$, where $\gamma \leq \frac{2}{\rho \beta}$

Now consider the sequence $\left\{y^{h}\right\}$ defined by
$y^{h+1}=y^{h}-\left(D f\left(y^{h}\right)\right)^{-1} f\left(y^{h}\right)$,
for any $y^{0} \in B_{\rho}\left(y^{*}\right)$. Then $y^{h} \in B_{\rho}\left(y^{*}\right)$ for all $h>0$, and the sequence $\left\{y^{h}\right\}$
quadratically converges onto y^{*}, i.e.,
$\left\|y^{h+1}-y^{*}\right\| \leq a\left\|y^{h}-y^{*}\right\|^{2}$
where $a=\frac{\beta \gamma}{2(1-\rho \beta \gamma)}<\frac{1}{\rho}$.

[^0]: goal

