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The Problem

What is the world around me (mapping)

sense from various positions
integrate measurements to produce map
assumes perfect knowledge of position

Where am | in the world (localization)

sense

relate sensor readings to a world model
compute location relative to model
assumes a perfect world model

Together, these are SLAM (Simultaneous Localization and
Mapping)
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| ocalization

Tracking: Known initial position Challenges |

— Sensor processing
Global Localization: Unknown initial position _ Position estimation
Re-Localization: Incorrect known position — Control Scheme

— Exploration Scheme
— Cycle Closure
— Autonomy

S LAM — Tractability

— Scalability

(kidnapped robot problem)

Mapping while tracking locally and globally
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Representations for Robot Localization

Kalman filters (late-80s?)

» Gaussians

« approximately linear models
e position tracking

Discrete approaches ('95)

» Topological representation ('95)
 uncertainty handling (POMDPSs)
 occas. global localization, recovery

» Grid-based, metric representation ('96)
« global localization, recovery

Robotics
— , Al
Particle filters ('99) Multi-hypothesis ('00)
« sample-based representation » multiple Kalman filters
* global localization, recovery » global localization, recovery
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Three Major Map Models

Grid-Based: Feature-Based: Topological:
Collection of discretized Collection of landmark Collection of nodes and
obstacle/free-space pixels locations and correlated their interconnections

uncertainty

Elfes, Moravec, Smith/Self/Cheeseman, Kuipers/Byun,
T_hrun, Burgard,_Fox, Durrant=Whyte, Leonard, Chong/Kleeman,
Simmons, Koenig, Nebot, Christensen, etc. Dudek, Choset,
Konolige, etc. Howard, Mataric, etc.
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Three Major Map Models

Grid-Based Feature-Based Topological
Resolution vs. Scale | Discrete localization Arbitrary localization Localize to nodes
Computational Grid size and resolution | Landmark covariance (N2) | Minimal complexity
Complexity
Exploration Frontier-based No inherent exploration Graph exploration
Strategies exploration
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Atlas Framework

 Hybrid Solution:
— Local features extracted from local grid map.
— Local map frames created at complexity limit.
— Topology consists of connected local map frames.

Authors: Chong, Kleeman; Bosse, Newman, Leonard, Soika, Feiten, Teller
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H-SLAM

GVG edge H*I"

A

GVG node

(b)
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What does a Kalman Filter do, anyway?

Given the linear dynamical system:

X(k+1) = F(k)x(k) +G(k)u(k) +v(k)

y(k) = H(k)x(k) +w(k)
X(k) is the n-dimensional state vector (unknown)
u(k) is the m-dimensional input vector (known)
y(k) is the p-dimensional output vector (known, measured)
F(k),G(k),H(k) are appropriately dimensioned system matrices (known)
v(k),w(k) are zero - mean, white Gaussian noise with (known)

covariance matrices Q(k), R(k)

the Kalman Filter is a recursion that provides the
“best” estimate of the state vector Xx.
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What's so great about that?

X(k +1) = F(K)x(k) + G(k)u(k) +v(k)
y(k) = H(k)x(k) +w(k)

e noise smoothing (improve noisy measurements)
» state estimation (for state feedback)
* recursive (computes next estimate using only most recent measurement)
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How does it work?

X(k +1) = F(k)x(k) + G(k)u(k) +v(k)
y(k) = H(k)x(k) +w(k)

1. prediction based on last estimate:
X(k +1]k) = F(k)X(k | k) +G(k)u(k)
y(k) =H(K)X(k +1] k)

2. calculate correction based on prediction and current measurement:
Ax = f(y(k+1),X(k +1]k))

3. update prediction: X(k +1]|k +1) = X(k +1] k) + Ax
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Finding the correction (no noise!)

y = HX
Given prediction X(k +1| k) and output y, find Ax so that X = X(k +1| k) + Ax
IS the "best" estimate of x.

A Want the best estimate to be consistent

~ with sensor readings
X(k+1[k)
(

Q={x|Hx =y}

yd =

“best” estimate comes from shortest Ax

A

/
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Finding the correction (no noise!)

y = HX
Given prediction X(k +1|1) and output y, find Ax so that X = X(k +1|1) + Ax
IS the "best" estimate of x.

“best” estimate comes from shortest Ax

shortest AXx is perpendicular to {2

Q={x|Hx =y}

N\
. v

v
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Some linear algebra

ais parallelto QifHa=0

Null(H)={a = 0| Ha =0}

Q= {X | HX = y} ais parallel to Q if it lies in the

/ null space of H

A

[
»

forallve Null(H),v Lbif becolumn(H")

Weighted sum of columns means b = Hy, the weighted sum of columns

RI 16-735, Howie Choset, with slides from George Kantor, G.D. Hager, and D. Fox



Finding the correction (no noise!)

y = HX
Given prediction X(k +1| k) and output y, find Ax so that X = X(k +1| k) + Ax
IS the "best" estimate of x.

“best” estimate comes from shortest Ax

)’Z(k +1 | k) shortest AXx is perpendicular to {2
) = Axenull(H)" — Ax e column(H )
AX = AX=H"y

Q={x|Hx =y}

N
< / >

/

RI 16-735, Howie Choset, with slides from George Kantor, G.D. Hager, and D. Fox




Finding the correction (no noise!)

y = HX

Given prediction X(k +1| k) and output y, find Ax so that X = X(k +1| k) + Ax
Is the " best" estimate of x.

“best” estimate comes from shortest Ax

)’Z(k +1 | k) shortest AXx is perpendicular to {2
) = Axenull(H)" — Ax e column(H )
AX = AX=H"y

Q={x|Hx =y}

N
< / >

/ Real output — estimated output
v=y—-H(XK+1|k))=H(x-X(k +1|k))

innovation
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Finding the correction (no noise!)

y = HX

Given prediction X(k +1| k) and output y, find Ax so that X = X(k +1| k) + Ax
Is the " best" estimate of x.

R(k +1] k)

AX

v

Q={x|Hx =y}

»

A

»

Guess, hope, lets face it, it has to be some
function of the innovation

“best” estimate comes from shortest Ax
shortest AXx is perpendicular to {2
— AX € nuII(H )L = AX € cqumn(H T)
= Ax=H'"y
assume v is a linear function of v

— AX=H"Kvy
for some mx m matrix K
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Finding the correction (no noise!)

y = HX
Given prediction X_ and output y, find Axso that X = X(k +1| k) + AX

IS the " best" estimate of x.
we require

H(X(k+1|k)+Ax) =y
R(k +1] k)

AX
\
: e

/
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Finding the correction (no noise!)

y = HX
Given prediction X_ and output y, find Axso that X = X(k +1| k) + AX
IS the " best" estimate of x.

we require
N H(X(k+1|k)+Ax) =y
X(k+1[k) — HAX = y— HR(k +1]K) = H (x = %(k +1[K)) = v
AX

Q={x|Hx =y}

N
< / >

/
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Finding the correction (no noise!)

y = HX
Given prediction X_ and output y, find Axso that X = X(k +1| k) + AX
IS the " best" estimate of x.

we require
N H(X(k+1|k)+Ax) =y
X(K J21| K) = HAX =y — HR(k +1]K) = H(x = X(k +1]| k)) =v
AX substituting Ax = H'" Ky vields

Q={x|Hx =y} i
} HH 'Ky =v
AX must be perpendicular to Q b/c anything in the
range space of HT is perp to Q
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Finding the correction (no noise!)

y = HX
Given prediction X_ and output y, find Axso that X = X(k +1| k) + AX
IS the " best" estimate of x.

we require
N H(X(k+1|k)+Ax) =y
X(K J21| K) = HAX =y — HR(k +1]K) = H(x = X(k +1]| k)) =v
AX substituting Ax = H'" Ky vields

Q=x|Hx=
: } d = % HH Ky =v

/ = K=(HHT)"

v

The fact that the linear solution solves the equation makes assuming K is linear a kosher guess

RI 16-735, Howie Choset, with slides from George Kantor, G.D. Hager, and D. Fox



Finding the correction (no noise!)

y = HX
Given prediction X_ and output y, find Axso that X = X(k +1| k) + AX

IS the " best" estimate of x.
we require

H(X(k+1|k)+Ax) =y
X(k Jill K) — HAX =y — HR(k +1| k) = H (x = R(k +1| k)) = v
AX substituting Ax = H'" Ky vields
Q={x|Hx =y}

HH 'Ky =v

N
< / >

/ = K=(HHT)"

Ax=HT(HHT )"y
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A Geometric Interpretation

Q={x|Hx=y}

R(k +1| k)

AX

v

A
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A Simple State Observer

x(k +1) = Fx(K) + Gu(K)

System:
y(k) = Hx(k)

4 1. prediction:

X(k +1] k) = Fx(k | k) +Gu(k)
Observer- < 2. compute cor;ectionT: L A
Ax=HT(HHAT ] (y(k +1) - HR(K +1]K))
3. update:
\_ X(K+1]k+1) = X(k +1| k) + Ax
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Caveat #1

Note: The observer presented here is not a very good
observer. Specifically, it is not guaranteed to converge for
all systems. Still the intuition behind this observer is the
same as the intuition behind the Kalman filter, and the
problems will be fixed in the following slides.

It really corrects only to the current sensor information,

so If you are on the hyperplane but not at right place, you
have no correction.... | am waiving my hands here, look in book
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Estimating a distribution for x

Our estimate of x is not exact!
We can do better by estimating a joint Gaussian distribution p(x).

1 ;((X—)A()T P (x-1))
(272')n/2‘P‘1/2 €

p(x) =

where P = E((X —X)(x— )A()T ) is the covariance matrix

007
0.06.
005
004
003
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Finding the correction (geometric intuition)

Given prediction x(k +1| k), covariance P, and output vy, find Ax so that
X = X(k +1| k) + Ax is the "best" (i.e. most probable) estimate of x.

1 _71((X—)A()T P (x-%))

+HAJk) The most probable Ax is the one that :
X / 1. satisfies X(k +1|k +1) = X(k +1| k) + Ax

7
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A
v

2. minimizes Ax' P*AX




A new kind of distance

Suppose we define a new inner product on R" to be:
(%, X;) =% P7x,  (this replaces the old inner product x; x,)

Then we can define a new norm HXHZ =(X,X) = x' P~1x

The X in Q that minimizes||Ax| is the orthogonal projection of X(k +1|k)
onto Q, so Ax is orthogonal to Q.

= (@,Ax) =0for @in TQ =null(H)

(0,AX) =o' P Ax = 0iff Ax ecolumn(PH")
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Finding the correction (for real this time!)

Assuming that Axis linear in v = y — HX(k +1] k)
Ax=PHTKy

The condition y = H (X(k +1| k) + AX) = HAx =y — HX(k +1|K) = v

Substitution yields:
HAX =v = HPH 'Ky

=K =(HPHT |

Ax=PHT(HPHT |y
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X(k +1) = Fx(k) + Gu(k) +v(k
A Better State Observer (k1) () ) &)

y(k) = Hx(k)

We can create a better state observer following the same 3. steps, but now we
must also estimate the covariance matrix P.

We start with x(k|k) and P(k|K)
Step 1. Prediction

Where did noise go?
Expected value...

R(k +1|k) = Fx(k | k) + Gu(k)

What about P? From the definition:
P(k | k) = E((x(k) - (K | K))(x(K) = X(k | k)" }

and

P(k+1]K) = E((x(k +1) - R(k +1[ K))(x(k +1) — K(k +1] k)" )
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Continuing Step 1

To make life a little easier, lets shift notation slightly:
P = E((Xk+1 = Rier) Kieg = Repn)' )
= E|(Fx, +Guy +vy — (F&, +Guy ) NFx, +Guy +vy — (FX, +Guk))T)
(F (¢ = %4 )+ i (P (e = R )+ v )' )
= E(F(x, =% Nx =% ) FT +2F(x, —)‘(k)vI +vkv1)
= FE((xk ~ % X =% ) )FT + E(vkvz)
-FRF' +Q

P(k+1|k)=FP(k|k)F' +Q
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Step 2. Computing the correction

Fromstep1we get X(k +1| k) and P(k +1| k).

Now we use these to compute AX :

Ax = P(k+1]K)H(HP(K +1[K)HT " (y(k +1) - HR(k +1|K))

For ease of notation, define W so that

AX =Wy
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Step 3: Update

X(k+1|k+1)=Xx(k+1|k)+Wv

o 5 \T
Peir = B\t = Xiei0 ) (Ko — Xie41) )

= E((Xes1 = Kiess ~W) (X1 = Kicss ~W1)T )

(just take ord for it...)

P(k+1|k+1) =Pk +1| k) =WHP(k +1| k)H "W '
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Just take my word for it...

Peaa = E((Xk+1 ~ Xpee1) Xyg — >A(k+1)T )

E((Xk+l — X1 —~WV)(Xpy1 = Xir =W V)T )

~_ ~~_ \[
E(((Xkﬂ o Xk+1) —WVX(Xk+1 o Xk+1) _WV) j
= E((Xk+1 — Xiei1) (X1 — )A(IZ+1)T —2W v (X 4q — >A(k_+1)T +WV(WV)T )
= P+ B[ 2WH (e - ¢ — Re) T HWH (X — K¢ ~Re) HTWT)
=P +E (X1 = Xee1) K — Xp1) - + (Xis1 = Xprr ) Kieg1 — X1)
=P —2WHP_; +WHP_,HTWT
=P —2PHT (H P H' )‘l HP.,, +WHP_H W'
=P —2RGH! (H PeaH' )_1 (H PeaH' XH PeaH' )_1 HP 1 +WHP H W

=P, —2WHP,,H'WT +WHP,_,H'W'
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Observer
A

\.

Better State Observer Summary

x(k +1) = Fx(k) + Gu(k) + v(K)

System:
y y(K) = Hx(K)

1. Predict R(k +1|K) = FR(k | k) +Gu(K)

P(k+1|K) = FP(k [K)FT +Q

— T _1
2. Correction W =P(k+1|k)H (Hlj’(k +1|k)H
AX =W (y(k +1) — HX(k +1| k))
X(k +1)k +1) = X(k +1]| k) +Wv

3. Update o
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*Note: there is a problem with the previous slide, namely the covariance matrix of
the estimate P will be singular. This makes sense because with perfect sensor
measurements the uncertainty in some directions will be zero. There is no
uncertainty in the directions perpendicular to Q
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Finding the correction (with output noise)

y=HX+w

The previous results require that you know

which hyperplane to aim for. Because there
O = {X | Hx = y} ig now sensor noisg, we don’t know where to

aim, so we can’t directly use our method.

If we can determine which hyperplane aim
for, then the previous result would apply.

We find the hyperplane in question as follows:

~1. project estimate into output space

~2. find most likely point in output space based on
measurement and projected prediction

3. the desired hyperplane is the preimage of this point
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R(k +1|K) = § = HX(k +1|k)

Projecting the prediction
(putting current state estimates into sensor space)

P(k+1|k) > R=HP(k +1|k)H"

P(k+1

K(k+11k)

)

—> e

|

state space (n-dimensional)

%

L2 |

R

N
y

»
»

—>e

v

\J

output space (p-dimensional)
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Finding most likely output

:nce independent, so multiply them because we want them both to be true at the same time

The objective is to find the most likely output that results
from the independent Gaussian distributions
(Y, R) measurement and associate covariance

(S\/, R) projected prediction (what you think your measurements
should be and how confident you are)

Fact (Kalman Gains): The product of two Gaussian distributions given by
mean/covariance pairs (x,,C,) and (x,,C,) Is proportional to a third Gaussian
with mean

X3 =X T K(Xz _X1)

and covariance
CB — Cl - KC1 Strange, but true,

this is symmetric
K=C,(C,+C,)"

where

RI 16-735, Howie Choset, with slides from George Kantor, G.D. Hager, and D. Fox



Most likely output (cont.)

Using the Kalman gains, the most likely output is

y = 9+(F3(F3 - R)_lj(y— y)

= HX(k +1] k)+(HPHT (HPHT + R)‘l)(Hi(k +1|k)-y)
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Finding the Correction

Now we can compute the correction as we did in the noiseless case, this time
using y* instead of y. In other words, y* tells us which hyperplane to aim for.

Q:{X|Hx=y*}

A

The result Is:

T T —1 * A
) Ax=PHT(HPHT J'(y" = HR(k +1] k)
y i
ot going all the way to )}V but splitting the difference between how confident you are with your

Sensor and process noise
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Finding the Correction (cont.)

Ax=PHT(HPHT J(y" - H&(k +1| k))
= PHT(HPHT J*(H&+ HPHT(HPHT + R)™(y - HR(K +1]K))~ HR(K +1]K)]
= PH"(HPHT +R) " (y - HX(k +1| k))
For convenience, we define
W =PHT(HPHT +R)"
So that

Ax =W (y — HX(k +1|k))
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Correcting the Covariance Estimate

The covariance error estimate correction is computed from
the definition of the covariance matrix, in much the same
way that we computed the correction for the “better
observer”. The answer turns out to be:

P(k+1[k+1) = P(k +1] k) =W (HP(k+1k)HT W
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Kalman Filter
A

-

\.
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LTI Kalman Filter Summary

System:

1. Predict

2. Correction

3. Update

X(k +1) = Fx(k) + Gu(k) + v(k)
y(k) = Hx(k) + w(k)

R(k +1] k) = FX(k | k) + Gu(k)
P(k+1|k)=FP(k|k)F' +Q

S=HP(kk+1|k)H' +R
W =Pk +1|k)H'S™
Ax =W (y(k +1) - HX(k +1| k))

X(k+1|k+1) =x(k+1|k)+Wv
P(k+1|k+1)=P(k +1|k)-WSW '




Kalman Filters

Bdi(=) ‘
BRRARGNEN || | VAGEARARBRAR | (BREAm
Bel(s) —>

A .
TP(LM;} IIIIIII ‘ IIIIIIIIIIIIIIIIIIIIIIII
IBH(S} ‘ "
s O Bl o e prssTia & BB
Bd(z)

y "
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Kalman Filter for Dead Reckoning

Robot moves along a straight line with state x = [x,, v/]"

u is the force applied to the robot

Newton tells us % - % or vr(k+1) —vp(k) B u(k)
T om
- 1T 0 Process noise
x(k+1) = 0 1 x(k) + ],% u(k) +v(k)~—— from a zero
' mean
Gaussian V

2 Fa(k) + Gu(k) + v(k),

Robot has velocity sensor

yk+1) = [0 alk) +wlk) —— RS
= Gx(k) + w(k),
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ylk+1) =1[0 1]z(k)+ w(k)
2 Ga(k) + w(k)
Assume At some time k u(k) =10
me=1, W =.5 T = 0.5, and #(k|k) = [2, 47
~ [0z 005 ey — |1
V= [D.[LG |Z|.1] PO L:' 2‘

PUT ELLIPSE FIGURE HERE
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Observability

Recall from last time

zk+1) = Fx(k)+ Gulk)+ vik)
ulk) = Hx(k)+w(k]

is observable if and only if the observability matriz

_ o _
HF

Q=| HF?

HF =)

= =

has rank n.

Actually, previous example is not observable but still nice to use Kalman filter

RI 16-735, Howie Choset, with slides from George Kantor, G.D. Hager, and D. Fox



Extended Kalman Filter

e Life is not linear

clk+1) = fle(k)ulk) k) 4+ v(k) f-R" xR™ x Zt — R"
y(k) = hlz(k), k) +wlk), h:R" x ZT — RP
e Predict ik +1k) = flolklk) ulk), k)
Pik+1k) = F{ﬂ')P[%‘M‘]F(L‘]T + Vik)
where
- oh A ah -
[ dro o
o o d fao
F(k) = ﬁ — énf 5‘.1‘_2'3 rn
O | o (k| ) : !
Afn  9fn Ifn
L dary o dry, A w=i( k|k)
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Extended Kalman Filter

Update

rk+1lk+1) = z(k+1|k)+ Rv
Plk+1k+1) = Plk+1|k)— RH(E4+1)P(k+1|k)

v o= ylk+1)—h(x(k+1E),E+1)
S = Hk+1Pk+1HE+1T + W(k+1)
= Plk+1k)H(k+1)1s5!

and
r dhy Ak 2hy T
ary Ao 9zn
- dha  Hha Hha
_ oh Bz, B Y Br
HII.I({—J_:I = — — b | g dIn
Uz r=z(k+1|k) : : . :
dhy,  Ohy Ghyp
L \':j'.'l.'j_ l':jmg l‘ljul';q. e L1‘:.1ﬂ_‘|l|i.:+lllt|:_:|
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EKF for Range-Bearing Localization

e(k) = [zo(k), u-(K),6,(k)]"  position and orientation

e State

e Input u(k) = [us(k), ua(k)]T forward and rotational velocity

e Process Model cos By (k)uy (k) + (k)
r(k4+1) = [sinf.(Euy (k) +y. (k) | + v(k)
s (K) + O, (k)

e n,landmarks (e, ye) Association map

« canonly see p(k) ofthematk «a:{1,2,..., p(k)} — {1,2,....n¢}
[ hy(x(k),al(l)) ] [ wq (k) ]
, , , , /(2 (k) — 2£:)2 + (yr (k) — ;)2
ol (Y al (I vy oo |V EeE) = xg)* + (e (R) = i)
J(k) Faui.e.gﬁ.}. a(2)) N u.z.{ﬁu} hi(z(k), j) = a2 () — ;;f;.J:r{%'J A —JHTH']
| hpgy (2(k),a(p(k)) | [ wemy (k)
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Be wise,

1
0
0

af
O | e (ki)

F(k) F=

Hi(k+1.a(1))
Holk +1.a(2
H(k+1) = 2( | a(2))

HE{JL +1,7) =
i (Er(k+1|k)—ze5)

| Hpkey(E+ 1 a(plk+1)))

and linearize..

0 —sinf.(k)u(k)
1 cosf.(Euy (k)
0 1

hi

- T

[}

w=i(k+1|k)

fF

€

e=3(k+1|k)

Fhpiei1)
ox

e=&{k+1|k)_

(Fr(k+1[k)—ye;)

v (Er(k+1 k) —ze5) 2+ (G (k41| k) —yes )
— (i (k+1[E)—ye;)

v (Er (k1] k) —ze )24 (Gr (k1| E) —yey )2

1

Fr. B 2
1 ("’ i ) b’fi') (& (k1 k)—zg; )
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Data Association

BIG PROBLEM

Ith measurement corresponds to the jth landmark
vig = yilk+ 1) — hy(x(k+ 1K), 7)

innovation

]

_ .. o1 T
"l.a_j_pi_i'"z_j I"J".'__;

where

S = Hy(k+ 1, )Pk +1 | k) Hi(k+1,5)7 + Wik +1)
Pick the smallest
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Kalman Filter for SLAM (simple)

state
T ] ] T T T
I = [ L Yr Le1r Y1 Lez Yez o -.- Ling Hing ]

Inputs are commands to x and y velocities, a bit naive

Process model L0 Ura(%)
0 1 vry (k)
0 0 wu (ke 0
o(k+1)=x(k) + 0 0 [ z;h; } + 0
|0 0 | | 0]
[ Vik) 0 - 0]
ok +1) = Frik) + Guik) +v(k) é :I 0 --- 0
Vik) = _ .
0 0 0 |
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Kalman Filter for SLAM

rgi(k) — zr (k)

yei (k) — o (k) ] +wilk)

yilk) = {

yilk) = Hix(k) 4+ wi(k),

g_[-1 0 00100 - 0
il 0 -1 0 -~ 0010 -+ 0

y(k) = He(k) + w(k).

where - _ ~ _
Hl 'En!-‘l[.ltl'jl
H> wy (k
H = ] , and w(k) = 2_ )

i Hy, ] i Wn, (k) |

and the covariance matrix associated with w(k) is

i T']L"_ll;: .IC]I 0 005 1]
W L] _ D I-’L-.E ( ,f,.]
: ‘. . 0
0 0 Wy,

RI 16-7Qu, 1 IUVVIT UIIUDCTL, WIU DIUCTD 11Ul \JTUIYT nail i, U.uv. 1aycl, and D. Fox



Range Bearing

Inputs are forward and rotational velocities

f /(wei(k) = o2 (F)2 + (yei (k) — yr(K))?
() — " id Wi iy s
)= o) — e, oy iy o) F 00

o
P I S
e —

zeilk)—zelk)  weslk)—yr(k)

H; =
ay-r
—xei(kiterlk) —yalk)tur(k) 0
L I P . e . [
E-'s«;('t-'J:er-iﬂJ —EEa;k-iﬂJ;‘EvH'J 1 —yea;LFcJ:ryrtﬂ'J mesa;th—nmrﬁu
i I Py pi

P

2; 18 the range of the landmark

i = (k) — h(k);)" Sij(u(k); — h(k);).
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Greg’s Notes: Some Examples

Point moving on the line accordingtof=m a
— state is position and velocity
— input is force
— sensing should be position

Point in the plane under Newtonian laws

Nonholonomic kinematic system (no dynamics)
— state is workspace configuration
— input is velocity command
— sensing could be direction and/or distance to beacons

Note that all of dynamical systems are “open-loop” integration
Role of sensing is to “close the loop” and pin down state
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Kalman Filters

Bel(x;) = N (4, Jt2)

:ut_+l — :ut + But

2 A2 2 2
t+1_A0t +Gact

Bel (x;.,) = {

BeI(Xt+1) _ {:uul = lut_+1 + Kt+1(:uzt +1 lut_+1)

2 -2
Ot = (1_ Kt+1)o- t+1

_2 _
t+2

Bel(x;,,) = {
2 2 2
A Gt+1 + O-act

Bel(z) ‘
Bel(s) —

Y

Bd( =) ‘

¥

/ut_+2 — lut+1 + But+1 N

¥
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Kalman Filter Algorithm

Algorithm Kalman_filter( <u,Z>, d ):

If d is a perceptual data item y then
K=3CT(C=CT +%,, )"
p=u+K(z-Cu)
> =(1-KC)Z

Else if d Is an action data item u then
u=Au+Bu
>=AZA" +3__

Return <p,2>
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Limitations

« Very strong assumptions:

— Linear ste_lte dy_namps Xt—+1 _ AXt n But +zact
— Observations linear in state
 What can we do if system is not linear? L, =CX{+2

— Non-linear state dynamics
— Non-linear observations

Xt_+1 = f (Xt , ut’zact)
Z, =Cc(X, o)

Linearize it!

Determine Jacobians of dynamics f and observation

function c w.r.t the current state x and the noise.
of. OC.

02

(X, u,,0) Vij =

of. OC.
Aij =a—X"(Xt,Ut,O) Cij :@—XI-(X“O) Wij — (Xt’o)

J J act j obs j
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Extended Kalman Filter Algorithm

Algorithm Extended_ Kalman_filter(<uy,Z>, d):

If d iIs a perceptual data item z then
K=3CT(C2CT +Vz, V'] «—— K=3CT(cC"+Z,,)

obs

= p+K(z-c(u,0) — wu=u+K(z-Cu)
> =(1-KC)X — X=(1-KC)X
Else if d Is an action data item u then
u=f(u,u,0) — u=Au+Bu
Y=AZA" +Wz_ W' — X=AZA"+Z_,

Return <p,>>
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Kalman Filter-based Systems (2)
[Arras et al. 98]:

Laser range-finder and vision

High precision (<lcm accuracy)

{W} map: robot position x,y with uncertainty Pxy, 99.9 %
106 T | J I [ |
o L) 2= L
104 |
B i_l X *
| : |
=102 [ §
= X
> | B - A I_
100 Fem— Sk Y —— b —l ! » £ X :
& N =
ol o e o s -7 ] i e
e —— X =4 M— X % Y — -4 p< =4 P X )6—%
| | ! | ; |
70 75 80 85 90 95 100
X [m]
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Unscented Kalman Filter

* Instead of linearizing, pass several points from the Gaussian through the non-
linear transformation and re-compute a new Gaussian.

» Better performance (theory and practice).

p'=1(u,u,0)
> =ASA" +W2_ W'

act
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Kalman Filters and SLAM

Localization: state is the location of the robot
Mapping: state is the location of beacons
SLAM: state combines both

Consider a simple fully-observable holonomic robot

— X(k+1) = x(k) + u(k) dt + v
— Yi(k) = p; - x(k) +w

If the state is (x(k),p,, p, -..) then we can write a linear observation
system

— note that if we don’t have some fixed beacons, our system is unobservable
(we can't fully determine all unknown quantities)
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