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Abstract

We describe techniques for performing mobile robot
localization using occupancy grids that allow subpizel
localization and uncertainty estimation in the pizelized
pose space. The techniques are based on a localiza-
tion method where matching is performed between the
visible landmarks at the current robot position and a
previously generated map of the environment. A likeli-
hood function over the space of possible robot positions
is formulated as a function of the probability distribu-
tion for the map matching error. Subpizel localization
and uncertainty estimation are performed by fitting the
likelihood function with a parameterized surface. The
performance of the method is analyzed using synthetic
experiments and an example is given using the Rocky
7 Mars rover prototype.

1 Introduction

Localization is a critical issue in mobile robotics. If
the robot does not know where it is, it cannot effec-
tively plan movements, locate objects, or reach goals.
It is important to not only perform accurate localiza-
tion when possible, but also to know when the local-
ization estimate has a large uncertainty and when it
is possible that a qualitative failure in localization has
occurred. For example, in environments where the rec-
ognizable landmarks are sparse, many locations may
appear to be very similar to the robot. It is crucial
to know when this is the case, so that additional data
can be collected to improve the robot localization.

This paper describes techniques to perform accu-
rate subpixel localization (in the pixelized pose space)
when sufficient information is available and to gen-
erate uncertainty estimates in the localization result,
both in the standard deviation of the localization and
in the probability of qualitative failure, regardless of
the quality of the data. The techniques that we de-
scribe are general in nature and can be applied to most
map representations. However, we concentrate on the

application of these techniques to three-dimensional
occupancy grids, building upon previously reported
results that perform localization by matching terrain
maps using a maximum-likelihood comparison mea-
sure [7].

We first review the basic localization method that is
used. This technique computes a map similarity mea-
sure using the probability distribution function (PDF')
of the distance from each occupied cell in the local
terrain map that is computed at the current robot
position to the closest occupied cell in a previously
computed map of the environment. An accurate ap-
proximation for this probability distribution function
is given using the weighted sum of a normal distri-
bution (for cases where the cell is an inlier) and a
constant distribution (for cases where the cell is an
outlier). This PDF forms the core of the likelihood
function for each robot pose.

Subpixel localization and uncertainty estimation
are performed by fitting the tallest peak in the likeli-
hood function with a parameterized surface. We ap-
proximate the peak in the likelihood function as a
normal distribution. Operating in the log-likelihood
domain allows us to fit the peak with a second-order
polynomial. The location of the summit of this surface
yields the subpixel localization estimate discretized
pose space. Furthermore, the rate at which the sur-
face falls off from the peak provides a estimate on the
uncertainty in the localization. The probability of a
qualitative failure is estimated by comparing the like-
lihood scores under the tallest peak and the likelihood
scores in the rest of the pose space.

These techniques have been applied to Rocky 7[2],
which is a six-wheeled mobile robot (of approximately
the same size and shape as the Sojourner rover) that
has been built at the Jet Propulsion Laboratory in
order to develop new technologies for future missions
to Mars (Fig. 1). The techniques were tested using
Rocky 7 in the JPL Mars Yard to simulate mission-
like conditions.
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Figure 1: Rocky 7 generating a range map in the JPL Mars
Yard using its mast cameras.

2 Maximume-likelihood localization

The basic localization technique that we use is to
compare a map generated at the current robot position
(the local map) to a previously generated map of the
environment (the global map) [7]. This technique is
reviewed here. See [1, 4] for related techniques.

2.1 Terrain maps

We generate both the local map and the global map
using stereo vision on-board the robot. (The global
map may consist of the combined result of the previ-
ous local maps or it may be generated using panoramic
imagery from the robot’s starting location.) A dense
range image is first generated using the stereo cam-
eras [5]. The range image is then converted into an
occupancy grid representation at some canonical ori-
entation using a binning operation. (It is assumed that
the robot orientation is known through other sensors.)
The average height of the range points that fall into
each bin is taken to be the height of the grid at that lo-
cation. Finally, we use a high-pass filter on the heights
so that the search for the robot position needs to be
performed only in the z and y directions.

Figure 2 shows an example of a terrain map that
was generated using data from the Mars Pathfinder
mission.

2.2 Map similarity measure

In order to formulate the matching problem in
terms of maximume-likelihood estimation, we use a set
of measurements that are a function of the robot po-
sition. A convenient set of measurements are the dis-
tances from the occupied cells in the local map to their

1988

closest occupied cells in the global map. Denote these
distances Di¥, ..., D:X for the robot position X. The
likelihood function for the robot position can be for-
mulated as the product of the probability distributions
of these distances. For convenience, we work in the
In L(X) domain:

InL(X) = ilnp(DiX)

The map similarity measure that is used is de-
fined entirely by the probability distribution function
(PDF) of the distances, p(D;X). This probability dis-
tribution function is discussed in detail in Section 3.

2.3 Search strategy

A multi-resolution search strategy is used to deter-
mine the most likely robot position [3, 6, 7]. This
method is guaranteed to locate the optimal position
in the discretized search space. The pose space is first
discretized at the same resolution as the occupancy
grids so that neighboring positions in the pose space
move the relative positions of the grids by one grid
cell. We then test the nominal position of the robot
given by dead-reckoning so that we have an initial po-
sition and likelihood to compare against. Next, the
pose space is divided into rectilinear cells. Each cell is
tested to determine whether it could contain a position
that is better than the best position found so far. Cells
that cannot be pruned are divided into smaller cells,
which are examined recursively. When a cell is reached
that contains a single position in the discretized pose
space, then this position is tested explicitly.

To determine whether a cell C' could contain a pose
superior to the best found so far, we examine the pose
c at the center of the cell. A bound is computed on
the maximum distance between the location to which
a cell in the local map is transformed by ¢ and by
any other pose in the cell. We call this distance A¢.
For the space of translations, A¢ is simply the dis-
tance between ¢ and any corner of the cell. To place a
bound on the quality of any position within the cell,
we bound each of the distances that can be achieved
by features in the local map over the cell. This is done
by subtracting the maximum change of the cell, Ag,
from the distance achieved at the center of the cell,
Dg:

DY = max(D§ — Ac,0)

The values obtained are then propagated through
the likelihood function to bound the score that can be
achieved by any position in the cell.

Pic = lﬂp(DiC)
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Figure 2: Terrain map generated from Pathfinder imagery. (a) Image mosaic of Sojourner and rocks on Mars. (b) Terrain

map generated from stereo imagery.

PF is now the maximum score that the ith feature
of the local map can contribute to the likelihood for
any position in the cell'.

A bound on the best overall likelihood that can be
found at a position in the cell is given by:

maxlIn L
XeC

n
(X) < Z Pf

i=1

If this bound does not surpass the best that we have

found so far, then the entire cell is pruned from the
search. Otherwise, the cell is divided into two cells
by slicing it along the longest axis and the process is
repeated recursively on the subcells.

3 Estimating the PDF

For the uncertainty estimation to be accurate, it is
important that we use a probability distribution func-
tion (PDF) that closely models the sensor uncertainty.
This can be accomplished using a PDF that is the
weighted sum of two terms:

p(D;¥) = api (DY) + (1 = a)p2 (DY)

The first term describes the error distribution when
the cell is an inlier (in the sense that the terrain po-
sition under consideration in the local map also exists
in the global map). In this case, DX is a combination
of the errors in the local and global maps at this po-
sition. In the absence of additional information with

1This assumes that the PDF is monotonically non-
increasing, which is true for any reasonable PDF, since we desire
closer matches to yield higher scores.
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respect to the sensor error, we approximate p; (DzX )
as a normal distribution:

1

oV 2w

pDI) = e O/

The second term describes the error distribution
when the cell is an outlier. In this case the position
represented by the cell in the local map does not ap-
pear in the global map. This may be due to range
shadows that were present when the global map was
constructed or outliers that are present in the range
data when the local map is constructed. In theory,
this term should also decrease as D;¥ increases, since
even true outliers are likely to be near some occupied
cell in the global map. However, this allows patho-
logical cases to have an undue effect on the likelihood
for a particular robot position. In practice, we have
found that modeling this term as a constant is both
convenient and effective:

p2(D¥) =K

Let us now consider the constants in this probabil-
ity distribution function. First, a is the probability
that any particular cell in the local map is an in-
lier. For our occupancy grids, we shall assume that
this value is relatively large (o = 0.95). In practice,
the localization is insensitive to the precise value of
this variable. Next, o is the standard deviation of the
measurements that are inliers. This value can be de-
termined from the characteristics of the sensor, or it
can be estimated empirically by examining real data,
which is the method that we have used for localization
on Rocky 7. Finally, K is the expected probability
density for the measurement generated for a random
outlier point:



Kz/ / p(Di*)*dzdy

This value can be estimated quickly through exami-
nation of the Euclidean distance transform of the map

8.

4 Subpixel localization

Using this probabilistic formulation of the localiza-
tion problem, we can estimate the uncertainty in the
localization in terms of both the variance of the es-
timated positions and the probability that a qualita-
tive failure has occurred. Since the likelihood function
measures the probability that each position in the pose
space is the actual robot position, the uncertainty in
the localization is measured by the rate at which the
likelihood function falls off from the peak. In addition,
we can perform subpixel localization in the discretized
pose space by fitting a surface to the peak that occurs
at the most likely robot position.

We assume that the likelihood function can be ap-
proximated as a normal distribution in the neighbor-
hood around the peak location. Fitting such a normal
distribution to the computed likelihoods yields both
an estimated variance in the localization estimate and
a subpixel estimate of the peak location. While the
approximation of the likelihood function as a normal
distribution may not always be ideal, it yields a good
fit to the local neighborhood around the peak and our
experimental results indicate that very accurate re-
sults can be achieved under this assumption.

Now, since we actually perform our computations in
the domain of the natural logarithm of the likelihood
function, we must fit these values with a polynomial
of order 2. If we assume independence in x and y, we
have:

1 _(z—mzo)z_(y—ygﬁ
In L(z =ln——€ 2% 2o
(z,y) 2roac, z
__(55—350)2_(Z/—y0)2+1 1
202 202 n 20,0
T Yy 7Yy

In order to estimate the parameters in which we
are interested (zo, Yo, 0z, and oy), we project this
polynomial onto the lines x = z¢ and y = yyo, yielding:

1

_ 2
(x — x0) u
2wo,0y

2
203

In L(z,yo) = — +1
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2wo,0y

(y — yo)2
205

lIlL(.CUO’y)

We now fit these equations to the z and y cross-
sections of the likelihood function at the location of
the peak. If the peak in the discretized search space
occurs at position (zp,yp), then we fit L(z,yo) to the
values at the surrounding 5 positions along y = y,,
which we label {l,Q, lfl, lo, ll, l2}

The least-squares fit to a parabola (y = ax?+br+c)
with z = {-2,-1,0,1, 2} yields:

11 _1 1 1 I
a 7 14 7 14 7 171
— 1 _1 1 1
b - 5 10 0 10 5 lo
_3 12 17 12 _3 h
35 35 35 35 35 ls

We can now solve for zy and o, using:

1
v —2a

The derivation for yo and o, is the same, except
that we project onto the line # = x,. The values of
o and yo yield the subpixel localization result, since
this is the estimated location of the peak in the likeli-
hood function. In addition, o, and o, now yield direct
estimates for the uncertainty in the localization result.

l'ozl’p— Op =

a

5 Probability of failure

In addition to estimating the uncertainty in the lo-
calization estimate, we can use the likelihood scores to
estimate the probability of a failure to detect the cor-
rect position of the robot. This is particularly useful
when the terrain yields few landmarks or other refer-
ences for localization and thus many positions appear
similar to the robot.

We estimate the probability of failure by summing
the likelihood scores under the peak selected as the
most likely robot position and comparing to the sum
of the likelihood scores that are not part of this peak.
In practice, we can usually estimate the sum under the
peak by examining a small number of values around
the peak, since they fall off very quickly.

The values for the remainder of the pose space can
be estimated efficiently with some additional compu-
tation during the search. Whenever a cell in the search
space is considered, we compute not only a bound on
the maximum score that can be achieved, but also an
estimate on the average score that is achieved by deter-
mining the score for the center of the cell. If the cell is
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Figure 3: Distribution of errors and estimated standard
deviations in synthetic landmark localization experiment.
(a) Comparison of estimated distribution of localization
errors (solid line) to observed distribution of localization
errors (bar graph). (b) Distribution of estimated standard
deviations in the localization estimate.

Localization error

pruned, then the sum is incremented by the estimated
score multiplied by the size of the cell. In practice,
this yields a very good estimate, since regions with
large scores cannot be pruned until the cells become
small.

Let S, be the sum obtained for the largest peak
in the pose space and S; be the sum for the entire
pose space as described above. We can estimate the
probability of correctness for the largest peak as:

6 Results

These techniques have been tested on synthetic
data for which we can compare the performance of
the techniques with precise ground-truth and in real
experiments on the Rocky 7 rover prototype.

6.1 Synthetic data

We first applied these techniques to localization
using landmarks in synthetic experiments. In these
experiments, we randomly generated a synthetic en-
vironment containing 160 landmarks on a 256x256
square. Let us say that each unit is 10 cm (though
the entire problem scales to an arbitrary size). In each
trial, seven of the ten landmarks closest to some ran-
dom robot location were considered to be observed by
the robot (with Gaussian error in both z and y with
standard deviation o = 1 unit) along with 3 spurious
landmarks not included in the map. Localization was
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then performed using these 10 observed landmarks in a
discrete occupancy map, with no knowledge of the po-
sition of the robot in this environment. Over 100000
trials, the robot was correctly localized in 99.8% of
the cases, with an average error in the correct trials of
0.356 units in each dimension. The average estimated
standard deviation in the localization using the tech-
niques from the previous section was 0.427 units.

Figure 3(a) shows the distribution of actual errors
observed versus the distribution that we expect from
the average standard deviation estimated in the tri-
als. The close similarity of the plots indicates that the
average estimated standard deviation is a very good
estimate of the actual value. It appears that this esti-
mate is slightly smaller than the true value since the
frequency of the observed errors is slightly above the
curve at the tails and lower at the peak. However,
the overall similarity is quite high. Figure 3(b) shows
the distribution of the estimated standard deviations
in this experiment. It can be observed that the esti-
mate is very consistent between trials, since the plot
is very strongly peaked near the location of the av-
erage estimate. Taken together, these plots indicate
that the standard deviation estimates are very likely
to be accurate for each individual trial.

We have also tested the probability of correctness
measure in these trials. For trials that resulted in
correct localization, the average computed probabil-
ity of correctness was .993, while this value was .642
for trials that results in failures. The probability of
correctness measure thus yields information that can
be used to evaluate whether the localization result is
reliable.

A comparison of these techniques with a version
that does not perform subpixel localization indicates
that the subpixel localization reduces the error in the
localization by 16.2%.

6.2 Real example

Additional experiments have been performed using
the Rocky 7 Mars rover prototype in the JPL Mars
Yard. Figure 4 shows one example. In this case,
the rover generated a map of the terrain at a start-
ing position using 4 stereo pairs of images covering
the area around a rock that was designated as the lo-
calization target. After moving, the rover again cap-
tured a stereo pair of images directed at the localiza-
tion target. Localization was performed by matching
the range map generated after the move to the terrain
map that was generated before the move. In this case,
the rover determined that it had moved 4.14 meters
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Figure 4: Rocky 7 performing localization. (a) Before moving the terrain is mapped. (b) After moving the same area is

imaged to perform localization.

from the original location, which agrees closely with
the measured result of 4.10 meters.

7 Summary

This paper has described techniques for perform-
ing accurate localization with uncertainty estimation
using discrete occupancy grids. The method is based
upon a maximum-likelihood method to register occu-
pancy grids representing the robot’s visible environ-
ment and a previously generated map. A maximum-
likelihood map registration measure is first formulated
using the probability distribution function of the dis-
tances from the cells in the local map to the closest
cells in the global map. In order to perform sub-
pixel localization and uncertainty estimation, the like-
lihood function is fit with a parameterized surface in
the neighborhood of the highest peak. In addition,
the probability of a qualitative failure is estimated by
examining the scores over the entire pose space. Ex-
periments on synthetic data have demonstrated that
this approach yields superior results to cases where
these techniques are not uses. Furthermore, the uncer-
tainty estimates that are generated can be used to in-
tegrate multiple localization steps or other techniques
in a Kalman filtering framework. These techniques
were applied to localization of the Rocky 7 Mars rover
prototype.
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