Real-time Planning and Re-planning II: Planning with Freespace Assumption, Agent-centered Search

Maxim Likhachev
Carnegie Mellon University

- Planning with the Freespace Assumption always moves the robot on a shortest potentially unblocked path in a partially-known terrain to the goal cell
- Replan the path whenever a new sensor information received

- Planning with the Freespace Assumption always moves the robot on a shortest potentially unblocked path in a partially-known terrain to the goal cell
- Replan the path whenever a new sensor information received

costs between unknown cells is
the same as the costs in between
cells known to be free

- Planning with the Freespace Assumption always moves the robot on a shortest potentially unblocked path in a partially-known terrain to the goal cell
- Replan the path whenever a new sensor information received

- Planning with the Freespace Assumption always moves the robot on a shortest potentially unblocked path in a partially-known terrain to the goal cell
- · Replan the path whenever a new sensor information received
- A lot of replanning!
- Incremental planning helps (D*/D* Lite)
- Anytime planning helps (ARA*, Anytime D*)

- Agent-centered planning (this class):
 - a strict limit on the amount of computations (no planning all the way to the goal)

- 1. Compute a partial path by expanding at most N states around the robot
- 2. Move once, incorporate sensor information, and goto step 1

Example in an unknown terrain (agent-centered search with the freespace assumption):

- expanded

- 1. Compute a partial path by expanding at most N states around the robot
- 2. Move once, incorporate sensor information, and goto step 1

Example in a fully-known terrain:

- expanded

- 1. Compute a partial path by expanding at most N states around the robot
- 2. Move once, incorporate sensor information, and goto step 1

Research issues:

- how to compute partial path
- how to guarantee complete behavior (guarantee to reach the goal)
- provide bounds on the number of steps before reaching the goal

- Compute a partial path by expanding at most N states around the robot
- Move once, incorporate sensor information, and goto step 1

Research issues:

- how to compute partial path Any ideas?

- how to guarantee complete behavior (guarantee to reach the goal)
- provide bounds on the number of steps before reaching the goal

• Repeatedly move the robot to the most promising adjacent cell, using heuristics

1. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

 $h(x,y) = \max(abs(x-x_{goal}), \ abs(y-y_{goal})) + 0.4*\min(abs(x-x_{goal}), \ abs(y-y_{goal}))$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	- 4.4	3.4	2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4		2.4	1.4	1
5	4	m	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	\mathbb{C}		1	0

Any problems?

• Repeatedly move the robot to the most promising adjacent cell, using heuristics

1. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

$$h(x,y) = \max(abs(x-x_{goal}), \ abs(y-y_{goal})) + 0.4*\min(abs(x-x_{goal}), \ abs(y-y_{goal}))$$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	(\mathbf{T})		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	*3		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	7)		1	0

Local minima problem (myopic or incomplete behavior)

Any solutions?

• Repeatedly move the robot to the most promising adjacent cell, using **and updating** heuristics

- 1. $update\ h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
- 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	- 4.4	3.4	2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4		2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	$\frac{1}{2.8}$	2.4	2
5.4	4.4			1.4	1
5	4	5		1	0

makes h-values more informed

• Repeatedly move the robot to the most promising adjacent cell, using **and updating** heuristics

- 1. $update\ h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
- 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4,4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	≥ .8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

• Repeatedly move the robot to the most promising adjacent cell, using **and updating** heuristics

- 1. $update\ h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
- 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)} c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4,4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

h-values remain admissible and consistent

• Repeatedly move the robot to the most promising adjacent cell, using **and updating** heuristics

- 1. $update\ h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
- 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4,4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

robot is guaranteed to reach goal in finite number of steps if:

- all costs are bounded from below with $\Delta > 0$
- graph is of finite size and there exists a finite-cost path to the goal
- all actions are reversible

• Repeatedly move the robot to the most promising adjacent cell, using **and updating** heuristics

- 1. $update\ h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
- 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4,4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

robot is guaranteed to reach goal in finite number of steps if:

- all costs are bounded from below with $\Delta > 0$ Why conditions?
- graph is of finite size and there exists a finite-cost path to the goal
- all actions are reversible

• related to limited-horizon A*:

- expand N = 1 state, make a move towards a state s in OPEN with smallest g(s) + h(s)
 - 1. $update\ h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
 - 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$ = $argmin_{s \in succ(sstart)}g(s) + h(s)$ Why?

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	- 4.4	3.4	2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4		2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	4		1	0

- LRTA* with $N \ge 1$ expands
 - 1. expand N states
 - 2. update h-values of expanded states by Dynamic Programming (DP)
 - 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

How path is found?

necessary for the guarantee to reach the goal

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

state s:

- the state that minimizes cost to it plus heuristic estimate of the remaining distance
- the state that looks most promising in terms of the whole path from current robot state to goal

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	4		2	1
4	3	2		0

4-connected grid (robot moves in 4 directions)

example borrowed from ICAPS'06 planning summer school lecture (Koenig & Likhachev)

- expanded

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6			3	2
			2	1
				0

expand N=7 states

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	∞	∞	3	2
∞	∞		2	1
∞	∞	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	∞	4	3	2
∞	∞		2	1
∞	∞	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
∞	∞		2	1
∞	∞	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
∞	6		2	1
∞	∞	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
∞	∞	∞		0

update h-values of expanded states via DP: compute $h(s) = \min_{s' \in succ(s)} (c(s,s') + h(s'))$ until convergence

Does it matter in what order?

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
∞	7	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
8	7	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
8	7	8		0

- LRTA* with $N \ge 1$ expands
 - 1. expand N states
 - 2. update h-values of expanded states by Dynamic Programming (DP)
 - 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	- 3	2
7	6		2	1
8	1	8		0

make a move along the found path and repeat steps 1-3

Drawbacks compared to A*?

• RTAA* with $N \ge 1$ expands

one linear pass (and even that can be postponed)

- 1. expand N states
- 2. update h-values of expanded states u by h(u) = f(s) g(u), where $s = argmin_{s' \in OPEN} g(s') + h(s')$
- 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

• RTAA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states u by h(u) = f(s) g(u), where $s = argmin_{s' \in OPEN} g(s') + h(s')$
- 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	g=3	g=4	3	2
g=3	g=2		2	1
g=2	g=1	(g=0)		0

update all expanded states u: h(u) = f(s) - g(u)

unexpanded state s with smallest f(s) = 8

RTAA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states u by h(u) = f(s) - g(u), where $s = argmin_{s' \in OPEN} g(s') + h(s')$
- 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	8-3	8-4	3	2
8-3	8-2		2	1
8-2	8-1	8-0		0

$$h(u) = f(s) - g(u)$$

unexpanded state s with smallest f(s) = 8

• RTAA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states u by h(u) = f(s) g(u), where $s = argmin_{s' \in OPEN} g(s') + h(s')$
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	6		2	1
6	7	8		0

update all expanded states u: h(u) = f(s) - g(u)

unexpanded state s with smallest f(s) = 8

• RTAA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states u by h(u) = f(s) g(u), where $s = argmin_{s' \in OPEN} g(s') + h(s')$
- 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	6		2	1
6	7	8		0

LRTA* vs. RTAA*

T	\mathbf{R}^{T}	Γ_{A}	Δ	*
		lΓ	7	

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
8	7	8		0

RTAA*

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	6		2	1
6	7	8		0

- Update of *h*-values in RTAA* is much faster but not as informed
- Both guarantee adimssibility and consistency of heuristics
- For both, heuristics are monotonically increasing
- Both guarantee to reach the goal in a finite number of steps (given the conditions listed previously)