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Planning with Freespace Assumption

• Planning with the Freespace Assumption always moves the 

robot on a shortest potentially unblocked path in a partially-

known terrain to the goal cell

• Replan the path whenever a new sensor information received
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costs between unknown cells is 
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cells known to be free
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Planning with Freespace Assumption

• Planning with the Freespace Assumption always moves the 

robot on a shortest potentially unblocked path in a partially-

known terrain to the goal cell

• Replan the path whenever a new sensor information received

- unknown
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Planning with Freespace Assumption

• Planning with the Freespace Assumption always moves the 

robot on a shortest potentially unblocked path in a partially-

known terrain to the goal cell

• Replan the path whenever a new sensor information received

- unknown

…
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Planning with Freespace Assumption

• Planning with the Freespace Assumption always moves the 

robot on a shortest potentially unblocked path in a partially-

known terrain to the goal cell

• Replan the path whenever a new sensor information received

• A lot of replanning!

• Incremental planning helps (D*/D* Lite)

• Anytime planning helps (ARA*, Anytime D*)

• Agent-centered planning (this class):

– a strict limit on the amount of computations (no planning all the 

way to the goal)
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Agent-centered Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Example in an unknown terrain (agent-centered search with the freespace assumption):

- expanded
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Agent-centered Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Example in a fully-known terrain:

- expanded
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Agent-centered Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Research issues: 

- how to compute partial path

- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal
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Agent-centered Search

1. Compute a partial path by expanding at most N states around the 

robot

2. Move once, incorporate sensor information, and goto step 1

Research issues: 

- how to compute partial path

- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal

Any ideas?
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Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using heuristics

h(x,y) = max(abs(x-xgoal), abs(y-ygoal)) + 0.4*min(abs(x-xgoal), abs(y-ygoal))

1. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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Any problems?
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Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using heuristics

h(x,y) = max(abs(x-xgoal), abs(y-ygoal)) + 0.4*min(abs(x-xgoal), abs(y-ygoal))

1. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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Local minima problem (myopic or incomplete behavior)
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Any solutions?
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Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)

makes h-values more informed
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Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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h-values remain admissible and consistent

proof?
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Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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robot is guaranteed to reach goal in finite number of steps if:

• all costs are bounded from below with ∆ > 0

• graph is of finite size and there exists a finite-cost path to the goal

• all actions are reversible
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Learning Real-Time A* (LRTA*)

• Repeatedly move the robot to the most promising adjacent 

cell, using and updating heuristics

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s)
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robot is guaranteed to reach goal in finite number of steps if:

• all costs are bounded from below with ∆ > 0

• graph is of finite size and there exists a finite-cost path to the goal

• all actions are reversible

Why conditions?
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Learning Real-Time A* (LRTA*)

• related to limited-horizon A*:
– expand N = 1 state, make a move towards a state s in OPEN with smallest g(s)+h(s)

1. update h(sstart) = min s Є succ(sstart)c(sstart, s) + h(s)

2. always move as follows: sstart = argmin s Є succ(sstart)c(sstart, s) + h(s) 

= argmin s Є succ(sstart)g(s) + h(s)
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- expanded

Why?
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

necessary for the guarantee 

to reach the goal

How path is found?
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

state s:

- the state that minimizes cost to it plus heuristic estimate of the remaining distance

- the state that looks most promising in terms of the whole path from current robot 

state to goal

- expanded



Maxim Likhachev Carnegie Mellon University 20

Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

4-connected grid (robot moves in 4 directions)
example borrowed from ICAPS’06 planning summer school lecture (Koenig & Likhachev)
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

expand N=7 states
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

expand N=7 states

unexpanded state with smallest 

g + h (= 5 + 3) 
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

∞∞

∞∞

∞∞ ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

4∞
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∞∞ ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

∞∞

∞∞ ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45
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∞∞ ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

∞∞ ∞
Does it matter in 

what order?
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

7∞ ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

78 ∞
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update h-values of expanded states via DP:

compute h(s) = mins’Є succ(s) (c(s,s’)+h(s’))

until convergence

45

67

78 8
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Learning Real-Time A* (LRTA*)

• LRTA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

make a move along the found path 

and repeat steps 1-3

45

67

78 8

Drawbacks compared

to A*?
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Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

one linear pass 

(and even that can be postponed)

expand N=7 states

unexpanded state s with smallest 

g + h (= 5 + 3) 
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Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

g=4g=3

g=2g=3

g=1g=2 g=0
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Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

8-48-3

8-28-3

8-18-2 8-0
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Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

update all expanded states u:

h(u) = f(s) – g(u)

unexpanded state s with smallest 

f(s) = 8

45

65

76 8
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Real-time Adaptive A* (RTAA*)

• RTAA* with N ≥ 1 expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) – g(u), 

where s = argmin s’ Є OPEN g(s’) + h(s’)

3. move on the path to state s = argmin s’ Є OPEN g(s’) + h(s’)

- expanded

proof of admissibility:

g(u) + gd(u) ≥ gd(sstart)

gd(u) ≥ gd(sstart) – g(u)

gd(u) ≥ f(s) – g(u)

gd(u) ≥ hupdated(u)

45

65

76 8

gd() – true cost-to-goal

because f(s) ≤ gd(sstart)
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LRTA* vs. RTAA*

RTAA*

45

65

76 8

LRTA*

• Update of h-values in RTAA* is much faster but not as informed

• Both guarantee adimssibility and consistency of heuristics

• For both, heuristics are monotonically increasing

• Both guarantee to reach the goal in a finite number of steps (given 

the conditions listed previously)

45

67

78 8


