
Dynamic Scheduling for Mobile Robots

Tucker Balch, Harold Forbes and Karsten Schwan

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280 USA

tucker@cc.gatech.edu
fax:(404)853-0957

Abstract|This research concerns e�cient mul-

tiprocessor threads-based implementation of reac-

tive navigation for mobile robots. We present two

important results: 1) Performance is improved sig-

ni�cantly when CPU time allocated to individual

navigational threads is adjusted dynamically ac-

cording to a heuristic measure of their importance.

2) To implement this strategy, we present a multi-

processor scheduler design which can dynamically

schedule navigational threads. The experiments

were conducted in simulation on a BBN Butter-

y and a KSR1 (shared memory multiprocessors).

Speedups found for this example should extend to

more complex navigational strategies as long as a

heuristic measure of thread importance is avail-

able.

I. Threaded Reactive Robot Navigation

The speci�c task examined in our research is robot naviga-

tion to a known goal position across an unmapped world

potentially cluttered with obstacles. Many robot control
systems have been proposed as solutions to this problem

(e.g. [1, 6, 4, 7]). The system implemented in this research

is based on the Autonomous Robot Architecture (AuRA)
[2].

AuRA consists of both reactive and deliberative com-

ponents. The deliberative component sets high level goals

and selects appropriate behaviors to achieve them. The
reactive component of AuRA executes the selected be-

haviors which are typi�ed by tight sensor to actuator cou-

pling. This research concerns the reactive component only.

Motor schemas are the basic unit of behavioral control
in AuRA. Several schemas may be active as the robot nav-

igates. Such schemas are independent processes that com-

bine to generate an overall navigational behavior. Motor
schemas take input from specialized perceptual schemas

that process sensor data. Each motor schema generates

a movement vector. These output vectors are summed,
then normalized. The result is transmitted to the robot

(or simulated robot) for execution.
Several systems utilizing this approach have been in-

stantiated at Georgia Tech in simulation [?, 5], on mobile
robots [?] and for multiagent research [?]. In [?], Collins

describes a multiprocessor implementation of schema-

based reactive system. His implementation, however, did

not address the parallel execution of schemas. This im-

plementation of AuRA is the �rst in which schemas run

concurrently on multiple processors.

The system is implemented on a BBN Butter
y using

the Cthreads library for parallel programming [9]. The

various motor and perceptual schemas are instantiated as

individual threads which communicate using shared mem-

ory. At execution time the following threads are activated:

� Avoid-static-obstacle: One instance of this motor

schema is generated for each obstacle. All instances

are independent and concurrently executable.

� Move-to-goal: A motor schema.

� Noise: A motor schema.

� Move-robot: References the outputs of the motor

schemas and e�ects robot movement.

� Monitor: Terminates processing when the robot

reaches the goal.

Other than mutual exclusion locks on shared data, there
is no explicit thread synchronization. The following infor-

mation is shared between threads:

� Robot Position: In cartesian coordinates.

� Force On Robot: Each motor schema adds its own
component to this force. The result is added to the

robot's position by the Move-robot thread.

� Completion Flag: Set to true by Monitor when

the mission is complete.

Figure 1 presents the sample navigational task used in
our experimentation. The robot is to navigate from the

start in the lower left, to the goal in the upper right. Ob-

stacles are represented by black circles. The resultant path
is shown by the black line.

Fig. 1. Example Navigational Problem

II. Experimental Evaluation

The system is �rst tested using best e�ort scheduling,

where all threads representing schemas are run in a round-

robin fashion. Experimental runs are conducted with 1 to

13 processors. All runs assume the external environment

shown in Figure 1, which includes 9 obstacles between the

robot's starting point and its goal. Two performance met-

rics are recorded for each run: path length and execution

time.

Since obstacle locations are not revealed a priori an op-
timal path cannot be precomputed. In fact, the robot is

only allowed to use current sensor inputs for movement se-

lection (this is the spirit of purely reactive control). Path
length then re
ects the distance the robot travelled to the

goal. Execution time is the time it took for the robot to

traverse this distance. The two metrics are distinct. More
optimal paths may demand computational resources that

would otherwise be used for obstacle avoidance. Since

these resources are not available, the robot must slow
down so as not to run into anything.

Figure 2 depicts the run times for reactive navigation
when using multiple processors for schema execution. The

speedup gains drop o� as the number of processors ap-

proaches nine. This is due to contention for shared mem-

ory and synchronization overhead. Figure 3 depicts the

resultant distance the robot followed to the goal as the

number of processors is increased. The importance of this

graph is that it shows path length does not degrade with

more processors. We conclude that parallelism is an ef-

fective means for improvement of the execution speed of
a schema-based navigation system.

While the experimental results of Figure 2 are encour-
aging one interesting insight is that the frequent execution

Fig. 2. Run times for round robin and dynamic

scheduling of navigational threads on 1 to 13 processors

of schemas that do not immediately a�ect the robot's cur-

rent operation is both unnecessary and degrades perfor-

mance by causing contention. Therefore, obstacle schemas
should be scheduled dynamically so that their execution

is delayed according to their e�ect on the robot's path.
Figure 2 shows that from 18% (in the uniprocessor case)

to 50% percent savings may be achieved when dynamic

scheduling is used. These results are achieved by schedul-
ing the Avoid-static-obstacle threads at the earliest

time at which the associated obstacle could signi�cantly

a�ect the robot's path.

III. Guaranteed Dynamic Scheduling

The object of our research regarding dynamic schema

scheduling is to ensure robot safety by guaranteeing the

varying start times and hard deadlines required by the
reactive navigation system. Such guarantees may be

achieved by: 1. using strict round-robin scheduling with

su�ciently fast cycle-time, 2: dynamically removing and

appending an obstacle's thread in the run queue based

on the obstacle danger and the worst case run queue cycle

time, or 3: using explicit scheduling algorithms and sched-
ule representation to guarantee future execution times.

This research has shown that option 2 is better than op-

tion 1, and it may be that further performance improve-
ments can be achieved by option 3. For a given safety

Fig. 3. Path length for runs with round robin and

dynamic scheduling for navigational threads on 1 to 13

processors

level, guaranteed scheduling would allow the programmer

to increase the period of an obstacle schema because he
would not have to consider the worst case execution delay

due to the size of the run queue.

The task timing model appropriate for guaranteed

schema schedulability decisions is the triple:(earliest start

time, maximum run time, deadline). The best e�ort

scheduling described above calculates the the minimum
amount of time until an obstacle can signi�cantly a�ect

the robot's path. This point in time de�nes the schema's

deadline. Schema execution time can easily be calculated
since it tends to be fairly data independent. In this appli-

cation, the earliest start time is very
exible. It could any

time before (deadline - run time). However, since the

e�ect of a schema execution on the path of the robot is

directly related to the distance between the robot and the

obstacle, the starting time should only be early enough to
ensure it's ability to be scheduled.

Coincidently, guaranteed scheduling also provides a

conceptually simpler programming model to the robotic

researcher. Rather than having to consider the possible
implications of all other tasks running on the system, the

programmer can build a behavior in relative isolation, as

the behavior concept intended.

In [10], Zhou describes a fast (O(n log n)) dynamic
scheduler able to make hard scheduling guarantees. How-

ever, her initial multiprocessor implementation only allows
a single scheduler to be active at a time. Although actual

scheduling overhead is comparatively low, overall schedul-

ing latency could become unacceptable in the presence of a
large queue of tasks to be scheduled. A concurrent sched-

uler would allow multiple schedulers to be active simul-

taneously thereby increasing throughput and decreasing
latency. The design and implementation of a concurrent

scheduler is described below.

IV. A Scalable Real-Time Multiprocessor

Scheduler

Robot safety requires guaranteed deadlines for tasks

but optimal CPU utilization requires dynamic schedul-

ing. These are can be con
icting goals. Below, we de-

scribe the design and implementation of the mechanisms

and controls that permit multiple distributed schedulers

to cooperatively decide task allocation and scheduling.

The scheduler uses Zhou's slot list algorithm[10] to per-

form uniprocessor schedulability analysis, and it employs

o�ers[3] to allocate tasks to processors. Furthermore,
scheduling latency is decreased by having multiple proces-

sors concurrently perform schedulability analysis for dy-

namically arriving tasks. Such concurrent schedulability
analysis must be performed without increases in unipro-

cessor task scheduling latency.

These goals determine some basic characteristics of the

multiprocessor scheduler.

1. All scheduling information required for uniprocessor

schedulability analysis and scheduling must be lo-
cal to each processor, thereby avoiding increases in

uniprocessor scheduling latency.

2. Local slot and task lists must be accessible to remote
processors.

3. The task arrival queue, called an o�er queue, must

be shared by all cooperating processors.

Furthermore, contention of access to resources must be

minimized. Speci�cally schedulability analysis must be
performed by multiple schedulers such that they do not

typically access the same slot list, earliest deadline list, or

o�er at the same time.

Figure 4 depicts the resulting distributed scheduler. It

has �ve major components:

O�er Queue A shared queue of o�ers waiting to be
scheduled. Each o�er describes the execution time

characteristics of the o�ered task. Each o�er con-

tains a bid for each processor on which schedulabil-
ity analysis of the o�er succeeds. A bid describes the

circumstances under which the o�ered task can be

executed on a particular processor.

Slot List(SL) A local list of time intervals occupied on

this processor, in time order. Adjacent slots are

merged to reduce the time to perform schedulabil-
ity analysis.

Earliest Deadline List(EDL) A local list of tasks to
be executed on this processor, in deadline order.

Scheduler A procedure that accepts locally arriving

tasks or tasks in the o�er queue, schedules them us-

ing the SL, and inserts them in an EDL.

Dispatcher A procedure that removes tasks from the lo-

cal EDL and executes them on the processor.

Processor 0

Scheduler

Dispatcher
EDL

SL

Scheduler

Dispatcher
EDL

SL

Processor 1

Scheduler

Dispatcher
EDL

SL

Processor n

Active

Inactive

Offer Queue

Bids
..

.......................

Fig. 4. Structure of the Multiprocessor Scheduler

The multiprocessor scheduler described here is used for
dynamic schema scheduling as follows. First the execution

of a schema is performed by a thread. Schema scheduling

corresponds to the creation and scheduling of a thread ex-
ecuting the schema's code. Thread creation is performed

using the call cthread_fork(). If the schema is to be

executed on the same processor, the thread scheduling

analysis is performed by the local scheduler. Otherwise,

cthread_fork() generates an o�er to be placed in the of-

fer queue. Any active scheduler may examine the o�er
and schedule it using the SL on any processor. When

the o�er has been scheduled, it is removed from the o�er

queue. cthread_fork() then creates a task, places it in
the EDL on the processor where it has been scheduled,

and returns to the executing task. Finally, when the dis-

patcher reaches the task in the EDL, it is removed from
the EDL and executed.

A. cthreadfork()

/* Return TRUE if, before decisiontime, it is

determined that the amount of time stated

in runtime can be scheduled on processor node

between starttime and deadline to execute

func() on argument arg. Otherwise return

FALSE.

*/

RESULT

RTthread_fork ARGS((int (*func)(),

any_t arg,

unsigned int node, /* node mask or list head */

TIME starttime,

TIME runtime,

TIME deadline,

TIME decisiontime));

The result of schedulability analysis is a bid data struc-
ture. A bid is similar in concept to a bid in [8] in that a bid

represents the ability of a particular processor to execute

a particular task. However, the processes manipulating
a bid are considerably di�erent. We assume a multipro-

cessor so that the same algorithm is used for both local

and remote scheduling; resource reservation is a parame-
ter of the scheduling policy; scheduling is a three rather

than four phase process; and bids may be generated by

one processor for another processor.

A bid describes the circumstances under which a task

can be executed on a particular processor. Upon com-

pletion of o�er scheduling, an o�er will contain a bid for
each processor1 that can execute the function within the

given time constraints. cthread_fork() will accept the

best bid2 and put a task in the EDL on the processor that
generated the best bid. It will reject all other bids.

Cthread_Fork() always returns

on or before decisiontime, whether schedulability anal-

ysis succeeds or fails. Therefore, the forking procedure
can control the duration of analysis. Obviously, a longer

decisiontime may allow a more complete analysis than

a shorter decisiontime, and it will a�ect the likelihood

of the fork succeeding. However, due to other time con-

straints regarding it's execution, a quick decision may be

more important to the forking procedure, than an optimal

schedulability analysis.

B. Controlling Contention and Unnecessary Work

While o�ers in the o�er queue must be accessible by all

processors, uncontrolled access could result in very slow

processing due to contention between processors for par-
ticular memory locations or mutex locks. At the other

extreme, restricting access to a single processor unneces-

sarily eliminates parallel scheduling analysis of an o�er
that may be run on more than one processor.

The number of schedulers concurrently trying to an-

alyze a particular o�er is controlled by a variable,
max_sched_active, in the o�er data structure. The num-

ber of schedulers currently trying to schedule this o�er is

tracked by another o�er variable, sched_active. When a
scheduler is looking for an o�er to schedule, if an o�er's

max_sched_active is greater than sched_active then the

1Subject to node and the o�er's scheduling policy.
2Currently maximum laxity

scheduler will increment sched_active and begin schedul-
ing the o�er. Otherwise, the scheduler will go to the next

o�er in the o�er queue.

A number of processors concurrently doing scheduling
analysis for a particular o�er on a particular node achieve

no better performance, and probably worse, than a single

processor. They are no better because there is only one
possible result so they are all doing the same work. They

are probably worse, because they will be contending for

the same data. Faster o�er scheduling requires that dif-
ferent processors schedule di�erent o�ers or schedule the

same o�er on di�erent processors.

Checked is an o�er variable that is bit mask of pro-
cessors this o�er has been analyzed on. Checked ensures

that cooperating processors analyze an o�er on di�erent

processors. To minimize contention for the update lock,
checked is initially tested without locking. If this o�er

has not been analyzed on one or more processors that this

scheduler analyzes for, it is accepted by the scheduler.
Later, as the scheduler attempts to analyze the o�er on

a particular processor, checked is locked, tested, updated

and unlocked. Since max_sched_active limits the number

of schedulers concurrently scheduling an o�er, contention

for the lock is limited. This two phased approach limits

both unnecessary work and contention, at the expense of
a scheduler sometimes accepting an o�er for which it will

do no analysis.

V. Scheduler Performance

Our initial experiments used a BBN Butter
y, however

that computer has been decommissioned. We are contin-

uing our development on our recently acquired Kendall
Square Supercomputer. Speci�cally, the scheduler perfor-

mance described below was obtained on our KSR which

has a 0.05�sec clock cycle time. These basic performance
results demonstrate that the distributed scheduler's mech-

anisms will deliver suitable performance for the Denning

mobile robot discussed in the next section.

o�er selection 12�sec
schedulability analysis 165�sec

total o�er scheduling 177�sec

mutex lock processing 2�sec

Speci�cally, on a single processor of a KSR, it takes

177�sec's to select an o�er from the o�er queue, perform

schedulability analysis, and remove the o�er from the o�er
queue.

Figure 5 shows the multiprocessor performance of the

scheduler. The single processor times here are approxi-
mately 25% longer than the uniprocessor times above be-

cause in these experiments the o�er list was created on a

processor that was not otherwise involved in the experi-
ment. On the KSR, a remote memory access takes four

times as long as a local memory access. In a multiproces-

sor system, it may not be usual to analyze o�ers on the
same processor that generated the o�er. In this plot then,

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8

C
l
o
c
k
s
/
8

Number of Processors

Time to Schedule 1056 Tasks

total execution
linear speedup

offer select
ave. wasted

Fig. 5. Multiprocessor Performance

linear speedup is calculated from the execution time on
a single processor. It is signi�cant that more processors

have only a small a�ect on the time required to select an

o�er from the centralized queue. This is because there is
no locking associated with selecting an o�er. O�ers are

only
agged when they are selected. At the end of o�er

analysis mutual exclusion locks ensure that the o�er is ac-
tually taken by only one processor. This approach does

result in some wasted time when two or more processors

simultaneously analyze the same o�er. However, as in-
dicated by the average wasted time in the �gure above,

this time is relatively small while there are less than eight

processors. This experiment shows that this scheduler de-
sign provides good performance for a system of less than

eight processors and 100% scheduling overhead. Scala-

bility should improve signi�cantly when tasks are being
executed and the percentage of scheduling overhead falls.

VI. Conclusions and Future Work

Dynamic scheduling of schemas o�ers signi�cant perfor-

mance enhancement for an example navigational task on

uni- and multiprocessors. However, robot safety demands

that the scheduler provide guarantees regarding schema

deadlines. A prototype concurrent scheduler with run

time guarantees has been designed and implemented. Ini-

tial data indicates that our approach will provide low-

latency scheduling services.

Our goal is to map the control system to a Denning

MRV-2 robot at the Georgia Tech Mobile Robot Labo-

ratory. The MRV-2 is a holonomic vehicle with three-

wheeled locomotion. It can move up to 4 feet per second.

Its primary sensor system is a ring of 24 ultrasonic range

sensors, which report ranges to objects up to 200 times

per second.

The control system will be restructured to utilize real
sensory data rather simulated data. A parallel planner will

be included to provide for capability in more complicated

situations. The system will make full use of computing
resources by dynamically balancing \planner" threads and

\motor" threads. In the worst case where robot safety
requires the motor threads to monopolize resources, the

planner will e�ectively be paused. If the quality of the

existing plan is discovered to be poor, the robot will be
slowed. Slowing the robot will reduce the demand motor

threads place on the system, thus freeing resources for

planning.
The strategy is attractive for several reasons:

� Planning and execution are directly integrated.

� There is no hard and fast schedule; threads are sched-
uled dynamically as planning needs change.

� Safe speed for the robot is automatically balanced

with computational resources.

References

[1] J. Albus, H. McCain, and R Lumia. Nbs standard

reference model for telerobot control system archi-

tecture (nasrem). NBS Technical Note, Washington,

D.C., 1987.

[2] R.C. Arkin. The impact of cybernetics on the de-
sign of a mobile robot system: A case study. IEEE

Transactions on Systems, Man, and Cybernetics,

20(6):1245{1257, Nov/Dec 1990.

[3] Ben Blake and Karsten Schwan. Experimental eval-
uation of a real-time scheduler for a multiprocessor

system. IEEE Transactions on Software Engineering,

17(1):34{44, Jan. 1991.

[4] R. Brooks. A robust layered control system for a

mobile robot. IEEE Jour. of Robotics and Auto.,
RA-2(1):14, 1986.

[5] R.J. Clark, R.C. Arkin, and A. Ram. Learning mo-

mentum: On-line performance enhancement for re-

active systems. In IEEE Conf. on Robotics and Au-

tomation, pages 111{116. IEEE, May 1992. Nice,

France.

[6] N. Nilsson. Shakey the robot. SRI International Tech.

Note 323, 1984.

[7] D. Payton. Internalized plans: A representation for

action resources. In P. Maes, editor, Designing Au-

tonomous Agents. MIT Press, 1991.

[8] K. Ramamritham and J. A. Stankovic. Dynamic

task scheduling in distributed hard real-time systems.
IEEE Software, 1(3), 84.

[9] Karsten Schwan, Harold Forbes, Ahmed Gheith,
Bodhisattwa Mukherjee, and Yiannis Samiotakis. A c

thread library for multiprocessors. Technical Report

TR-91/02, Georgia Institute of Technology, Atlanta,
GA 30332-0280, January 1991.

[10] Hongyi Zhou, Karsten Schwan, and Ahmed Gheith.

The dynamic synchronization of real-time threads for

multiprocessor systems. In Symposium on Experi-

ences with Distributed and Multiprocessor Systems,

Newport Beach, pages 93{107. Usenix, ACM, March.

1992.

