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Planning with Freespace Assumption

 Planning with the Freespace Assumption always moves the
robot on a shortest potentially unblocked path in a partially-
known terrain to the goal cell

* Replan the path whenever a new sensor information received
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Planning with Freespace Assumption

 Planning with the Freespace Assumption always moves the
robot on a shortest potentially unblocked path in a partially-
known terrain to the goal cell

* Replan the path whenever a new sensor information received

costs between unknown cells is
the same as the costs in between
cells known to be free \
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Planning with Freespace Assumption

 Planning with the Freespace Assumption always moves the
robot on a shortest potentially unblocked path in a partially-
known terrain to the goal cell

* Replan the path whenever a new sensor information received

. - unknown
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Planning with Freespace Assumption

Planning with the Freespace Assumption always moves the
robot on a shortest potentially unblocked path in a partially-
known terrain to the goal cell

Replan the path whenever a new sensor information received

A lot of replanning!
Incremental planning helps (D*/D* Lite)
Anytime planning helps (ARA*, Anytime D*)

Agent-centered planning (this class):

— astrict limit on the amount of computations (no planning all the
way to the goal)
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Agent-centered Search

1. Compute a partial path by expanding at most N states around the
robot

2. Move once, incorporate sensor information, and goto step 1

Example in an unknown terrain (agent-centered search with the freespace assumption):

- expanded
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Agent-centered Search

1. Compute a partial path by expanding at most N states around the
robot

2. Move once, incorporate sensor information, and goto step 1

Example in a fully-known terrain:

= (5‘

- expanded
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Agent-centered Search

Compute a partial path by expanding at most N states around the
robot

Move once, incorporate sensor information, and goto step 1

Research issues:
- how to compute partial path

- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal
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Agent-centered Search

Compute a partial path by expanding at most N states around the
robot

Move once, incorporate sensor information, and goto step 1

Research issues:
- how to compute partial path ~ Any ideas?

- how to guarantee complete behavior (guarantee to reach the goal)

- provide bounds on the number of steps before reaching the goal
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Learning Real-Time A* (LRTA*)

» Repeatedly move the robot to the most promising adjacent

cell, using heuristics

1. always move as follows: Sy, = argmin ¢ ¢ gce(sstaryC(Sstarts S) + h(S)

h(va) = max(abs(x-xg0a|), abs(y'ygoal)) + 0-4*min(abs(x'xgoal)’ abs(y'ygoal))
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» Repeatedly move the robot to the most promising adjacent

Learning Real-Time A* (LRTA*)

cell, using heuristics

1.

h(va) = max(abs(x-xgoa|), abs(y'ygoal)) + 0-4*min(abs(x'xgoal)’ abs(y'ygoal))

always move as follows: g, = argmin g ¢ gycesstaryC(Sstarts S) + N(S)

Local minima problem (myopic or incomplete behavior)

Maxim Likhachev
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Learning Real-Time A* (LRTA*)

» Repeatedly move the robot to the most promising adjacent
cell, using and updating heuristics

makes h-values more informed

1. update h(sstart) = min S €succ(sstart)c(sstart’ S) + h(S)
2. always move as follows: g, = argmin g ¢ gucesstaryC(Sstar S) + N(S)
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Learning Real-Time A* (LRTA*)

» Repeatedly move the robot to the most promising adjacent
cell, using and updating heuristics

1. update h(Sstart) = min S €succ(sstart)c(sstart’ S) + h(S)
2. always move as follows: g, = argmin g ¢ gucesstaryC(Sstar S) + N(S)
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Learning Real-Time A* (LRTA*)

» Repeatedly move the robot to the most promising adjacent
cell, using and updating heuristics

1. update h(Sstart) = min S €succ(sstart)c(sstart’ S) + h(S)
2. always move as follows: g, = argmin g ¢ gucesstaryC(Sstar S) + N(S)

6.2 5.2 4.23.8 3.4 3
5.8 4.8 2
5.4 4 1
5 (5 0

h-values remain admissible and consistent

proof?
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Learning Real-Time A* (LRTA*)

» Repeatedly move the robot to the most promising adjacent
cell, using and updating heuristics

1. update h(Sstart) = min S €succ(sstart)c(sstart’ S) + h(S)
2. always move as follows: g, = argmin g ¢ gucesstaryC(Sstar S) + N(S)

8343
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141
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robot Is guaranteed to reach goal Iin finite number of steps If:
e all costs are bounded from below with A > 0

« graph is of finite size and there exists a finite-cost path to the goal

« all actions are reversible
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Learning Real-Time A* (LRTA*)

» Repeatedly move the robot to the most promising adjacent
cell, using and updating heuristics

1. update h(Sstart) = min S €succ(sstart)c(sstart’ S) + h(S)
2. always move as follows: g, = argmin g ¢ gucesstaryC(Sstar S) + N(S)

834 3
2.4 2
141
10
robot Is guaranteed to reach goal In finite number of stenec if:
 all costs are bounded from below with A >0 Why conditions?

« graph is of finite size and there exists a finite-cost path to the goal

« all actions are reversible
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Learning Real-Time A* (LRTA*)

e related to limited-horizon A*:

— expand N = 1 state, make a move towards a state s in OPEN with smallest g(s)+h(s)

1. update h(Sstart) = min S €succ(sstart)c(sstart’ S) + h(S)
2. always move as follows: g, = argmin g ¢ gucesstaryC(Sstar S) + N(S)
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands -
necessary for the guarantee
1. expand N states to reach the goal

2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

How path Is found?

- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)

3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

state s:

- the state that minimizes cost to it plus heuristic estimate of the remaining distance

- the state that looks most promising in terms of the whole path from current robot
state to goal

- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states

2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8| 7| 6|54
/716 |5|4]|3
6| 54| 3| 2
o | 4 2 | 1
4 | 3 [ 2 0

4-connected grid (robot moves in 4 directions)
example borrowed from ICAPS’06 planning summer school lecture (Koenig & Likhachev)

Maxim Likhachev
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 | 7 16| 5| 4] expand N=7 states
716|543
6 3| 2
2 | 1
0
- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 | 7| 6| 5| 4] expandN=7 states
716 |5 4|3
6 >3 | 2
2 1 unexpanded state with smallest
g+h(=5+3)
L 0
- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
compute h(S) = mins’Csucc(s) (C(S’S ’)+h(s J))
7 | 6 | 5| 4 | 3 | untlconvergence
6 oo |0 ]| 3| 2
o | o0 2 | 1
o0 | O | o0 0
- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
compute h(S) = mins’Csucc(s) (C(S’S ’)+h(s J))
7 | 6 | 5| 4 | 3 | untlconvergence
6 loo (4 | 3| 2
o | o0 2 | 1
o0 | O | o0 0
- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
compute h(S) = mins’Csucc(s) (C(S’S ’)+h(s J))
7 | 6 | 5| 4 | 3 | untlconvergence
6|5 4| 3|2
o | o0 2 | 1
o0 | O | o0 0
- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
compute h(s) = MiN ¢ gy005) (€(5,5 ") Th(s ")
7 | 6 | 5| 4 | 3 | untlconvergence
6|5 4| 3|2
© | 6 2 | 1
Q0 o0 Q0 0
- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
compute h(S) = mins’Csucc(s) (C(S’S ’)+h(s J))
7 | 6 | 5| 4 | 3 | untlconergence
6|5 14| 3|2
716 2| 1
0 Does It matter In
Q0 o0 Q0
what order?
- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
compute h(S) = mins’Csucc(s) (C(S’S ’)+h(s J))
7 | 6 | 5| 4 | 3 | untlconvergence
6|5 4| 3|2
716 2 | 1
o | [ | oo 0
- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
compute h(S) = mins’Csucc(s) (C(S’S ’)+h(s J))
7 | 6 | 5| 4 | 3 | untlconvergence
6|5 4| 3|2
716 2 | 1
8 | 7 [0 0
- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 7 6 5 4 | update h-values of expanded states via DP:
compute h(S) = mins’Csucc(s) (C(S’S ’)+h(s J))
7 | 6 | 5| 4 | 3 | untlconvergence
6|5 4| 3|2
716 2 | 1
8 |7 (8 0
- expanded
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Learning Real-Time A* (LRTA*)

 LRTA* with N > I expands

1. expand N states
2.  update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 | 71 6| 5 | 4 | makeamove along the found path
and repeat steps 1-3
716|543
6 5'— 3| 2
7 eI 2 | 1| Drawbacks compared

- expanded
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Real-time Adaptive A* (RTAA*)

¢ RTAA* Wlth N Z ] eXpandS one linear pass
/ and even that can be postponed

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) — g(u),
where s =argmin ;.. openg(s’) + A(s)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 | 7| 6| 5| 4] expandN=7 states
716 |5 4|3
6 >3 | 2
2 1 unexpanded state s with smallest
g+h(=5+3)
L 0
- expanded
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Real-time Adaptive A* (RTAA*)

« RTAA* with N > ] expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) — g(u),
where s =argmin ;.. openg(s’) + A(s)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 | 7| 6| 5| 4 |update all expanded states u:
716|543 ]|hu)=1f(s)-g(u)
6 [ 03[ 04 3 | 2
g=3| g=2 2 1 unexpanded state s with smallest
f(s) =8
g=2| g=1{ g=0 0
- expanded
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Real-time Adaptive A* (RTAA*)

« RTAA* with N > ] expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) — g(u),
where s =argmin ;.. openg(s’) + A(s)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8| 7| 6| 95| 4 |update all expanded states u:
716 |54/ 3|h(u)=f(s)-gu)
6 8384 3 | 2
8-3| 8-2 2 1 unexpanded state s with smallest
f(s) =8
8-2| 8-1( 8-0 0
- expanded
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Real-time Adaptive A* (RTAA*)

« RTAA* with N > ] expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) — g(u),
where s =argmin ;.. openg(s’) + A(s)
3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

8 | 7| 6| 9| 4 |update all expanded states u:
7165 4]|3]|hu)=f(s)-g()
6 |5 |4 3| 2
5 6 2 1 unexpanded state s with smallest
f(s) =8
6 7 8 0
- expanded
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Real-time Adaptive A* (RTAA*)

« RTAA* with N > [ expands

1. expand N states

2. update h-values of expanded states u by h(u) = f(s) — g(u),
where s =argmin ;.. openg(s’) + A(s)

3. move on the path to state s = argmin _. - openg(5 ) + A(s’)

ssibil 8 5[ 4
proof of admmawy'/
7 4 | 3
g(u) + gd(u) ng(sstart)
gd(u) 2 gd(Sstart) — g(u) because J(5) < gd(Ssar) £ 3|2
gd(u) = f(s) - g(U)/ 2 2 | 1
gd(u) = hupdated(u) 6 0
- expanded
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LRTA* vs. RTAA*

LRTA* RTAA*
8| 7| 6|54 8| 7|6 |5 | 4
716|543 716|543
615 14| 3|2 6|5 |4 | 3|2
7 |16 2 | 1 5 |6 2 | 1
8 |7 (8 0 6 |7 (8 0

« Update of h-values in RTAA* is much faster but not as informed
« Both guarantee adimssibility and consistency of heuristics
 For both, heuristics are monotonically increasing

« Both guarantee to reach the goal in a finite number of steps (given
the conditions listed previously)
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