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This paper describes a spike-based model of binaural sound localization using interaural time differences
(ITDs). To handle the problem of temporal coding and to facilitate a hardware implementation all neurons are
simulated by a spike response model, which includes postsynaptic potentials (PSPs) and a refractory period.
A winner-take-all (WTA) network selects the dominant source from the representation of the sound’s angles of
incidences, and can be biased by a multisensory support. We use simulations on real audio data to investigate

the function and the practical application of the system.

1 Introduction

Sound localization is an important function for spa-
tial hearing of human beings and animals. Many in-
vestigations and models of auditory perception exist
from neurobiology to psychoacoustics [5, 2, 3]. But
although we could imagine numerous applications in
robotics, videoconferencing and speech recognition
only a few working examples are known. When we im-
plemented demonstration software for a mobile robot
we noticed one reason for this: the computational de-
mands of digital simulations are extremely high, but
special hardware solutions of certain auditory pro-
cessing tasks are rare. Therefore we strive for a mixed
analog-digital VLSI implementation, and use the ex-
periences with software simulations on application-
relevant audio data. Our work is related to Lazzaro’s
neuromorphic auditory localization system [12], but
follows a more pragmatic approach.

We assume, that ITD analysis provides a sufficient
cue to many localization tasks. In our simulations,
we use digital algorithms for the preprocessing and
coincidence detection within spike patterns, as well
as a uniform spiking neuron in all other parts of the
model. One motivation to use spikes is, that a tempo-
ral resolution in the range of microseconds is required
for the ITD detection. On the other hand, spike pat-
terns can be considered as a consistent way of signal
coding which enables a merging of features from dif-
ferent modalities [11].

Figure 1 sketches the system architecture. In the
current simulations 16 parallel frequency bands, de-
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Figure 1. System architecture, composed of the localization
model and a following selection mechanism.

livering a spatial resolution of 65 azimuthal angles are
computed, whereby the system 1s simply scalable to
practical demands or constraints of the VLSI design.
Several stages of the model contribute to localization:

1. Filtering and spike coding: The analog signals
from two microphones are filtered by a cochlear
model (all-pole-gammatone filter) and coded
into spikes (receptors).

2. ITD detection: For every frequency channel the
spike patterns from left and right are cross—
correlated (coincidence detector). The resulting
pattern is stored and postprocessed (ICc layer)
and finaly projected to a nontonotopic represen-
tation (ICx layer) of the azimuthal locations of
sound sources in the acoustic scene.

3. Selection: As the result of a WTA process on
auditory and visual input only one direction will
be dominant in the final representation.
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Figure 2. Neuron model

The neuron model (figure 2) is a spike response
model inspired by Gerstner’s work [6], and takes up
fundamental properties of biological cells: the spatial
and temporal integration of stimuli via postsynaptic
potentials (PSP) in the dendritic tree, the generation
of an action potential when reaching a threshold, and
the effect of diminished sensitivity during a period
of refraction. An absolute refractory period and ax-
onal delays are not contained. To describe the im-
pulse response of a synapse, we chose the so called a—
function fu(t) = %61_%, the afterhyperpolarization
(AHP) follows a simple exponential fading function.
The combination of these potentials results in a bi-
ological plausible behavior (figure 3), which is more
complex than the performance of leaky integrate-and-
fire models.

To facilitate the current hardware implementation
of the neuron model in analog VLSI [8] an exponential
decaying PSP function was tested. In the context of
our ITD based localization system this simplification
seems not to affect the networks dynamic seriously,
although we cannot give an analytical description of
the potentials within the recurrent network structure.
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Figure 3. Interpretation of the potentials

3 Components of the system
3.1 Filtering and spike coding

The preprocessing generates an auditory nerve-like
spike pattern from the analog acoustic input signals.
The first step is the frequency analysis in the cochlea
as the basis for the tonotopic organization of the au-
ditory pathways. Lazzaro’s neuromorphic model [12]
contains silicon cochleas with 62 output channels to
process the analog input directly. In our simulation
the task is solved by a cochlear model using an all-
pole gammatone (APG) filter cascade [13]. With re-
spect to the broadband tuning in the auditory nuclei
that are involved in TTD detection [5] we calculate
16 logarithmically arranged channels in the relevant
frequency range from 100 Hz to 2.5 kHz from the dig-
italized microphone signals.

The output of the filter corresponds to the me-
chanical properties of the cochlear basilar membrane,
and has to be transformed into a neural response, the
specific timing of spike trains in the auditory nerve.
This spike coding is realized by a receptor model, sim-
ulating the interaction of inner hair cells and ganglion
cells. Since their firing is connected with the move-
ment cycles of the basilar membrane, the resulting
spike pattern shows the effect of phase locking on the
acoustic stimulus. The degree of phase locking de-
pends on the refractory properties of the receptor. In
figure 4 the APG filter output and the binary spike
response of the receptor model (phase-locked up to
approx. 2 kHz) are depicted.
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Figure 4. Analog response of the APG filter cascade to a noise
burst and primary spike coding.

An important difference between an analog silicon
and a digital model 1s the matching of the left and the
right cochlea — only digital cochleas can be exactly
identical. In an analog cochlea a time delay between
the same output channels occurs even on identical in-
put signals. Further we notice the difference between
Lazzaro’s time-continuous analog model (a spike can
occur at any time) and a digital time-discrete simu-
lation (a spike can occur only at discrete times). In
the digital realization the maximal temporal devia-
tion depends on the sampling frequency, which finally
influences the azimuthal resolution and localization
error of the model.



3.2  Localization
Coincidence detection

If a sound source is not located exactly in the medial-
sagittal plane its position will cause a time difference
between the correlated spike patterns in the left and
right auditory nerve. According to Jeffress’ coinci-
dence model [9] and neurophysiological findings [4]
the evaluation of ITD effects 1s realized by counter
propagating axonal delay lines. Coincidence cells, lo-
cated at different positions along the axons, generate
spikes if they receive a simultaneous stimulation from
the left and the right hemisphere. Because of the
different time delays depending on the length of the
propagating fibers, each cell becomes sensitive for a
certain ITD. In this way, the temporal information
of ITD 1s transformed into a place code, represented
in the spatial distribution of activity in the neural
structure.

Numerous extensions have been proposed to the
coincidence model of Jeffress, e.g. the suppression
of ambiguous responses by a contralateral inhibition
[3], the selforganization in the coincidence sensitiv-
ity of the cells by Hebbian learning [7] and the us-
age of bipolar dendrites [1]. In our model a simple
abstraction of the function is sufficient — we use a
digital delay line and AND gates, which causes a dis-
cretization of the angles. Because the maximal delay
in the structure must correspond between the model
and the real world, the model parameters length N
of the delay line and sampling frequency f; are con-
nected with the physical parameters base distance b
of the ’ears’ and sonic speed ¢ of the environment by
N = |fs -b/c]. Using fs=44.1 kHz, b= 0.25m and
¢=343 m/s the model can detect 2 - N 4+ 1=65 direc-
tions.

ICc layer

In the midbrain of birds and mammals ITDs like
other auditory features are projected into the Infe-
rior Colliculus (IC), before a further feature extrac-
tion and mechanisms of selection and attention take
place. One possibility to illustrate the feature repre-
sentation in this auditory nucleus is to describe the
formation of maps. These maps of different orien-
tations in the 3-dimensional structure of the central
IC display the neural sensitivity to several features,
e.g. the tonotopic organization, modulation frequen-
cies or ITDs [5]. In our model characteristic frequen-
cies (CF) and characteristic delays (CD) are mapped
onto a neural field (figure 5 left).

Lateral synaptic connections between ITD-
sensitive columns of this field and selfexciting
feedback loops are used for a manipulation of the
represented feature (figure 5 right). Primarily we
introduced this synaptic structure to achieve a
sharpened feature representation by lateral inhibited
receptive fields. However, it turned out that the
spatial resolution of the binary coincidence detection
and the sharpness of its response was already suffi-
cient for almost all localization tasks. In the opposite
to a lateral inhibition, smoothed patterns caused
by excitation of the cells’ immediate neighbors
prevents jitter effects in the response of the discrete
coincidence detector. In addition the overall spike
activity increases, which results in a more robust

behavior of the WTA layer.
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Figure 5. Left: Formation of a 2-dimensional map represent-
ing the tonotopy and characteristic delays. Right: The lateral
interconnections cause a sharpening or smoothing of the ITD-
feature.

Especially in the case of a sharpened response,
caused by lateral inhibition, a periodical component
of the detected ITD feature can be observed. Since
the coincidence detection is similar to the calculation
of the cross-correlation of periodical signals its result
is just as periodical.

ICx layer

In the context of localization it is the striking fea-
ture of tonotopy to distinguish ITDs from ambigu-
ous phase differences by a recombination of frequency
bands. Phase differences are located at different po-
sitions in the ITD map, depending on the charac-
teristic frequencies. In a convergent projection from
many frequency bands they produce a diffuse activa-
tion. The position of the detected I'TD is independent
from the tonotopic organization and gives rise to a less
ambiguous feature (figure 6).

The idea of a summation of the tonotopic response
is strongly supported by findings in the IC of the barn
owl, where ambiguous activations of single highfre-
quency bands of the central IC, but a definite response
in the nontonotopic extern IC could be observed [12].
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Figure 6. The combination of the tonotopic distributed re-
sponse of the ICc in a onedimensional ICx-model enables to

distinguish ITD from phase differences (IPDs).

While Lazzaro combined the function of the ICx
layer and the competition between I'TDs in one ana-
log WTA layer, in our experiments with the spike-
based WTA and a multisensory input the separation
of the functions to different layers has advantages.
The WTA network is stimulated by a maximum spike
frequency of just one row of neurons which is inde-
pendent of the frequency of the acoustic stimulus and
limits the dynamic range of the tonotopic distributed
feature. This results in a very robust WTA perfor-
mance.

3.3 Selection

The response of the one-dimensional ICx model often
is disarranged by several disturbances like interfer-
ences with other sources, echos, or ambiguities which
could not yet be suppressed. Modeling attentive audi-
tory perception we need to simulate a focusing mecha-
nism, selecting a dominant I'TD in the representation
of competing features.

Findings about cortico-thalamic feedback loops,
mechanisms of efferent, inhibitory control and lateral
interactions between neurons of the thalamic nuclei
[5] suggest the application of winner-take-all (WTA)
networks to solve this problem. Our model uses a
structure containing lateral and self excitation (like
the IC feature map) and an interneuron which inte-
grates the instantaneous activity of the net and gen-
erates recurrent inhibition to all cells. In the resulting
WTA process only a single region of dominant feature
representation can maintain activity [10].

For the application to dynamic acoustic scenes the
selection network should be capable to move the fo-
cus of attention to a new sound source. This effect

called strong WTA behavior [10] can be achieved by

a suitable global inhibition, in particular since we are
interested in a decaying WTA activity in the case of
silence.

Usually, the attentive perception, especially the
localization of objects, has a multimodal character.
Various projections from the somatosensory and vi-
sual system can be found at the level of the thalamic
nuclei [5]. To model an abstract visual support to the
auditory localization, we first consider where the com-
bination of the two modalities might take place. Since
visual features have no interrelations with character-
istic frequencies, the first stage for a visual-auditory
integration might be the nontonotopic, extern IC. In
our system visual information, like the detected skin
color of a speaker, is interpreted as the direction of
an object of interest. Next we had to decide, whether
multiple peaks in the visual inputs are allowed or a
single location as the result of a preceding selection
process is required. In the sense of an efferent sup-
port, only one direction 1s supported at a time. The
actual inclusion of the support is finally realized via
additional inputs to the WTA neurons. This is a very
simple approach, because it assumes, that the audi-
tory and visual coordinates are already aligned.
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Figure 7. Left: Structure of the WTA network. Right: Result
of the selection process.

4 Simulations and results

Up to now we are using offline simulation to investi-
gate the behavior of the model on recorded data and
online experimensts to demonstrate the basic func-
tion of the system directly coupled to real world in-
puts. Eventually, the aspired VLSI-implementation
enables a real-time application to demonstrate the full
function of the model embedded in the real world.

4.1  Offline simulation

The localization system was tested offline with data
recorded in an open environment including back-
ground noise but only little echo effects. Narrow
and broadband sounds, including numerous speech



signals, were recorded by 2 microphones (omni-
directional characteristic, base distance 56=0.25m).
The localization of single sources was compara-
tively simple and robust — the directions of all tested
broadband sounds were determined correctly. Figure
8 illustrates the focusing to a moving source, emitting
pink noise. While the ICx layer displays a diffuse ac-
tivation and disturbances, the capability of the WTA
network to detect a dominant ITD leads to a clear
feature representation. The focus stays stable, even
if the sound source is moving, which is an important
feature of the strong WTA dynamics (figure 8).
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Figure 8. Model behavior for a moving source emitting pink
noise. Visualization of the ICx output (bottom) and the activ-
ity of the WTA neurons (top).

If multiple sources are present in the acousti-
cal scene, the requirements to the localization sys-
tem change considerably. Because of interferences
between periodical sound components, the dominance
of a certain source has to be caused by its intensity or
broader spectral constitution. The experiment shown
in figure 9 demonstrates, how the focus of attention
is shifted from a narrowband sound toward a voice
stimulus.
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Figure 9. Localization of a narrow band signal and a human
call setting in after 100 ms.

Finally the effect of simulated external support to
the WTA process is shown. The system is able to
bridge short breaks in the acoustic signal or keep the
focus on a nondominant source (figure 10).
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Figure 10. Repetition of the previous experiment, with external
support to the narrow-band signal.

4.2 Online stmulation

To demonstrate the performance of the localization
system in an indoor environment on our mobile robot
we implemented a simplified version without the ICc
and WTA layers in C++. Because the synchronous
simulation is still not real-time capable and acous-
tic problems occur in rooms, we use only a short
block of samples from the signal’s onset to estimate
the direction of a sound source. The simulation is
fast enough to trigger a turn-reflex of the robot’s vi-
sion head and showed robust results on hand-claps
and similiar signals. However, the application of the
selection part of the model should deliver interest-
ing improvements: In offline experiments we noticed,
that the WTA process is able to focus on a sound
source in about 10ms — often unaffected by the first
echos reaching the microphones. For most broadband
signals, this time is longer then the arrival of a first
wavefront, which has been considered as the longest
part of reverberate signals one can localize. But only
if a voiced sound hit the room’s resonance frequency
(in our recordings resonances build up after 30ms) the
focus of the WTA layer may be shifted apperently to
a random position of an interference (figure 11).
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Figure 11. Onset selection in reverberate environment.

This way, although it was not our intention, we can
model major aspects of the precedence effect — the
dominance of the original sound event up against it’s
echos. Adding a simple onset detector and with the



constraint of a comparatively quiet enviroment, the
introduced model is a suitible tool to localize com-
mand words under reverberate indoor conditions.
We still have no solution which fulfils a real-time
simulation of the model, but are convinced, that for
robotics applications a mixed analog-digital hardware
implementation is a promising approach. The design
of a VLSI chip containing the delay line structure
and one layer of neurons is in progress [8]. In this
concept we intend to use available cochlea chips for
preprocessing, realize biological plausible time con-
stants, and solve the inter-chip communication.

5 Conclusion

Comprising our experiments, the presented model
yields convincing results in open enviroments. Ambi-
guities and disturbances in the I'TD representation at
the level of the IC are successfully suppressed by the
WTA process. Thereby the simulation of the spike-
based selection model proved to be uncomplicated —
the limited dynamic range of a spike coded WTA in-
put enables a robust operation of the network.

While testing the system in complex acoustic situa-
tions it turned out that an ITD-dependent differentia-
tion between multiple sources, as a typical application
of the model, has to be based on a sequential detec-
tion and selection of ITDs (see figure 9). Applying
an external support, the focusing on a nondominant
source could be observed, as long as its original phase
information was present. Because the ITD feature is
locked on the phase of the signal, the localization fails
if interferences occur between voiced sounds. Thus,
even a realtime capable hardware solution will require
an onset detector to deliver reasonable results.

The experiences of the software simulations cru-
cial influenced the design process of a mixed analog-
digital hardware system, which VLSI implementation
is currently in progress. In particular the usage of real
world data and tests on robot systems are important
to understand the problem and the model in details
hidden to purely theoretical investigations.
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