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Abstract

We describe techniques for performing mobile robot

localization using occupancy grids that allow subpixel

localization and uncertainty estimation in the pixelized

pose space. The techniques are based on a localiza-

tion method where matching is performed between the

visible landmarks at the current robot position and a

previously generated map of the environment. A likeli-

hood function over the space of possible robot positions

is formulated as a function of the probability distribu-

tion for the map matching error. Subpixel localization

and uncertainty estimation are performed by �tting the

likelihood function with a parameterized surface. The

performance of the method is analyzed using synthetic

experiments and an example is given using the Rocky

7 Mars rover prototype.

1 Introduction

Localization is a critical issue in mobile robotics. If

the robot does not know where it is, it cannot e�ec-

tively plan movements, locate objects, or reach goals.

It is important to not only perform accurate localiza-

tion when possible, but also to know when the local-

ization estimate has a large uncertainty and when it

is possible that a qualitative failure in localization has

occurred. For example, in environments where the rec-

ognizable landmarks are sparse, many locations may

appear to be very similar to the robot. It is crucial

to know when this is the case, so that additional data

can be collected to improve the robot localization.

This paper describes techniques to perform accu-

rate subpixel localization (in the pixelized pose space)

when su�cient information is available and to gen-

erate uncertainty estimates in the localization result,

both in the standard deviation of the localization and

in the probability of qualitative failure, regardless of

the quality of the data. The techniques that we de-

scribe are general in nature and can be applied to most

map representations. However, we concentrate on the

application of these techniques to three-dimensional

occupancy grids, building upon previously reported

results that perform localization by matching terrain

maps using a maximum-likelihood comparison mea-

sure [7].

We �rst review the basic localization method that is

used. This technique computes a map similarity mea-

sure using the probability distribution function (PDF)

of the distance from each occupied cell in the local

terrain map that is computed at the current robot

position to the closest occupied cell in a previously

computed map of the environment. An accurate ap-

proximation for this probability distribution function

is given using the weighted sum of a normal distri-

bution (for cases where the cell is an inlier) and a

constant distribution (for cases where the cell is an

outlier). This PDF forms the core of the likelihood

function for each robot pose.

Subpixel localization and uncertainty estimation

are performed by �tting the tallest peak in the likeli-

hood function with a parameterized surface. We ap-

proximate the peak in the likelihood function as a

normal distribution. Operating in the log-likelihood

domain allows us to �t the peak with a second-order

polynomial. The location of the summit of this surface

yields the subpixel localization estimate discretized

pose space. Furthermore, the rate at which the sur-

face falls o� from the peak provides a estimate on the

uncertainty in the localization. The probability of a

qualitative failure is estimated by comparing the like-

lihood scores under the tallest peak and the likelihood

scores in the rest of the pose space.

These techniques have been applied to Rocky 7[2],

which is a six-wheeled mobile robot (of approximately

the same size and shape as the Sojourner rover) that

has been built at the Jet Propulsion Laboratory in

order to develop new technologies for future missions

to Mars (Fig. 1). The techniques were tested using

Rocky 7 in the JPL Mars Yard to simulate mission-

like conditions.
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Figure 1: Rocky 7 generating a range map in the JPL Mars

Yard using its mast cameras.

2 Maximum-likelihood localization

The basic localization technique that we use is to

compare a map generated at the current robot position

(the local map) to a previously generated map of the

environment (the global map) [7]. This technique is

reviewed here. See [1, 4] for related techniques.

2.1 Terrain maps

We generate both the local map and the global map

using stereo vision on-board the robot. (The global

map may consist of the combined result of the previ-

ous local maps or it may be generated using panoramic

imagery from the robot's starting location.) A dense

range image is �rst generated using the stereo cam-

eras [5]. The range image is then converted into an

occupancy grid representation at some canonical ori-

entation using a binning operation. (It is assumed that

the robot orientation is known through other sensors.)

The average height of the range points that fall into

each bin is taken to be the height of the grid at that lo-

cation. Finally, we use a high-pass �lter on the heights

so that the search for the robot position needs to be

performed only in the x and y directions.

Figure 2 shows an example of a terrain map that

was generated using data from the Mars Path�nder

mission.

2.2 Map similarity measure

In order to formulate the matching problem in

terms of maximum-likelihood estimation, we use a set

of measurements that are a function of the robot po-

sition. A convenient set of measurements are the dis-

tances from the occupied cells in the local map to their

closest occupied cells in the global map. Denote these

distances DX
1 ; :::; D

X
n for the robot position X . The

likelihood function for the robot position can be for-

mulated as the product of the probability distributions

of these distances. For convenience, we work in the

lnL(X) domain:

lnL(X) =

nX
i=1

ln p(DX
i )

The map similarity measure that is used is de-

�ned entirely by the probability distribution function

(PDF) of the distances, p(DX
i ). This probability dis-

tribution function is discussed in detail in Section 3.

2.3 Search strategy

A multi-resolution search strategy is used to deter-

mine the most likely robot position [3, 6, 7]. This

method is guaranteed to locate the optimal position

in the discretized search space. The pose space is �rst

discretized at the same resolution as the occupancy

grids so that neighboring positions in the pose space

move the relative positions of the grids by one grid

cell. We then test the nominal position of the robot

given by dead-reckoning so that we have an initial po-

sition and likelihood to compare against. Next, the

pose space is divided into rectilinear cells. Each cell is

tested to determine whether it could contain a position

that is better than the best position found so far. Cells

that cannot be pruned are divided into smaller cells,

which are examined recursively. When a cell is reached

that contains a single position in the discretized pose

space, then this position is tested explicitly.

To determine whether a cell C could contain a pose

superior to the best found so far, we examine the pose

c at the center of the cell. A bound is computed on

the maximum distance between the location to which

a cell in the local map is transformed by c and by

any other pose in the cell. We call this distance �C .

For the space of translations, �C is simply the dis-

tance between c and any corner of the cell. To place a

bound on the quality of any position within the cell,

we bound each of the distances that can be achieved

by features in the local map over the cell. This is done

by subtracting the maximum change of the cell, �C ,

from the distance achieved at the center of the cell,

D
c
i :

D
C
i = max(Dc

i ��C ; 0)

The values obtained are then propagated through

the likelihood function to bound the score that can be

achieved by any position in the cell.

P
C
i = ln p(DC

i )
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Figure 2: Terrain map generated from Path�nder imagery. (a) Image mosaic of Sojourner and rocks on Mars. (b) Terrain

map generated from stereo imagery.

P
C
i is now the maximum score that the ith feature

of the local map can contribute to the likelihood for

any position in the cell1.

A bound on the best overall likelihood that can be

found at a position in the cell is given by:

max
X2C

lnL(X) �
nX
i=1

P
C
i

If this bound does not surpass the best that we have

found so far, then the entire cell is pruned from the

search. Otherwise, the cell is divided into two cells

by slicing it along the longest axis and the process is

repeated recursively on the subcells.

3 Estimating the PDF

For the uncertainty estimation to be accurate, it is

important that we use a probability distribution func-

tion (PDF) that closely models the sensor uncertainty.

This can be accomplished using a PDF that is the

weighted sum of two terms:

p(DX
i ) = �p1(D

X
i ) + (1� �)p2(D

X
i )

The �rst term describes the error distribution when

the cell is an inlier (in the sense that the terrain po-

sition under consideration in the local map also exists

in the global map). In this case, DX
i is a combination

of the errors in the local and global maps at this po-

sition. In the absence of additional information with

1This assumes that the PDF is monotonically non-

increasing, which is true for any reasonable PDF, since we desire

closer matches to yield higher scores.

respect to the sensor error, we approximate p1(D
X
i )

as a normal distribution:

p1(D
X
i ) =

1

�

p
2�

e
�(DX

i )2=2�2

The second term describes the error distribution

when the cell is an outlier. In this case the position

represented by the cell in the local map does not ap-

pear in the global map. This may be due to range

shadows that were present when the global map was

constructed or outliers that are present in the range

data when the local map is constructed. In theory,

this term should also decrease as DX
i increases, since

even true outliers are likely to be near some occupied

cell in the global map. However, this allows patho-

logical cases to have an undue e�ect on the likelihood

for a particular robot position. In practice, we have

found that modeling this term as a constant is both

convenient and e�ective:

p2(D
X
i ) = K

Let us now consider the constants in this probabil-

ity distribution function. First, � is the probability

that any particular cell in the local map is an in-

lier. For our occupancy grids, we shall assume that

this value is relatively large (� = 0:95). In practice,

the localization is insensitive to the precise value of

this variable. Next, � is the standard deviation of the

measurements that are inliers. This value can be de-

termined from the characteristics of the sensor, or it

can be estimated empirically by examining real data,

which is the method that we have used for localization

on Rocky 7. Finally, K is the expected probability

density for the measurement generated for a random

outlier point:
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K =

Z
1

�1

Z
1

�1

p(DX
i )

2
dxdy

This value can be estimated quickly through exami-

nation of the Euclidean distance transform of the map

[8].

4 Subpixel localization

Using this probabilistic formulation of the localiza-

tion problem, we can estimate the uncertainty in the

localization in terms of both the variance of the es-

timated positions and the probability that a qualita-

tive failure has occurred. Since the likelihood function

measures the probability that each position in the pose

space is the actual robot position, the uncertainty in

the localization is measured by the rate at which the

likelihood function falls o� from the peak. In addition,

we can perform subpixel localization in the discretized

pose space by �tting a surface to the peak that occurs

at the most likely robot position.

We assume that the likelihood function can be ap-

proximated as a normal distribution in the neighbor-

hood around the peak location. Fitting such a normal

distribution to the computed likelihoods yields both

an estimated variance in the localization estimate and

a subpixel estimate of the peak location. While the

approximation of the likelihood function as a normal

distribution may not always be ideal, it yields a good

�t to the local neighborhood around the peak and our

experimental results indicate that very accurate re-

sults can be achieved under this assumption.

Now, since we actually perform our computations in

the domain of the natural logarithm of the likelihood

function, we must �t these values with a polynomial

of order 2. If we assume independence in x and y, we

have:

lnL(x; y) = ln
1

2��x�y
e
�

(x�x0)
2

2�2x

�
(y�y0)

2

2�2y

= �
(x� x0)

2

2�2x
�

(y � y0)
2

2�2y
+ ln

1

2��x�y

In order to estimate the parameters in which we

are interested (x0, y0, �x, and �y), we project this

polynomial onto the lines x = x0 and y = y0, yielding:

lnL(x; y0) = �
(x� x0)

2

2�2x
+ ln

1

2��x�y

lnL(x0; y) = �
(y � y0)

2

2�2y
+ ln

1

2��x�y

We now �t these equations to the x and y cross-

sections of the likelihood function at the location of

the peak. If the peak in the discretized search space

occurs at position (xp; yp), then we �t L(x; y0) to the

values at the surrounding 5 positions along y = yp,

which we label fl�2; l�1; l0; l1; l2g.
The least-squares �t to a parabola (y = ax

2+bx+c)

with x = f�2;�1; 0; 1; 2g yields:

2
4 a

b

c

3
5 =

2
664

1
7

� 1
14

� 1
7

� 1
14

1
7

� 1
5

� 1
10

0 1
10

1
5

� 3
35

12
35

17
35

12
35

� 3
35

3
775

2
66664

l�2

l�1

l0

l1

l2

3
77775

We can now solve for x0 and �x using:

x0 = xp �
b

a
�x =

1
p
�2a

The derivation for y0 and �y is the same, except

that we project onto the line x = xp. The values of

x0 and y0 yield the subpixel localization result, since

this is the estimated location of the peak in the likeli-

hood function. In addition, �x and �y now yield direct

estimates for the uncertainty in the localization result.

5 Probability of failure

In addition to estimating the uncertainty in the lo-

calization estimate, we can use the likelihood scores to

estimate the probability of a failure to detect the cor-

rect position of the robot. This is particularly useful

when the terrain yields few landmarks or other refer-

ences for localization and thus many positions appear

similar to the robot.

We estimate the probability of failure by summing

the likelihood scores under the peak selected as the

most likely robot position and comparing to the sum

of the likelihood scores that are not part of this peak.

In practice, we can usually estimate the sum under the

peak by examining a small number of values around

the peak, since they fall o� very quickly.

The values for the remainder of the pose space can

be estimated e�ciently with some additional compu-

tation during the search. Whenever a cell in the search

space is considered, we compute not only a bound on

the maximum score that can be achieved, but also an

estimate on the average score that is achieved by deter-

mining the score for the center of the cell. If the cell is
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Figure 3: Distribution of errors and estimated standard

deviations in synthetic landmark localization experiment.

(a) Comparison of estimated distribution of localization

errors (solid line) to observed distribution of localization

errors (bar graph). (b) Distribution of estimated standard

deviations in the localization estimate.

pruned, then the sum is incremented by the estimated

score multiplied by the size of the cell. In practice,

this yields a very good estimate, since regions with

large scores cannot be pruned until the cells become

small.

Let Sp be the sum obtained for the largest peak

in the pose space and St be the sum for the entire

pose space as described above. We can estimate the

probability of correctness for the largest peak as:

Pc =
Sp

St

6 Results

These techniques have been tested on synthetic

data for which we can compare the performance of

the techniques with precise ground-truth and in real

experiments on the Rocky 7 rover prototype.

6.1 Synthetic data

We �rst applied these techniques to localization

using landmarks in synthetic experiments. In these

experiments, we randomly generated a synthetic en-

vironment containing 160 landmarks on a 256�256
square. Let us say that each unit is 10 cm (though

the entire problem scales to an arbitrary size). In each

trial, seven of the ten landmarks closest to some ran-

dom robot location were considered to be observed by

the robot (with Gaussian error in both x and y with

standard deviation � = 1 unit) along with 3 spurious

landmarks not included in the map. Localization was

then performed using these 10 observed landmarks in a

discrete occupancy map, with no knowledge of the po-

sition of the robot in this environment. Over 100000

trials, the robot was correctly localized in 99.8% of

the cases, with an average error in the correct trials of

0.356 units in each dimension. The average estimated

standard deviation in the localization using the tech-

niques from the previous section was 0.427 units.

Figure 3(a) shows the distribution of actual errors

observed versus the distribution that we expect from

the average standard deviation estimated in the tri-

als. The close similarity of the plots indicates that the

average estimated standard deviation is a very good

estimate of the actual value. It appears that this esti-

mate is slightly smaller than the true value since the

frequency of the observed errors is slightly above the

curve at the tails and lower at the peak. However,

the overall similarity is quite high. Figure 3(b) shows

the distribution of the estimated standard deviations

in this experiment. It can be observed that the esti-

mate is very consistent between trials, since the plot

is very strongly peaked near the location of the av-

erage estimate. Taken together, these plots indicate

that the standard deviation estimates are very likely

to be accurate for each individual trial.

We have also tested the probability of correctness

measure in these trials. For trials that resulted in

correct localization, the average computed probabil-

ity of correctness was .993, while this value was .642

for trials that results in failures. The probability of

correctness measure thus yields information that can

be used to evaluate whether the localization result is

reliable.

A comparison of these techniques with a version

that does not perform subpixel localization indicates

that the subpixel localization reduces the error in the

localization by 16.2%.

6.2 Real example

Additional experiments have been performed using

the Rocky 7 Mars rover prototype in the JPL Mars

Yard. Figure 4 shows one example. In this case,

the rover generated a map of the terrain at a start-

ing position using 4 stereo pairs of images covering

the area around a rock that was designated as the lo-

calization target. After moving, the rover again cap-

tured a stereo pair of images directed at the localiza-

tion target. Localization was performed by matching

the range map generated after the move to the terrain

map that was generated before the move. In this case,

the rover determined that it had moved 4.14 meters
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(a) (b)

Figure 4: Rocky 7 performing localization. (a) Before moving the terrain is mapped. (b) After moving the same area is

imaged to perform localization.

from the original location, which agrees closely with

the measured result of 4.10 meters.

7 Summary

This paper has described techniques for perform-

ing accurate localization with uncertainty estimation

using discrete occupancy grids. The method is based

upon a maximum-likelihood method to register occu-

pancy grids representing the robot's visible environ-

ment and a previously generated map. A maximum-

likelihood map registration measure is �rst formulated

using the probability distribution function of the dis-

tances from the cells in the local map to the closest

cells in the global map. In order to perform sub-

pixel localization and uncertainty estimation, the like-

lihood function is �t with a parameterized surface in

the neighborhood of the highest peak. In addition,

the probability of a qualitative failure is estimated by

examining the scores over the entire pose space. Ex-

periments on synthetic data have demonstrated that

this approach yields superior results to cases where

these techniques are not uses. Furthermore, the uncer-

tainty estimates that are generated can be used to in-

tegrate multiple localization steps or other techniques

in a Kalman �ltering framework. These techniques

were applied to localization of the Rocky 7 Mars rover

prototype.
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