
Real-time Planning and 

Re-planning II: 

Planning with Freespace Assumption, 

Agent-centered Search

Maxim Likhachev

Carnegie Mellon University



Maxim Likhachev Carnegie Mellon University 2

Planning with Freespace Assumption

• Planning with the Freespace Assumption always moves the 

robot on a shortest potentially unblocked path in a partially-

known terrain to the goal cell

• Replan the path whenever a new sensor information received



Maxim Likhachev

costs between unknown cells is 

the same as the costs in between 

cells known to be free

Carnegie Mellon University 3

Planning with Freespace Assumption

• Planning with the Freespace Assumption always moves the 

robot on a shortest potentially unblocked path in a partially-

known terrain to the goal cell

• Replan the path whenever a new sensor information received

- unknown



Maxim Likhachev Carnegie Mellon University 4

Planning with Freespace Assumption

• Planning with the Freespace Assumption always moves the 

robot on a shortest potentially unblocked path in a partially-

known terrain to the goal cell

• Replan the path whenever a new sensor information received

- unknown

…



Maxim Likhachev Carnegie Mellon University 5

Planning with Freespace Assumption

• Planning with the Freespace Assumption always moves the 

robot on a shortest potentially unblocked path in a partially-

known terrain to the goal cell

• Replan the path whenever a new sensor information received

• A lot of replanning!

• Incremental planning helps (D*/D* Lite)

• Anytime planning helps (ARA*, Anytime D*)

• Agent-centered planning (this class):

– a strict limit on the amount of computations (no planning all the 

way to the goal)



Maxim Likhachev Carnegie Mellon University 6

Agent-centered Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Example in an unknown terrain (agent-centered search with the freespace assumption):

- expanded



Maxim Likhachev Carnegie Mellon University 7

Agent-centered Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Example in a fully-known terrain:

- expanded



Maxim Likhachev Carnegie Mellon University 8

Agent-centered Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Research issues: 

- how to compute partial path

- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal



Maxim Likhachev Carnegie Mellon University 9

Agent-centered Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Research issues: 

- how to compute partial path

- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal

Any ideas?



Maxim Likhachev Carnegie Mellon University 10

Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using heuristics

h(x,y) = max(abs(x-xgoal), abs(y-ygoal)) + 0.4*min(abs(x-xgoal), abs(y-ygoal))

1. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

Any problems?



Maxim Likhachev Carnegie Mellon University 11

Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using heuristics

h(x,y) = max(abs(x-xgoal), abs(y-ygoal)) + 0.4*min(abs(x-xgoal), abs(y-ygoal))

1. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

Local minima problem (myopic or incomplete behavior)

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4
…

Any solutions?



Maxim Likhachev Carnegie Mellon University 12

Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

makes h-values more informed

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4



Maxim Likhachev Carnegie Mellon University 13

Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

0

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

5.25.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

14.45.4 3.4
…



Maxim Likhachev Carnegie Mellon University 14

Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

0

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

5.25.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

14.45.4 3.4
…

h-values remain admissible and consistent

proof?



Maxim Likhachev Carnegie Mellon University 15

Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

0

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

5.25.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

14.45.4 3.4
…

robot is guaranteed to reach goal in finite number of steps if:

• all costs are bounded from below with ∆ > 0

• graph is of finite size and there exists a finite-cost path to the goal

• all actions are reversible



Maxim Likhachev Carnegie Mellon University 16

Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

0

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

5.25.4 3.4

6.2

5.8

5

5.2

4.8

5.4

4.2

3.8

5

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

14.45.4 3.4
…

robot is guaranteed to reach goal in finite number of steps if:

• all costs are bounded from below with ∆ > 0

• graph is of finite size and there exists a finite-cost path to the goal

• all actions are reversible

Why conditions?



Maxim Likhachev Carnegie Mellon University 17

Learning Real-Time A* (LRTA*)

• related to limited-horizon A*:
– expand N = 1 state, make a move towards a state s in OPEN with smallest g(s)+h(s)

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s) 

= argmin s Є succ(sstart)g(s) + h(s)

5

4.45.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

5.4 3.4

6.2

5.8

5

5.2

4.8

4

4.2

3.8

3.8

2.8

2.4

2

3.4

2.4

1.4

1

3

2

1

0

4.45.4 3.4

- expanded

Why?



Maxim Likhachev Carnegie Mellon University 18

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

necessary for the guarantee 

to reach the goal

How path is found?



Maxim Likhachev Carnegie Mellon University 19

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

state s:

- the state that minimizes cost to it plus heuristic estimate of the remaining distance

- the state that looks most promising in terms of the whole path from current robot 

state to goal

- expanded



Maxim Likhachev Carnegie Mellon University 20

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

4-connected grid (robot moves in 4 directions)
example borrowed from ICAPS’06 planning summer school lecture (Koenig & Likhachev)



Maxim Likhachev Carnegie Mellon University 21

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

expand N=7 states



Maxim Likhachev Carnegie Mellon University 22

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

expand N=7 states

unexpanded state with smallest 

g + h (= 5 + 3) 



Maxim Likhachev Carnegie Mellon University 23

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

∞∞

∞∞

∞∞ ∞



Maxim Likhachev Carnegie Mellon University 24

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

4∞

∞∞

∞∞ ∞



Maxim Likhachev Carnegie Mellon University 25

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

∞∞

∞∞ ∞



Maxim Likhachev Carnegie Mellon University 26

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

6∞

∞∞ ∞



Maxim Likhachev Carnegie Mellon University 27

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

∞∞ ∞
Does it matter in 

what order?



Maxim Likhachev Carnegie Mellon University 28

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

7∞ ∞



Maxim Likhachev Carnegie Mellon University 29

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

78 ∞



Maxim Likhachev Carnegie Mellon University 30

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

78 8



Maxim Likhachev Carnegie Mellon University 31

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

make a move along the found path 

and repeat steps 1-3

45

67

78 8

Drawbacks compared

to A*?



Maxim Likhachev Carnegie Mellon University 32

Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

one linear pass 

(and even that can be postponed)

expand N=7 states

unexpanded state s with smallest 

g + h (= 5 + 3) 



Maxim Likhachev Carnegie Mellon University 33

Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

g=4g=3

g=2g=3

g=1g=2 g=0



Maxim Likhachev Carnegie Mellon University 34

Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

8-48-3

8-28-3

8-18-2 8-0



Maxim Likhachev Carnegie Mellon University 35

Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

45

65

76 8



Maxim Likhachev Carnegie Mellon University 36

Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

proof of admissibility:

g(u) + gd(u) ≥ gd(sstart)

gd(u) ≥ gd(sstart) – g(u)

gd(u) ≥ f(s) – g(u)

gd(u) ≥ hupdated(u)

45

65

76 8

gd() – true cost-to-goal

because f(s) ≤ gd(sstart)



Maxim Likhachev Carnegie Mellon University 37

LRTA* vs. RTAA*

RTAA*

45

65

76 8

LRTA*

• Update of h-values in RTAA* is much faster but not as informed

• Both guarantee adimssibility and consistency of heuristics

• For both, heuristics are monotonically increasing

• Both guarantee to reach the goal in a finite number of steps (given 

the conditions listed previously)

45

67

78 8


