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Robotic Motion Planning:
Configuration Space

Robotics Institute 16-735 
http://www.cs.cmu.edu/~motionplanning

Howie Choset
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What if the robot is not a point?

The Scout should probably not 
be modeled as a point...

β

α

Nor should robots with extended 
linkages that may contact obstacles...
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What is the position of the robot?

Expand 
obstacle(s)

Reduce 
robot

not quite right ...
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Configuration Space

• A key concept for motion planning is a configuration:
– a complete specification of the position of every point in the system

• A simple example: a robot that translates but does not rotate in
the plane:

– what is a sufficient representation of its configuration?

• The space of all configurations is the configuration space or C-
space.

C-space formalism:
Lozano-Perez ‘79
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Robot Manipulators
What are this arm’s forward kinematics?

α

β

L1

L2

(x,y)

y

x

(How does its position 
depend on its joint angles?)
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Robot Manipulators

α

β

L1

L2

(x,y)

cα = cos(α)  ,  sα = sin(α) 
cβ = cos(β)  ,  sβ = sin(β) 

c+= cos(α+β) , s+= sin(α+β) 

Keeping it “simple”

y

x

What are this arm’s forward kinematics?

Find (x,y) in terms of α and β ...
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Manipulator kinematics

cα = cos(α)  ,  sα = sin(α) 
cβ = cos(β)  ,  sβ = sin(β) 

c+= cos(α+β) , s+= sin(α+β) 

Keeping it “simple”

α

β

L1

L2

(x,y)

y

x

Positionx L1cα L2c+

y L1sα L2s+

= +
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Inverse Kinematics
Inverse kinematics -- finding joint angles from Cartesian coordinates

α

β

L1

L2 (x,y)

via a geometric or algebraic approach...

γ

Given (x,y) and L1 and L2 , what are the values of α, β, γ ?
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Inverse Kinematics
Inverse kinematics -- finding joint angles from Cartesian coordinates

γ

α

via a geometric or algebraic approach...

=  cos-1  x2  + y2 - L1
2 - L2

2 

2L1L2

=  sin-1  L2 sin(γ)
x2  + y2 +  tan-1(y/x)

But it’s not usually this ugly...

atan2(y,x)

α

β

L1

L2 (x,y)

γ

β   =  180 - γ

(1,0) = 1.3183, -1.06
(-1,0) = 1.3183, 4.45
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Puma                  Inv.  Kinematics

%
% Solve for theta(1)

r=sqrt(Px^2 + Py^2);
if (n1 == 1),

theta(1)= atan2(Py,Px) + asin(d3/r);
else

theta(1)= atan2(Py,Px) + pi - asin(d3/r);
end

%
% Solve for theta(2)

V114= Px*cos(theta(1)) + Py*sin(theta(1));
r=sqrt(V114^2 + Pz^2);
Psi = acos((a2^2-d4^2-a3^2+V114^2+Pz^2)/

(2.0*a2*r));
theta(2) = atan2(Pz,V114) + n2*Psi;

%
% Solve for theta(3)

num = cos(theta(2))*V114+sin(theta(2))*Pz-a2;
den = cos(theta(2))*Pz - sin(theta(2))*V114;
theta(3) = atan2(a3,d4) - atan2(num, den);

% Solve for theta(4)

V113 = cos(theta(1))*Ax + sin(theta(1))*Ay;
V323 = cos(theta(1))*Ay - sin(theta(1))*Ax;
V313 = cos(theta(2)+theta(3))*V113 + 

sin(theta(2)+theta(3))*Az;
theta(4) = atan2((n4*V323),(n4*V313));

% Solve for theta(5)

num = -cos(theta(4))*V313 - V323*sin(theta(4));
den = -V113*sin(theta(2)+theta(3)) + 

Az*cos(theta(2)+theta(3));
theta(5) = atan2(num,den);

% Solve for theta(6)

V112 = cos(theta(1))*Ox + sin(theta(1))*Oy;
V132 = sin(theta(1))*Ox - cos(theta(1))*Oy;
V312 = V112*cos(theta(2)+theta(3)) + 

Oz*sin(theta(2)+theta(3));
V332 = -V112*sin(theta(2)+theta(3)) + 

Oz*cos(theta(2)+theta(3));
V412 = V312*cos(theta(4)) - V132*sin(theta(4));
V432 = V312*sin(theta(4)) + V132*cos(theta(4));
num = -V412*cos(theta(5)) - V332*sin(theta(5));
den = - V432;
theta(6) = atan2(num,den);

it’s usuall much worse!
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Some Other Examples of C-Space

• A rotating bar fixed at a point
– what is its C-space?
– what is its workspace

• A rotating bar that translates along the rotation axis
– what is its C-space?
– what is its workspace

• A two-link manipulator
– what is its C-space?
– what is its workspace?
– Suppose there are joint limits, does this change the C-space?
– The workspace?



16-735,  Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Where can we put          ?

Configuration Space

An obstacle in the robot’s workspace

β

α

270

360

180

90

0
90 18013545

Torus
(wraps horizontally and vertically)

qA

qB

β

α

A

B
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Obstacles in C-Space

• Let q denote a point in a configuration space Q

• The path planning problem is to find a mapping c:[0,1]→ Q s.t. no 
configuration along the path intersects an obstacle

• Recall a workspace obstacle is WOi

• A configuration space obstacle QOi is the set of configurations q at which 
the robot intersects WOi, that is

– QOi = {q ∈ Q | R(q) ∩ WOi ≠ ∅}

• The free configuration space (or just free space) Qfree is

Qfree = Q \ (∪ QOi )

The free space is generally an open set
A free path is a mapping c:[0,1]→ Qfree
A semifree path is a mapping c:[0,1]→ cl(Qfree)



16-735,  Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Disc in 2-D workspace

workspace configuration 
spaceworkspace
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Example of a World (and Robot)

Obstacles

Free Space

Robot
x,y
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Configuration Space: Accommodate Robot Size

Obstacles

Free Space

Robot
(treat as point object)x,y



16-735,  Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Trace Boundary of Workspace

Pick a reference point…
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Polygonal robot translating in 2-D 
workspace

workspace configuration 
space
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Polygonal robot translating & rotating in 
2-D workspace

workspace configuration 
space
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Any reference point

x

y

P

45 degrees

R
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Any reference point configuration

Taking the cross section of configuration space 
in which the robot is rotated 45 degrees...

x

y
45 degrees

How many sides does P ⊕R have?

P

R
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Any reference point configuration

Taking the cross section of configuration space 
in which the robot is rotated 45 degrees...

x

y
45 degrees

How many sides does P ⊕R have?

P

R
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Minkowski sum

• The Minkowski sum of two sets P and Q, denoted by P⊕Q, is 
defined as

P+Q = { p+q | p ∈P, q∈Q }

• Similarly, the Minkowski difference is defined as
P – Q = { p–q | p∈P, q∈Q } p

q
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Minkowski sum of convex polygons

• The Minkowski sum of two convex polygons P and Q of m and n
vertices respectively is a convex polygon P + Q of m + n vertices.
– The vertices of P + Q are the “sums” of vertices of P and Q.
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Observation

• If P is an obstacle in the workspace and M is a moving object. 
Then the C-space obstacle corresponding to P is P – M.

P

M

O
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Star Algorithm: Polygonal Obstacles

r1

r2r3

e1

e2

e3

e4

e3

e1

e2e4

r2

r1

r3
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Star Algorithm

e1

e2

e3

e4

r1

r2
r3

e3

e1

e2e4r2

r1

r3
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Start Point

• Leave that as an exercise for your homework.
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Where do we put          ?

Configuration Space “Quiz”

An obstacle in the robot’s workspace

β

α

270

360

180

90

0
90 18013545

qA

β

α
qB

A

B

Torus
(wraps horizontally and vertically)
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Configuration Space Obstacle

An obstacle in the robot’s workspace

β

α

270

360

180

90

0
90 18013545

qB

qA

The C-space representation 
of this obstacle…

β

α

How do we get from A to B ?

A

B

Reference configuration
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Two Link Path

Thanks to Ken Goldberg
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Two Link Path
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Properties of Obstacles in C-Space

• If the robot and WOi are _________, then

– Convex then QOi is convex
– Closed then QOi is closed
– Compact then QOi is compact
– Algebraic then QOi is algebraic
– Connected then QOi is connected
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Additional dimensions
What would the configuration space of a 
rectangular robot (red) in this world look like? 
Assume it can translate and rotate in the plane.

(The blue rectangle is an obstacle.)

x

y
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a 2d possibility

why not keep it this simple?

x

y

2d projection...
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A problem?

qinit

qgoal

with otherwise straightforward pathshttp://www.math.berkeley.edu/~sethian/Applets/java_files_robotic_legal/robotic_legal.html
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Requires one more d…

qinit

qgoal

too conservative !
what instead?
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When the robot is at one orientation

qinit

qgoal

0º

it can make it...
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qinit

qgoal

When the robot is at another orientation

it depends...
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Additional dimensions
What would the configuration space of a 
rectangular robot (red) in this world look like?

(The obstacle is blue.)

x

y

0º

90º

180º

this is twisted...
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Polygonal robot translating & rotating in 
2-D workspace

x

y
θ
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SE(2)
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2D Rigid Object
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The Configuration Space (C-space)
θ1 θ2 θ3

CC--spacespaceworkspaceworkspace

TOPTOP
VIEWVIEW

θ1

θ2

θ3

θ1θ2

θ3



16-735,  Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Moving a Piano
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Configuration Space  (C-space)

q2

q1

q3

q0

qn

q4

[0,Τ ]t ∈

INIT:INIT:
(0)Q

GOAL:GOAL:
(T)Q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)(

)(
)(

0

tq

tq
tQ

n

M

(t)Q
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Topology?

2R manipulator

Configuration space

Sphere? Torus?
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Why study the Topology

• Extend results from one space to another: spheres to stars
• Impact the representation
• Know where you are
• Others?
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The Topology of Configuration Space

• Topology is the “intrinsic character” of a space

• Two space have a different topology if cutting and pasting is 
required to make them the same (e.g. a sheet of paper vs. a 
mobius strip)
– think of rubber figures --- if we can stretch and reshape 

“continuously” without tearing, one into the other, they have the same 
topology

• A basic mathematical mechanism for talking about topology is the
homeomorphism. 
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Homeo- and Diffeomorphisms

• Recall mappings:
– φ: S → T
– If each elements of φ goes to a unique T, φ is injective (or 1-1)
– If each element of T has a corresponding preimage in S, then φ is surjective

(or onto).
– If φ is surjective and injective, then it is bijective (in which case an inverse, φ-1

exists).
– φ is smooth if derivatives of all orders exist (we say φ is C∞)

• If φ: S → T is a bijection, and both φ and φ-1 are continuous, φ is a 
homeomorphism; if such a φ exists, S and T are homeomorphic.

• If homeomorphism where both φ and φ-1 are smooth is a diffeomorphism.
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Some Examples

• How would you show a square and a rectangle are 
diffeomorphic?

• How would you show that a circle and an ellipse are 
diffeomorphic (implies both are topologically S1)

• Interestingly, a “racetrack” is not diffeomorphic to a circle 
– composed of two straight segments and two circular segments
– at the junctions, there is a discontinuity; it is therefore not possible to 

construct a smooth map!
– How would you show this (hint, do this for a function on ℜ1 and think 

about the chain rule)
– Is it homeomorphic?
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Local Properties

Ball

Neighborhood
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Manifolds

• A space S locally diffeomorphic (homeomorphic) to a space T if 
each p∈ S there is a neighborhood containing it for which a 
diffeomorphism (homeomorphism) to some neighborhood of T 
exists.

• S1 is locally diffeomorphic to ℜ1

• The sphere is locally diffeomorphic to the plane (as is the torus)

• A set S is a k-dimensional manifold if it is locally homeomorphic
to ℜk
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Charts and Differentiable Manifolds

• A Chart is a pair (U,φ) such that U is an open set in a k-dimensional 
manifold and φ is a diffeomorphism from U to some open set in ℜk

– think of this as a “coordinate system” for U (e.g. lines of latitude and longitude 
away form the poles).

– The inverse map is a parameterization of the manifold

• Many manifolds require more than one chart to cover (e.g. the circle 
requires at least 2)

• An atlas is a set of charts that
– cover a manifold
– are smooth where they overlap (the book defines the notion of C∞ related for 

this; we will take this for granted).

• A set S is a differentiable manifold of dimension n if there exists an atlas 
from S to ℜn

– For example, this is what allows us (locally) to view the (spherical) earth as 
flat and talk about translational velocities upon it.
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Some Minor Notational Points

• ℜ1 × ℜ1 × ... × ℜ1 = ℜn

• S1 × S1 × ... × S1 ≠ Sn (= Tn, the n-dimensional torus)
• Sn is the n-dimensional sphere

• Although Sn is an n-dimensional manifold, it is not a manifold of a 
single chart --- there is no single, smooth, invertible mapping from 
Sn to Rn ---
– they are not ??morphic?
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Examples
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What is the Dimension of 
Configuration Space?

• The dimension is the number of parameter necessary to uniquely specify 
configuration

• One way to do this is to explicitly generate a parameterization (e.g with our 2-bar 
linkage)

• Another is to start with too many parameters and add (independent) constraints
– suppose I start with 4 points in the plane (= 8 parameters), A, B, C, D
– Rigidity requires d(A,B) = c1 (1 constraints)
– Rigidity requires d(A,C) = c2 and d(B,C) = c3 (2 constraints)
– Rigidity requires d(A,D) = c4 and d(B,D) = c5 and ???  (?? constraints)

– HOW MANY D.O.F?

• QUIZ: 
– HOW MANY DOF DO YOU NEED TO MOVE FREELY IN 3-space?
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What is the Dimension of 
Configuration Space?

• The dimension is the number of parameter necessary to uniquely specify 
configuration

• One way to do this is to explicitly generate a parameterization (e.g with our 2-bar 
linkage)

• Another is to start with too many parameters and add (independent) constraints
– suppose I start with 4 points in the plane (= 8 parameters), A, B, C, D
– Now, require ||A-B|| = c1 and ||C-D|| = c2 (    2 constraints)
– Now, require B = C                                  (    ? constraints)
– Now, fix A = 0                                          (     ? constraints)
– HOW MANY D.O.F?

• QUIZ: 
– HOW MANY DOF DO YOU NEED TO MOVE FREELY IN 3-space?

• 3+3

– HOW MANY in 4-space?
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More on dimension
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More Example Configuration Spaces 
(contrasted with workspace)

• Holonomic robot in plane:
– workspace ℜ2

– configuration space ℜ2

• 3-joint revolute arm in the plane
– Workspace,  a torus of  outer radius L1 + L2 + L3
– configuration space T3

• 2-joint revolute arm with a prismatic joint in the plane
– workspace disc of radius L1 + L2 + L3
– configuration space T2 × ℜ

• 3-joint revolute arm mounted on a mobile robot (holonomic)
– workspace is a “sandwich” of radius L1 + L2 + L3 
� ℜ2 × T3

• 3-joint revolute arm floating in space
– workspace is ℜ3

– configuration space is T3
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Parameterization of Torus



16-735,  Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

2d Manifolds

real plane cylinder

projective plane

torus

klein bottlemobius strip
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Representing Rotations

• Consider S1 --- rotation in the plane

• The action of a rotation is to, well, rotate --> Rθ: ℜ2 → ℜ2

• We can represent this action by a matrix R that is applied 
(through matrix multiplication) to points in ℜ2

cos(θ) - sin(θ)
sin(θ) cos(θ)

• Note, we can either think of rotating a point through an angle, or 
rotate the coordinate system (or frame) of the point.
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Geometric Transforms
Now, using the idea of homogeneous transforms,

we can write:

p
TR

p ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1000
'

The group of rigid body rotations SO(2) × ℜ(2) is
denoted SE(2) (for special Euclidean group)

This space is a type of torus
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From 2D to 3D Rotation
• I can think of a 3D rotation as a rotation about different axes:

– rot(x,θ) rot(y,θ) rot(z,θ)
– there are many conventions for these (see Appendix E)

• Euler angles (ZYZ)  --- where is the singularity (see eqn 3.8)
• Roll Pitch Yaw (ZYX)
• Angle axis
• Quaternion

• The space of rotation matrices has its own special name: SO(n) (for 
special orthogonal group of dimension n).  It is a manifold of dimension n

• What is the derivative of a rotation matrix?
– A tricky question --- what is the topology of that space ;-)
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Geometric Transforms
Now, using the idea of homogeneous transforms,

we can write:

p
TR

p ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1000
'

The group of rigid body rotations SO(3) × ℜ(3) is
denoted SE(3) (for special Euclidean group)

What does the inverse transformation look like?
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Open vs. Closed Chains

• Serial (or open) chain mechanisms can usually be understood simply by 
looking at how they are put together (like our 2-link manipulator)

• Closed chain mechanisms have additional internal constraints --- the 
links form closed loops, e.g.

Suppose 4 revolute, 2 prismatic, 6 links

Gruebler’s formula: N(k-n-1) + ∑ fi

N = DOF of space (here 3) f = dof of joints (here 1) n=# of joints; k # of links
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Transforming Velocity

• Recall forward kinematics K: Q → W

• The Jacobian of K is the n × m matrix with entries
– Ji,j = d Ki / d qj

• The Jacobian transforms velocities:
– dw/dt = J dq/dt

• If square and invertible, then
– dq/dt = J-1 dw/dt

• Example: our favorite two-link arm...
α

β

L1

L2

(x,y)

y

x

x L1cα L2cα+β

y L1sα L2sα+β

= +



16-735,  Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

A Useful Observation

• The Jacobian maps configuration velocities to workspace 
velocities

• Suppose we wish to move from a point A to a point B in the 
workspace along a path p(t)  (a mapping from some time index to 
a location in the workspace)
– dp/dt gives us a velocity profile --- how do we get the configuration 

profile?
– Are the paths the same if choose the shortest paths in workspace

and configuration space?
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Summary

• Configuration spaces, workspaces, and some basic ideas about 
topology

• Types of robots: holonomic/nonholonomic, serial, parallel

• Kinematics and inverse kinematics

• Coordinate frames and coordinate transformations

• Jacobians and velocity relationships

T. Lozano-Pérez. 
Spatial planning: A configuration space approach. 
IEEE Transactions on Computing, C-32(2):108-120, 1983. 
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A Few Final Definitions

• A manifold is path-connected if there is a path between any two 
points.

• A space is compact if it is closed and bounded
– configuration space might be either depending on how we model 

things
– compact and non-compact spaces cannot be diffeomorphic!

• With this, we see that for manifolds, we can
– live with “global” parameterizations that introduce odd singularities 

(e.g. angle/elevation on a sphere)
– use atlases
– embed in a higher-dimensional space using constraints

• Some prefer the later  as it often avoids the complexities 
associated with singularities and/or multiple overlapping maps


