Real-time Planning and Re-planning II:
Planning with Freespace Assumption, Agent-centered Search

Maxim Likhachev
Carnegie Mellon University

Planning with Freespace Assumption

- Planning with the Freespace Assumption always moves the robot on a shortest potentially unblocked path in a partiallyknown terrain to the goal cell
- Replan the path whenever a new sensor information received

Planning with Freespace Assumption

- Planning with the Freespace Assumption always moves the robot on a shortest potentially unblocked path in a partiallyknown terrain to the goal cell
- Replan the path whenever a new sensor information received costs between unknown cells is the same as the costs in between cells known to be free

Planning with Freespace Assumption

- Planning with the Freespace Assumption always moves the robot on a shortest potentially unblocked path in a partiallyknown terrain to the goal cell
- Replan the path whenever a new sensor information received

Planning with Freespace Assumption

- Planning with the Freespace Assumption always moves the robot on a shortest potentially unblocked path in a partiallyknown terrain to the goal cell
- Replan the path whenever a new sensor information received
- A lot of replanning!
- Incremental planning helps (D*/D* Lite)
- Anytime planning helps (ARA*, Anytime D*)
- Agent-centered planning (this class):
- a strict limit on the amount of computations (no planning all the way to the goal)

Agent-centered Search

1. Compute a partial path by expanding at most N states around the robot
2. Move once, incorporate sensor information, and goto step 1

Example in an unknown terrain (agent-centered search with the freespace assumption):

\square - expanded

Agent-centered Search

1. Compute a partial path by expanding at most N states around the robot
2. Move once, incorporate sensor information, and goto step 1

Example in a fully-known terrain:

\square - expanded

Agent-centered Search

1. Compute a partial path by expanding at most N states around the robot
2. Move once, incorporate sensor information, and goto step 1

Research issues:

- how to compute partial path
- how to guarantee complete behavior (guarantee to reach the goal)
- provide bounds on the number of steps before reaching the goal

Agent-centered Search

1. Compute a partial path by expanding at most N states around the robot
2. Move once, incorporate sensor information, and goto step 1

Research issues:

- how to compute partial path Any ideas?
- how to guarantee complete behavior (guarantee to reach the goal)
- provide bounds on the number of steps before reaching the goal

Learning Real-Time A* (LRTA*)

- Repeatedly move the robot to the most promising adjacent cell, using heuristics

1. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(s s t a r t)} c\left(s_{\text {starr }} s\right)+h(s)$
$h(x, y)=\max \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)+0.4 * \min \left(a b s\left(x-x_{\text {goal }}\right), a b s\left(y-y_{\text {goal }}\right)\right)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4	3.4	2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4		2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	3			1

Any problems?

Learning Real-Time A* (LRTA*)

- Repeatedly move the robot to the most promising adjacent cell, using heuristics

1. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ(sstart)}} c\left(s_{\text {start }} s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3	6.2	5.2	4.2	3.8	3.4		6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2	5.8	4.8	3.8	2.8	2.4	2	5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1	5.4	4.4			1.4	1	5.4	4.4			1.4	1
5	4)		1	0	5	4			1	0	5				1	0

Local minima problem (myopic or incomplete behavior)

Any solutions?

Learning Real-Time A* (LRTA*)

- Repeatedly move the robot to the most promising adjacent cell, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {starv }}, s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }} s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4	3.4	2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4		2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	5^{2}		1	0

Learning Real-Time A* (LRTA*)

- Repeatedly move the robot to the most promising adjacent cell, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start, }} s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }} s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2	2.8	2.4
	2				
5.4	4.4			1.4	1
5	5.4	5		1	0

Learning Real-Time A* (LRTA*)

- Repeatedly move the robot to the most promising adjacent cell, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(s s t a r t)} c\left(s_{\text {start }} s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }} s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2	2.8	2.4

h-values remain admissible and consistent
proof?

Learning Real-Time A* (LRTA*)

- Repeatedly move the robot to the most promising adjacent cell, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }}, s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }} s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5			1

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.2	2.8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

robot is guaranteed to reach goal in finite number of steps if:

- all costs are bounded from below with $\Delta>0$
- graph is of finite size and there exists a finite-cost path to the goal
- all actions are reversible

Learning Real-Time A* (LRTA*)

- Repeatedly move the robot to the most promising adjacent cell, using and updating heuristics

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(s s t a r t)} c\left(s_{\text {start }} s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }} s\right)+h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5			1

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	5.4	5		1	0

robot is guaranteed to reach goal in finite number of stens if.

- all costs are bounded from below with $\Delta>0$

Why conditions?

- graph is of finite size and there exists a finite-cost path to the goal
- all actions are reversible

Learning Real-Time A* (LRTA*)

- related to limited-horizon A^{*} :
- expand $N=1$ state, make a move towards a state s in OPEN with smallest $g(s)+h(s)$

1. update $h\left(s_{\text {start }}\right)=\min _{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }} s\right)+h(s)$
2. always move as follows: $s_{\text {start }}=\operatorname{argmin}_{s \in \operatorname{succ}(\text { sstart })} c\left(s_{\text {start }} s\right)+h(s)$

$$
=\operatorname{argmin}_{s \in \operatorname{succ}(\operatorname{start})} g(s)+h(s)
$$

Why?

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.7	4.4	3.4	2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4		2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	5		1	0

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands
necessary for the guarantee

1. expand N states to reach the goal
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

How path is found?

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$
state s :

- the state that minimizes cost to it plus heuristic estimate of the remaining distance - the state that looks most promising in terms of the whole path from current robot state to goal

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	4		2	1
4	3	2		0

4-connected grid (robot moves in 4 directions)
example borrowed from ICAPS'06 planning summer school lecture (Koenig \& Likhachev)

- expanded

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4
7	6	5	4	3
6			3	2
			2	1
				0

\square - expanded

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming (DP)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

\square - expanded

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

| 8 | 7 | 6 | 5 | 4 |
| :---: | :---: | :---: | :---: | :---: | | update h-values of expanded states via DP: |
| :--- |
| compute $h(s)=$ min $_{s^{\prime} \in \operatorname{tucc}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ |
| until convergence |

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via DP: compute $h(s)=$ min $_{s^{\prime} \in \operatorname{tscc}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	∞	4	3	2	
∞	∞		2	1	
∞	∞	∞		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via DP: compute $h(s)=$ min $_{s^{\prime} \in \operatorname{succ}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	5	4	3	2	
∞	∞		2	1	
∞	∞	∞		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via DP: compute $h(s)=$ min $_{s^{\prime} \in \operatorname{succ}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	5	4	3	2	
∞	6		2	1	
∞	∞	∞		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
∞	∞	∞		0

update h-values of expanded states via DP: compute $h(s)=\min _{s^{\prime} \in \operatorname{succ}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until conkergence

Does it matter in
what order?

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via $D P:$ compute $h(s)=$ min $_{s^{\prime} \in \operatorname{tucc}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	5	4	3	2	
7	6		2	1	
∞	7	∞		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via $D P:$ compute $h(s)=$ min $_{s^{\prime} \in \operatorname{tucc}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	5	4	3	2	
7	6		2	1	
8	7	∞		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update h-values of expanded states via $D P:$ compute $h(s)=$ min $_{s^{\prime} \in \operatorname{tucc}(s)}\left(c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)\right)$ until convergence
7	6	5	4	3	
6	5	4	3	2	
7	6		2	1	
8	7	8		0	

Learning Real-Time A* (LRTA*)

- LRTA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states by Dynamic Programming ($D P$)
3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	make a move along the found path and repeat steps $1-3$
7	6	5	4	3	
6		4	3	2	
7			2	1	Drawbacks compared 8
	8		0	to $A * ?$	

\square - expanded

Real-time Adaptive A* (RTAA*)

- RTAA* with $N \geq 1$ expands
one linear pass

1. expand N states
2. update h-values of expanded states u by $h(u)=f(s)-g(u)$,

$$
\text { where } s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)
$$

3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	expand $N=7$ states
7	6	5	4	3	
6			3	2	
			2	1	unexpanded state s with smallest $g+h(=5+3)$
				0	

\square - expanded

Real-time Adaptive A* (RTAA*)

- RTAA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states u by $h(u)=f(s)-g(u)$,

$$
\text { where } s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)
$$

3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	$\left.\begin{array}{c}\text { update all expanded states } u: \\ \hline 7\end{array}\right) 6$
	5	4	3	$h(u)=f(s)-g(u)$	

Real-time Adaptive A* (RTAA*)

- RTAA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states u by $h(u)=f(s)-g(u)$,

$$
\text { where } s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)
$$

3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	update all expanded states $u:$ 7
6	5	4	3	h(u)=f(s)-g(u)	

Real-time Adaptive A* (RTAA*)

- RTAA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states u by $h(u)=f(s)-g(u)$,

$$
\text { where } s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)
$$

3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

8	7	6	5	4	$\left.\begin{array}{c}\text { update all expanded states } u: \\ \hline 7\end{array}\right) 6$
	5	4	3	$h(u)=f(s)-g(u)$	

\square - expanded

Real-time Adaptive A* (RTAA*)

- RTAA* with $N \geq 1$ expands

1. expand N states
2. update h-values of expanded states u by $h(u)=f(s)-g(u)$,

$$
\text { where } s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)
$$

3. move on the path to state $s=\operatorname{argmin}_{s^{\prime} \in \text { OPEN }} g\left(s^{\prime}\right)+h\left(s^{\prime}\right)$

LRTA* vs. RTAA*

LRTA*

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
8	7	8		0

RTAA*

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	6		2	1
6	7	8		0

- Update of h-values in RTAA* is much faster but not as informed
- Both guarantee adimssibility and consistency of heuristics
- For both, heuristics are monotonically increasing
- Both guarantee to reach the goal in a finite number of steps (given the conditions listed previously)

