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The Problem

• What is the world around me (mapping)
– sense from various positions
– integrate measurements to produce map
– assumes perfect knowledge of position

• Where am I in the world (localization)
– sense
– relate sensor readings to a world model
– compute location relative to model
– assumes a perfect world model

• Together, these are SLAM (Simultaneous Localization and 
Mapping)
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Localization

Tracking: Known initial position

Global Localization: Unknown initial position

Re-Localization: Incorrect known position

(kidnapped robot problem)

Challenges
– Sensor processing
– Position estimation
– Control Scheme
– Exploration Scheme
– Cycle Closure
– Autonomy
– Tractability
– Scalability

SLAM
Mapping while tracking locally and globally
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Representations for Robot Localization

Discrete approaches (’95)
• Topological representation (’95)

• uncertainty handling (POMDPs)
• occas. global localization, recovery

• Grid-based, metric representation (’96)
• global localization, recovery

Multi-hypothesis (’00)
• multiple Kalman filters
• global localization, recovery

Particle filters (’99)
• sample-based representation
• global localization, recovery

Kalman filters (late-80s?)
• Gaussians
• approximately linear models
• position tracking

AI

Robotics
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Three Major Map Models

Topological:
Collection of nodes and 
their interconnections

Grid-Based:
Collection of discretized 
obstacle/free-space pixels

Feature-Based:
Collection of landmark 
locations and correlated 
uncertainty

Elfes, Moravec, 
Thrun, Burgard, Fox, 
Simmons, Koenig, 
Konolige, etc.

Smith/Self/Cheeseman, 
Durrant–Whyte, Leonard, 
Nebot, Christensen, etc.

Kuipers/Byun, 
Chong/Kleeman, 
Dudek, Choset,
Howard, Mataric, etc.



RI 16-735,  Howie Choset, with slides from George Kantor, G.D. Hager, and D. Fox

Three Major Map Models

Localize to nodesArbitrary localizationDiscrete localizationResolution vs. Scale

Frontier-based 
exploration

Grid size and resolution

Grid-Based

Graph explorationNo inherent explorationExploration 
Strategies

Minimal complexityLandmark covariance (N2)Computational 
Complexity

TopologicalFeature-Based
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Atlas Framework

• Hybrid Solution:
– Local features extracted from local grid map.
– Local map frames created at complexity limit.
– Topology consists of connected local map frames.

Authors: Chong, Kleeman; Bosse, Newman, Leonard, Soika, Feiten, Teller
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H-SLAM
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What does a Kalman Filter do, anyway?

x k F k x k G k u k v k
y k H k x k w k
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

+ = + +
= +
1

x k n
u k m
y k p
F k G k H k
v k w k

Q k R k

( )
( )
( )
( ), ( ), ( )

( ), ( )
( ), ( )

 is the - dimensional state vector (unknown)
 is the - dimensional input vector (known)
 is the - dimensional output vector (known,  measured)

 are appropriately dimensioned system matrices (known)
 are zero - mean,  white Gaussian noise with (known) 

                  covariance matrices 

Given the linear dynamical system:

the Kalman Filter is a recursion that provides the 
“best” estimate of the state vector x.
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What’s so great about that?

• noise smoothing (improve noisy measurements)
• state estimation (for state feedback)
• recursive (computes next estimate using only most recent measurement)

x k F k x k G k u k v k
y k H k x k w k
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

+ = + +
= +
1
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How does it work?

x k F k x k G k u k v k
y k H k x k w k
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

+ = + +
= +
1

)|1(ˆ)()(ˆ
)()()|(ˆ)()|1(ˆ

kkxkHky
kukGkkxkFkkx

+=
+=+

1. prediction based on last estimate:

2. calculate correction based on prediction and current measurement:

( ))|1(ˆ),1( kkxkyfx ++=Δ

3. update prediction: xkkxkkx Δ++=++ )|1(ˆ)1|1(ˆ
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Finding the correction (no noise!)

Hxy =

{ }yHxx ==Ω |

•

“best” estimate comes from shortest xΔ

(k+1|k)x̂
Want the best estimate to be consistent 

with sensor readings

.ofestimate best""  theis
)|1(ˆˆ that so  find ,output  and )|1(ˆ predictionGiven 

x
xkkxxxykkx Δ++=Δ+
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Finding the correction (no noise!)

.ofestimate best""  theis
)1|1(ˆˆ that so  find ,output  and )1|1(ˆ predictionGiven 

x
xkxxxykx Δ++=Δ+

Hxy =

{ }yHxx ==Ω |

)|1(ˆ kkx +
•

“best” estimate comes from shortest xΔ

shortest       is perpendicular to    xΔ Ω

xΔ
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Some linear algebra

{ }yHxx ==Ω |

a is parallel to Ω if Ha = 0

}0|0{)( =≠= HaaHNull

a is parallel to Ω if it lies in the 
null space of H

)( if ),( allfor THcolumnbbvHNullv ∈⊥∈

Weighted sum of columns means columns of sum  weighted the,γHb =
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Finding the correction (no noise!)

. of estimate best""  theis
)|1(ˆˆ that so  find ,output  and )|1(ˆ predictionGiven 

x
xkkxxxykkx Δ++=Δ+

Hxy =

{ }yHxx ==Ω |

“best” estimate comes from shortest xΔ

shortest       is perpendicular to    xΔ Ω

( )⊥∈Δ⇒ Hx null ( )THx column∈Δ⇒

γTHx =Δ⇒{ }yHxx ==Ω |

)|1(ˆ kkx +
•

xΔ
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Finding the correction (no noise!)

. of estimate best""  theis
)|1(ˆˆ that so  find ,output  and )|1(ˆ predictionGiven 

x
xkkxxxykkx Δ++=Δ+

Hxy =

{ }yHxx ==Ω |

“best” estimate comes from shortest xΔ

shortest       is perpendicular to    xΔ Ω

( )⊥∈Δ⇒ Hx null ( )THx column∈Δ⇒

γTHx =Δ⇒{ }yHxx ==Ω |
xΔ

)|1(ˆ kkx +
•

))|1(ˆ())|1(ˆ( kkxxHkkxHy +−=+−=ν
innovation

Real output – estimated output
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Finding the correction (no noise!)

. of estimate best""  theis
)|1(ˆˆ that so  find ,output  and )|1(ˆ predictionGiven 

x
xkkxxxykkx Δ++=Δ+

Hxy =

{ }yHxx ==Ω |

“best” estimate comes from shortest xΔ

shortest       is perpendicular to    xΔ Ω

( )⊥∈Δ⇒ Hx null ( )THx column∈Δ⇒

γTHx =Δ⇒
assume γ is a linear function of ν

νKHx T=Δ⇒
Kmm matrix   somefor ×

{ }yHxx ==Ω |
xΔ

)|1(ˆ kkx +
•

Guess, hope, lets face it, it has to be some 
function of the innovation
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Finding the correction (no noise!)

.ofestimate best""  theis
)|1(ˆˆ that so  find ,output  and ˆ predictionGiven 

x
xkkxxxyx Δ++=Δ−

Hxy =

{ }yHxx ==Ω |

we require
yxkkxH =Δ++ ))|1(ˆ(

{ }yHxx ==Ω |
xΔ

)|1(ˆ kkx +
•
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Finding the correction (no noise!)

Hxy =

{ }yHxx ==Ω |

we require

ν=+−=+−=Δ⇒ ))|1(ˆ()|1(ˆ kkxxHkkxHyxH

{ }yHxx ==Ω |
xΔ

)|1(ˆ kkx +
•

yxkkxH =Δ++ ))|1(ˆ(

.ofestimate best""  theis
)|1(ˆˆ that so  find ,output  and ˆ predictionGiven 

x
xkkxxxyx Δ++=Δ−
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Finding the correction (no noise!)

Hxy =

{ }yHxx ==Ω |
νν =KHH T

substituting                           yieldsνKHx T=Δ
{ }yHxx ==Ω |

xΔ

we require

)|1(ˆ kkx +
• ν=+−=+−=Δ⇒ ))|1(ˆ()|1(ˆ kkxxHkkxHyxH

yxkkxH =Δ++ ))|1(ˆ(

.ofestimate best""  theis
)|1(ˆˆ that so  find ,output  and ˆ predictionGiven 

x
xkkxxxyx Δ++=Δ−

Δx must be perpendicular to Ω b/c anything in the 
range space of HT is perp to Ω
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Finding the correction (no noise!)

Hxy =

{ }yHxx ==Ω |
νν =KHH T

substituting                           yieldsνKHx T=Δ
{ }yHxx ==Ω |

xΔ

we require

)|1(ˆ kkx +
• ν=+−=+−=Δ⇒ ))|1(ˆ()|1(ˆ kkxxHkkxHyxH

yxkkxH =Δ++ ))|1(ˆ(

.ofestimate best""  theis
)|1(ˆˆ that so  find ,output  and ˆ predictionGiven 

x
xkkxxxyx Δ++=Δ−

( ) 1−
=⇒ THHK

The fact that the linear solution solves the equation makes assuming K is linear a kosher guess
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Finding the correction (no noise!)

Hxy =

{ }yHxx ==Ω |
νν =KHH T

substituting                           yieldsνKHx T=Δ
{ }yHxx ==Ω |

xΔ

we require

)|1(ˆ kkx +
• ν=+−=+−=Δ⇒ ))|1(ˆ()|1(ˆ kkxxHkkxHyxH

yxkkxH =Δ++ ))|1(ˆ(

.ofestimate best""  theis
)|1(ˆˆ that so  find ,output  and ˆ predictionGiven 

x
xkkxxxyx Δ++=Δ−

( ) 1−
=⇒ THHK

( ) ν
1−

=Δ TT HHHx
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A Geometric Interpretation

{ }yHxx ==Ω |

•

xΔ

)|1(ˆ kkx +
•
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A Simple State Observer

)()(
)()()1(

kHxky
kGukFxkx

=
+=+

)()|(ˆ)|1(ˆ kGukkxFkkx +=+

( ) ( ))|1(ˆ)1(
1

kkxHkyHHHx TT +−+=Δ
−

xkkxkkx Δ++=++ )|1(ˆ)1|1(ˆ

System:

1.  prediction:

2.  compute correction:

3.  update:

Observer:
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Caveat #1

Note:  The observer presented here is not a very good 
observer.  Specifically, it is not guaranteed to converge for 
all systems.  Still the intuition behind this observer is the 
same as the intuition behind the Kalman filter, and the 
problems will be fixed in the following slides.

It really corrects only to the current sensor information, 
so if you are on the hyperplane but not at right place, you
have no correction…. I am waiving my hands here, look in book
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where                                                is the covariance matrix

Estimating a distribution for x

Our estimate of x is not exact!
We can do better by estimating a joint Gaussian distribution p(x).

( ))ˆ()ˆ(
2
1

2/12/

1

)2(

1)(
xxPxx

n

T

e
P

xp
−−

− −

=
π

( )TxxxxEP )ˆ)(ˆ( −−=
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Finding the correction (geometric intuition)

. of estimate probable)most  (i.e. best""  theis )|1(ˆˆ
 that so  find ,output  and , covariance ,)|1(ˆ predictionGiven 

xxkkxx
xyPkkx

Δ++=
Δ+

{ }yHxx ==Ω |

)|1(ˆ kkx +•

xΔ
xPx

xkkxkkx
x

T ΔΔ

Δ++=++
Δ

−1minimizes 2. 
 )|1(ˆ)1|1(ˆ satisfies  1.  

 : thatone  theis  probablemost  The

( ))ˆ()ˆ(
2
1

2/12/

1

)2(

1)(
xxPxx

n

T

e
P

xp
−−

− −

=
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A new kind of distance

:be  toon product inner  new a define  weSuppose nR
 )product inner  old  thereplaces (this      , 212

1
121 xxxPxxx TT −=

xPxxxx T 12 ,  norm new a definecan  Then we −==

.  toorthogonal is  so , onto
 )|1(ˆ of projection orthogonal  theis  minimizes that in  ˆ The

ΩΔΩ

+ΔΩ

x
kkxxx

)(Tin  for  0, Hnullx =Ω=Δ⇒ ωω

)(  iff 0, 1 TT PHcolumnxxPx ∈Δ=Δ=Δ −ωω
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Finding the correction (for real this time!)

)|1(ˆin linear  is  that Assuming kkxHyx +−=Δ ν
 νKPHx T=Δ

ν=+−=Δ⇒Δ++= )|1(ˆ    ) )|1(ˆ(condition  The kkxHyxHxkkxHy

:yieldson Substituti

 νν KHPHxH T==Δ

( )   
1−

=⇒ THPHK

( )        
1
ν

−
=Δ∴ TT HPHPHx
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A Better State Observer

We can create a better state observer following the same 3. steps, but now we 
must also estimate the covariance matrix P.

Step 1:  Prediction
We start with x(k|k) and P(k|k)

)()|(ˆ)|1(ˆ kGukkxFkkx +=+

What about P?  From the definition:

( )TkkxkxkkxkxEkkP ))|(ˆ)())(|(ˆ)(()|( −−=

and

( )TkkxkxkkxkxEkkP ))|1(ˆ)1())(|1(ˆ)1(()|1( +−++−+=+

Where did noise go?
Expected value…

)()(
)()()()1(

kHxky
kvkGukFxkx

=
++=+

Sample of Guassian Dist. w/ 
COV Q
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Continuing Step 1

To make life a little easier, lets shift notation slightly:

( )T
kkkkk xxxxEP )ˆ)(ˆ( 11111
−
++

−
++

−
+ −−=

( )( )( )T
kkkkkkkkkk GuxFvGuFxGuxFvGuFxE )ˆ()ˆ( +−+++−++=

( )( ) ( )( )( )T
kkkkkk vxxFvxxFE +−+−= ˆˆ

( )( ) ( )( )T
k

T
kk

TT
kkkk kk

vvvxxFFxxxxFE +−+−−= ˆ2ˆˆ

( )( )( ) ( )T
k

TT
kkkk k

vvEFxxxxFE +−−= ˆˆ

QFFP T
k +=

QFkkFPkkP T +=+ )|()|1(
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Step 2: Computing the correction

).|1( and )|1(ˆget   we1 step From kkPkkx ++

: compute  to theseuse  weNow xΔ

( ) ( ) )|1(ˆ)1( )|1()|1(
1

kkxHkyHkkHPHkkPx T +−+++=Δ
−

For ease of notation, define W so that

 νWx =Δ
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Step 3: Update

 )|1(ˆ)1|1(ˆ νWkkxkkx ++=++

( )T
kkkkk xxxxEP )ˆ)(ˆ( 11111 +++++ −−=

( )T
kkkk WxxWxxE )ˆ)(ˆ( 1111 νν −−−−= −

++
−
++

(just take my word for it…)

TTWHkkWHPkkPkkP )|1()|1()1|1( +−+=++
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Just take my word for it…

( )T
kkkkk xxxxEP )ˆ)(ˆ( 11111 +++++ −−=

( )T
kkkk WxxWxxE )ˆ)(ˆ( 1111 νν −−−−= −

++
−
++

( )( ) ⎟
⎠
⎞⎜

⎝
⎛ −−−−= −

++
−

++
T

kkkk WxxWxxE νν )ˆ()ˆ( 1111

( )( )TT
kk

T
kkkk WWxxWxxxxE ννν +−−−−= −

++
−

++
−

++ )ˆ(2)ˆ)(ˆ( 111111

( )TTT
kkkk

T
kkkkk WHxxxxWHxxxxWHEP )ˆ)(ˆ()ˆ)(ˆ(2 111111111

−
++

−
++

−
++

−
++

−
+ −−+−−−+=

TT
kkk WHWHPWHPP −

+
−
+

−
+ +−= 111 2

( ) TT
kk

T
k

T
kk WHWHPHPHHPHPP −

+
−
+

−−
+

−
+

−
+ +−= 11

1
111 2

( ) ( )( ) TT
kk

T
k

T
k

T
k

T
kk WHWHPHPHHPHHPHHPHPP −

+
−
+

−−
+

−
+

−−
+

−
+

−
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1
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1
111 2
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kk WHWHPWHWHPP −
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−
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−
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Better State Observer Summary

)()(
)()()()1(

kHxky
kvkGukFxkx

=
++=+

System:

1. Predict

2. Correction

3. Update

)()|(ˆ)|1(ˆ kGukkxFkkx +=+
QFkkFPkkP T +=+ )|()|1(

( )   )|1()|1(
1−

++= THkkHPHkkPW
( ) )|1(ˆ)1( kkxHkyWx +−+=Δ

 )|1(ˆ)1|1(ˆ νWkkxkkx ++=++
TTWHkkWHPkkPkkP )|1()|1()1|1( +−+=++

O
bs

er
ve

r
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•Note: there is a problem with the previous slide, namely the covariance matrix of 
the estimate P will be singular.  This makes sense because with perfect sensor 

measurements the uncertainty in some directions will be zero.  There is no 
uncertainty in the directions perpendicular to Ω

P lives in the state space and directions associated with sensor noise are zero. In 
the step when you do the update, if you have a zero noise measurement, you end 

up squeezing P down.

In most cases, when you do the next prediction step, the process covariance matrix 
Q gets added to the P(k|k), the result will be nonsingular, and everything is ok again. 

There’s actually not anything wrong with this, except that you can’t really call the 
result a “covariance” matrix because “sometimes” it is not a covariance matrix

Plus, lets not be ridiculous, all sensors have noise.  
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Finding the correction (with output noise)

wHxy +=

{ }yHxx ==Ω |

)|1(ˆ kkx +
•

The previous results require that you know
which hyperplane to aim for.  Because there 
is now sensor noise, we don’t know where to 
aim, so we can’t directly use our method.

.If we can determine which hyperplane aim 
for, then the previous result would apply.

We find the hyperplane in question as follows:

1. project estimate into output space
2. find most likely point in output space based on 

measurement and projected prediction
3. the desired hyperplane is the preimage of this point
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Projecting the prediction
(putting current state estimates into sensor space)

)|1(ˆˆ)|1(ˆ kkxHykkx +=→+
THkkHPRkkP )|1(ˆ)|1( +=→+

)|1(ˆ kkx + •

)|1( kkP +

ŷ •

R̂

state space (n-dimensional) output space (p-dimensional)
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Finding most likely output

The objective is to find the most likely output that results 
from the independent Gaussian distributions

),( Ry
)ˆ,ˆ( Ry

measurement and associate covariance
projected prediction (what you think your measurements 
should be and how confident you are)

Fact (Kalman Gains):  The product of two Gaussian distributions given by 
mean/covariance pairs (x1,C1) and (x2,C2) is proportional to a third Gaussian 
with mean

and covariance

where

)( 1213 xxKxx −+=

113 KCCC −=

( ) 1
211

−+= CCCK

ence independent, so multiply them because we want them both to be true at the same time

Strange, but true, 
this is symmetric
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Most likely output (cont.)

Using the Kalman gains, the most likely output is 

( ) )ˆ(ˆˆˆ
1* yyRRRyy −⎟
⎠
⎞⎜

⎝
⎛ ++=

−

( )( ) ))|1(ˆ()|1(ˆ 1 ykkxHRHPHHPHkkxH TT −++++=
−
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Finding the Correction

{ }*| yHxx ==Ω

−x̂
•

xΔ

Now we can compute the correction as we did in the noiseless case, this time 
using y* instead of y.  In other words, y* tells us which hyperplane to aim for.

The result is:

( ) ( ) )|1(ˆ *1 kkxHyHPHPHx TT +−=Δ
−

ot going all the way to y, but splitting the difference between how confident you are with your
Sensor and process noise
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Finding the Correction (cont.)

( ) ( ) ( )( ) )|1(ˆ)|1(ˆˆ 11 kkxHkkxHyRHPHHPHxHHPHPH TTTT +−+−++=
−−

( ) ( ) )|1(ˆy *1 kkxHHPHPHx TT +−=Δ
−

( ) ( ))|1(ˆ1 kkxHyRHPHPH TT +−+=
−

For convenience, we define

( ) 1−
+= RHPHPHW TT

So that

( ) )|1(ˆ kkxHyWx +−=Δ
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Correcting the Covariance Estimate

The covariance error estimate correction is computed from 
the definition of the covariance matrix, in much the same 
way that we computed the correction for the “better 
observer”.  The answer turns out to be:

( ) TT WHkkHPWkkPkkP )|1()|1()1|1( +−+=++
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LTI Kalman Filter Summary

)()()(
)()()()1(

kwkHxky
kvkGukFxkx

+=
++=+

System:

1. Predict

2. Correction

3. Update

)()|(ˆ)|1(ˆ kGukkxFkkx +=+
QFkkFPkkP T +=+ )|()|1(

 )|1(ˆ)1|1(ˆ νWkkxkkx ++=++
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Kalman Filters
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Kalman Filter for Dead Reckoning

• Robot moves along a straight line with state x = [xr, vr]T

• u is the force applied to the robot

• Newton tells us                     or 

• Robot has velocity sensor

Process noise 
from a zero 
mean 
Gaussian V

Sensor noise from a 
zero mean Gaussian W
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Set up

At some time k

PUT ELLIPSE FIGURE HERE

Assume
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Observability

Recall from last time

Actually, previous example is not observable but still nice to use Kalman filter
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Extended Kalman Filter

• Life is not linear

• Predict
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Extended Kalman Filter

• Update



RI 16-735,  Howie Choset, with slides from George Kantor, G.D. Hager, and D. Fox

EKF for Range-Bearing Localization

• State                                                position and orientation

• Input                                                 forward and rotational velocity

• Process Model 

• nl landmarks
• can only see p(k) of them at k

Association map
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Be wise, and linearize..
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Data Association

•BIG PROBLEM
Ith measurement corresponds to the jth landmark

innovation

where

Pick the smallest
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Kalman Filter for SLAM (simple)
state

Process model

Inputs are commands to x and y velocities, a bit naive
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Kalman Filter for SLAM
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Range Bearing

Inputs are forward and rotational velocities
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Greg’s Notes: Some Examples

• Point moving on the line according to f = m a
– state is position and velocity
– input is force
– sensing should be position

• Point in the plane under Newtonian laws

• Nonholonomic kinematic system (no dynamics)
– state is workspace configuration
– input is velocity command
– sensing could be direction and/or distance to beacons

• Note that all of dynamical systems are “open-loop” integration
• Role of sensing is to “close the loop” and pin down state
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Kalman Filters
),()( 2
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Kalman Filter Algorithm 

1. Algorithm Kalman_filter( <μ,Σ>, d ):

2. If d is a perceptual data item y then
3.
4.
5.

6. Else if d is an action data item u then
7.
8.

9. Return <μ,Σ>

Σ−=Σ )( KCI

( ) 1−
Σ+ΣΣ= obs

TT CCCK
)( μμμ CzK −+=

act
TAA Σ+Σ=Σ

BuA += μμ
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• Linearize it!
• Determine Jacobians of dynamics f and observation 

function c w.r.t the current state x and the noise.

Limitations

• Very strong assumptions:
– Linear state dynamics
– Observations linear in state

• What can we do if system is not linear?
– Non-linear state dynamics
– Non-linear observations

actttt BuAXX Σ++=−
+1

obstt CXZ Σ+=

),,(1 actttt uXfX Σ=−
+

),( obstt XcZ Σ=

)0,,( tt
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∂
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jobs
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Σ∂
∂

=



RI 16-735,  Howie Choset, with slides from George Kantor, G.D. Hager, and D. Fox

Extended Kalman Filter Algorithm

1. Algorithm Extended_Kalman_filter(<μ,Σ>, d):

2. If d is a perceptual data item z then
3.
4.
5.

6. Else if d is an action data item u then
7.
8.

9. Return <μ,Σ>

Σ−=Σ )( KCI

( ) 1−
Σ+ΣΣ= obs

TT CCCK
)( μμμ CzK −+=

act
TAA Σ+Σ=Σ

BuA += μμ

( ) 1−
Σ+ΣΣ= T

obs
TT VVCCCK

( ))0,(μμμ czK −+=
Σ−=Σ )( KCI

)0,,( uf μμ =
T

act
T WWAA Σ+Σ=Σ
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• [Arras et al. 98]: 

• Laser range-finder and vision

• High precision (<1cm  accuracy)

Kalman Filter-based Systems (2)

Courtesy of K. Arras
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Unscented Kalman Filter

• Instead of linearizing, pass several points from the Gaussian through the non-
linear transformation and re-compute a new Gaussian.

• Better performance (theory and practice).

μμ

)0,,(' uf μμ =
T

act
T WWAA Σ+Σ=Σ

μ’

f f

μ’
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Kalman Filters and SLAM

• Localization: state is the location of the robot

• Mapping: state is the location of beacons

• SLAM: state combines both

• Consider a simple fully-observable holonomic robot

– x(k+1) = x(k) + u(k) dt + v
– yi(k) = pi - x(k) + w

• If the state is (x(k),p1, p2 ...) then we can write a linear observation 
system

– note that if we don’t have some fixed beacons, our system is unobservable
(we can’t fully determine all unknown quantities)


