
Applications of Automated Mechanism Design

Vincent Conitzer
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Mechanism design is the art of designing the
rules of the game so that desirable systemwide
outcomes are obtained even though every agent
in the system acts based on self-interest. Mech-
anism design has traditionally been a manual
process. At UAI-02, we introducedautomated
mechanism design (AMD) [5]. In that paper and
in other work, we studied its worst-case com-
plexity [5, 6, 7]. This paper contains (to our
knowledge) the first experimental work on AMD.
We describe our implementation of AMD us-
ing a mixed integer/linear programming package
(CPLEX 8.0), which we applied to a variety of
scenarios that arise in different real-world set-
tings. It created new optimal mechanisms for (di-
vorce) dispute settlement, reinvented the Myer-
son optimal auction, invented optimal combina-
torial auctions (a well-known important open re-
search problem), and created new optimal mech-
anisms for public goods problems (both single-
good and multi-good problems). We contrast the
generated optimal mechanisms to the available
mechanisms in the game theory literature. Fi-
nally, we present experimental scalability results
of our implementation of AMD.

1 Introduction

Mechanism design is the art of designing the rules of the
game so that a desirable outcome is reached even though
the agents in the game behave selfishly. This is a diffi-
cult problem because the designer is uncertain about the
agents’ preferences and the agents may lie about their pref-
erences. Mechanism design is receiving growing attention
in the UAI community (e.g., [5, 15]).

Traditionally, the focus in mechanism design has been on
designing mechanisms that are appropriate for a range of

settings. While this approach has produced a number
of famous mechanisms (for example, the VCG mecha-
nism [16, 4, 10], the dAGVA mechanism [8, 2], and the
Myerson optimal auction [13]), much of the space of possi-
ble settings is still left uncovered. In many (arguably most)
cases where a mechanism is needed, the classical mecha-
nisms are not satisfactory because they make assumptions
on what the agents can do (for example, side payments
are required for the mechanism to work); they pursue the
wrong objective (for example, social welfare is pursued
instead of maximal revenue); or they do not make use of
all available information (such as probability distributions
over the agents’ preferences, ortypes), at the cost of the
objective.

In contrast, inautomated mechanism design (AMD)[5, 6,
7], a mechanism iscomputedon the fly for the setting at
hand—a universally applicable approach. Our previous
work on automated mechanism design studied the worst-
case complexity of some versions of the abstract problem.
In this paper, we describe the results of our implementation
of an algorithm for automated mechanism design. Apart
from the scalability results we provide towards the end of
the paper, the paper’s focus is on showing a variety of set-
tings where we applied the AMD approach, and the re-
sults from doing so. We looked at some settings for which
classical mechanisms are available (and are optimal). In
these, the automated mechanism design approach rederived
the classical mechanisms. We also looked at some set-
tings for which (to our knowledge) no classical mecha-
nisms are available (or classical mechanisms are available
but nonoptimal—for example, a VCG mechanism can be
used in an auction in which the auctioneer is actually seek-
ing revenues), including some well-known open research
areas. In these, the automated design approach was suc-
cessful in deriving novel optimal mechanisms.

2 Automated mechanism design

We now formalize the automated mechanism design setting
(in the same way as in our previous work [5, 6, 7]).

Definition 1 In an automated mechanism design setting,
we are given: 1. a finite set of outcomesO (in some cases,
there may also be a cost function over these indicating how
much needs to be paid for each outcome, e.g. in a public
goods problem); 2. a finite set ofN agents; 3. for each
agenti, A. a finite set of typesΘi, B. a probability distribu-
tion γi overΘi (in the case of correlated types, there is a
single joint distributionγ overΘ1× . . .×ΘN), C. a utility
functionui : Θi×O → R;1 4. an objective function whose
expectation the designer wishes to maximize; 5. a specifi-
cation of what tools are available to the designer (e.g., are
payments possible, is randomization possible).

There are many possible objective functions the designer
might have. In this paper, we study the two best-known
types of objective function: social welfare (both with and
without taking payments into account), where the designer
attempts to maximize the expected sum of the agents’ util-
ities; and payment maximization, where the designer at-
tempts to maximize the expected (net) sum of payments
made to the center. For social welfare maximization, we
study both settings where payments are possible, and where
they are not possible. (In the former case, we assumequasi-
linear preferences—every agent’s utility is linear in the net
payment that agent makes.)

The mechanism designer has to construct a game for the
agents to play; how this game is played will determine the
outcome chosen. (Additionally, it determines any side pay-
ments.) In designing the game, the mechanism designer
seeks to maximize the expected value of the objective, un-
der the assumption that the agents will play the game strate-
gically. A useful result called therevelation principlestates
that the mechanism designer can restrict his attention todi-
rect revelation mechanisms, where the agents report their
types directly and where they never have any incentive to
report them falsely. Thus, adeterministicmechanism is
given by a function from reported type vectors to outcomes
(and possibly to payment vectors). Arandomizedmech-
anism is given by a function from reported type vectors
to probability distributions over outcomes (and possibly to
payment vectors—but the agents will only care about the
expected payment they have to make as long as they are
risk-neutral.)

Furthermore, we need a definition of atruthful mechanism
(one in which agents do not have incentives to lie about

1Though this follows standard game theory notation [11], the
fact that the agent has both a utility function and a type is perhaps
confusing. The types encode the various possible preferences that
the agent may turn out to have, and the agent’s type is not known
to the aggregator. The utility function is common knowledge, but
because the agent’s type is a parameter in the agent’s utility func-
tion, the aggregator cannot know what the agent’s utility is with-
out knowing the agent’s type. (In general, the type may also in-
clude knowledge about the other agents, but this can quickly lead
to enormous type spaces. In this paper types will only indicate the
agent’s own preferences, as is common in much of the literature.)

their types). The two best-known such definitions, and the
ones studied in this paper, are the following. Inimple-
mentation in dominant strategies (DS), an agent never has
an incentive to misreport her type even if she knows what
all the other agents reported. Inimplementation in Bayes-
Nash equilibrium (BNE), an agent never has an incentive to
misreport her type presuming that she knows nothing more
about the other agents’ types than the commonly known
prior, and presuming that all the other agents will report
truthfully. (We omit formal definitions because of space
constraint.)

Finally, in many cases, the designer needs to make sure that
the agents do not incur a loss as a result of participating in
the mechanism (because the agent may then choose not to
participate). This is known as anindividual rationality (IR)
constraint. We studyex interimIR, where it always makes
sense for the agent to participate if she knows her own type
but only the priors for the other agents; andex postIR,
where it always makes sense for the agent to participate
even if she knows everyone’s type.

3 Our implementation

As observed in our previous work on automated mecha-
nism design [5, 6, 7], the problem of designing a random-
ized mechanism can typically be phrased as a linear pro-
gram. Similarly, the problem of designing a deterministic
mechanism can typically be phrased as a mixed integer pro-
gram. (We do not describe these programs here because of
the space constraint.) Our algorithm generates these mixed
integer/linear programs, and subsequently uses a package
(CPLEX 8.0) to solve them.

4 Divorce settlement

The first application setting in which we apply AMD is di-
vorce settlement. We show several variants of the mech-
anism design problem, and the optimal solutions (mecha-
nisms) to those variants generated by our AMD implemen-
tation. We first study a benevolent arbitrator, then a benev-
olent arbitrator that uses side payments to structure the
agents’ incentives, and finally a greedy arbitrator that wants
to maximize the sum of side payments from the agents—
while still motivating the agents to come to the arbitration.

4.1 A benevolent arbitrator

A couple is getting a divorce. They jointly own a paint-
ing and the arbitrator has to decide what happens to the
painting. There are 4 options to decide between: (1) the
husband gets the painting, (2) the wife gets the painting,
(3) the painting remains in joint ownership and is hung in a
museum, and (4) the painting is burned. The husband and
wife each have two possible types: one that implies not

caring for the painting too much (low), and one that im-
plies being strongly attached to the painting (high). (low)
is had with probability .8, (high) with .2, by each party. To
maximize social welfare, the arbitrator would like to give
the painting to whoever cares for it more, but even someone
who does not care much for it would prefer having it over
not having it, making the arbitrator’s job in ascertaining
the preferences nontrivial. Specifically, the utility function
is (for either party)

u(low,get the painting)=2
u(low,other gets the painting)=0
u(low,joint ownership)=1
u(low,burn the painting)=-10 (both parties feel

that burning the painting would be a terrible
thing from an art history perspective)

u(high,get the painting)=100
u(high,other gets the painting)=0
u(high,joint ownership)=50
u(high,burn the painting)=-10

Let us assume (for now) that side payments are not possi-
ble, randomization is not possible, and that implementation
in dominant strategies is required. Now we have a well-
specified AMD instance. Our solver generated the follow-
ing optimal mechanism for this setting:

husband_low husband_high
wife_low husband gets painting husband gets painting
wife_high husband gets painting husband gets painting

That is, we cannot do better than always giving the painting
to the husband (or always giving it to the wife). (The solver
does not look for the “fairest” mechanism because fairness
is not part of the objective we specified.) Now let us change
the problem slightly, by requiring only implementation in
BNE. For this instance, our solver generated the following
optimal mechanism:

husband_low husband_high
wife_low joint ownership husband gets painting
wife_high wife gets painting painting is burned

Thus, when we relax the incentive compatibility constraint
to BNE, we can do better by sometimes burning the paint-
ing! The burning of the painting (with which nobody is
happy) is sufficiently helpful in tailoring the incentives that
it becomes a key part of the mechanism. (This is somewhat
similar to the item not being sold in an optimal auction—
more on optimal auctions later.) Now let us see whether
we can do better by also allowing for randomization in the
mechanism. It turns out that we can, and the optimal mech-
anism generated by the solver is the following:

husband_low husband_high
wife_low .57: husband, .43: wife 1: husband
wife_high 1: wife .45: burn; .55: husband

The randomization helps us because the threat of burning
the paintingwith some probabilitywhen both report high is
enough to obtain the incentive effect that allows us to give
the painting to the right party in other settings. Interest-
ingly, the mechanism now chooses to randomize over the

party that receives the painting rather than awarding joint
ownership in the setting where both report low.

4.2 A benevolent arbitrator that uses payments

Now imagine that we can force the parties to pay money,
depending on the types reported—that is, side payments are
possible. The arbitrator (for now) is still only concerned
with the parties’ welfare—taking into account how much
money they lose because of the payment rule, as well as
the allocation of the painting.2 Thus, it does not matter
to the arbitrator whether the agents’ net payment goes to
the arbitrator, a charity, or is burned, but other things being
equal the arbitrator would like to minimize the payments
that the agents make. Now the optimal deterministic mech-
anism in dominant strategies generated by the solver has
the following allocation rule:

husband_low husband_high
wife_low husband gets painting husband gets painting
wife_high wife gets painting wife gets painting

The payment function is (wife’s payment listed first):

husband_a husband_high
wife_low 0,0 0,0
wife_high 2,0 2,0

In this mechanism, the allocation of the painting is always
optimal. However, the price (in terms of social welfare) that
is paid for this is that the wife must sometimes pay money;
the fact that she has to pay 2 whenever she reports her high
type removes her incentive to falsely report her high type.

4.3 An arbitrator that attempts to maximize the
payments extracted

Now we imagine a non-benevolent arbitrator, who is run-
ning an arbitration business. The agents’ net payments now
go to the arbitrator, who is seeking to maximize these pay-
ments. Of course, the arbitrator cannot extract arbitrary
amounts from the parties; rather, the parties should over-
all still be happy with their decision to go to the arbitrator.
Thus, we need an IR constraint. If we require ex post IR
and dominant strategies, the optimal deterministic mecha-
nism generated by the solver has the following allocation
rule:

husband_low husband_high
wife_low painting is burned husband gets painting
wife_high wife gets painting wife gets painting

Now the painting is burned when both parties report their
low types! (This is even more similar to an item being

2Classical mechanism design often separates the payments
made from the social welfare calculation, allowing for easier anal-
ysis; one of the benefits of automated mechanism design is that
the payments made can be easily integrated into the social wel-
fare calculation in designing the mechanisms.

burned in an optimal combinatorial auction.) As for the
mechanism’s payment function: in this setting, the arbitra-
tor is always able to extractall of each agent’s utility from
the allocation as her payment (but note that the allocation
is not always optimal: the painting is burned sometimes,
in which case the arbitrator obtains no revenue, but rather
has to compensate the parties involved for the loss of the
painting).

Many other specifications of the problem are possible; we
do not give them here because of space constraint.

5 Optimal auctions

In this section we show how AMD can be used to de-
sign auctions that maximize the seller’s expected revenue
(these are calledoptimalauctions). In many—if not most—
auction settings, the seller would like to design the rules of
the auction to accomplish this. This is a known difficult
mechanism design problem; for one, it is much more dif-
ficult than designing a mechanism that allocates the goods
efficiently (among bidders with quasilinear preferences,ex
post efficiency and IR can be accomplished in dominant
strategies using theVickrey-Clarke-Groves (VCG) mecha-
nism[16, 4, 10]).

We first study auctioning off a single good, and show that
AMD reinvents a known ladmark optimal auction mecha-
nism for that setting. We then move to multi-item (combi-
natorial) auctions, where the optimal auction has been un-
known in the literature to date. We show that AMD can
design optimal auctions for this setting as well.

5.1 An optimal 2-bidder, 1-item auction

In this section, we show how automated mechanism design
can rederive known results in optimal single-item auction
design. Say there is one item for sale. The auctioneer can
award it to any bidder, or burn it (say the auctioneer’s val-
uation for the good is0). There are two bidders,1 and2.
For each of them, their distribution of valuations is uniform
over{0, 0.25, 0.5, 0.75, 1}.
In designing the auction automatically, we required ex-
interim IR and implementation in Bayes-Nash equilibrium.
Randomization was allowed (although in this setting, it
turned out that the probabilities were all 0 or 1). The al-
location rule of the mechanism generated by the solver is
as follows. If both bid below 0.5, burn the item; otherwise,
give the item to the highest bidder (a specific one of them in
the case of a tie). This is exactly3 the celebratedMyerson
auction [13]. (Although the Myerson auction was origi-
nally derived for a continuous valuation space.) So, AMD

3Apart from the payment rule generated, because CPLEX
chooses to distribute the payments slightly differently across dif-
ferent type vectors.

quickly reinvented a landmark mechanism from 1981. (Al-
though it should be noted that it invented it for a special
case, and did not derive the general characterization. Also,
it did not invent thequestionof optimal auction design.)

5.2 Multi-item (combinatorial) auctions

We now move to combinatorial auctions where there are
multiple goods for sale. The design of a mechanism for
this setting that maximizes the seller’s expected revenue is
a recognized open research problem [3, 17]. The problem
is open even if there are only two goods for sale. (The two-
good case with a very special form of complementarity and
no substitutability has been solved recently [1].) We show
that AMD can be used to generate optimal combinatorial
auctions.

5.2.1 An optimal 2-bidder, 2-item combinatorial
auction with complementarity

In our first combinatorial auction example, two items,A
andB, are for sale. The auctioneer can award each item
to any bidder, or burn it (the auctioneer’s valuation is0).
There are two bidders,1 and2, each of whom has four pos-
sible, equally likely types:LL, HL, LH, andHH. The
type indicates whether each item is strongly desired or not;
for instance, the typeHL indicates that the bidder strongly
desires the first item, but not the second. Getting an item
that is strongly desired gives utility2; getting one that is
not strongly desired gives utility1. The utilities derived
from the items are simply additive (no substitution or com-
plementarity effects), with the exception of the case where
the bidder has the typeHH. In this case there is a comple-
mentarity bonus of2 for getting both items (thus, the total
utility of getting both items is6). (One way to interpret
this is as follows: a bidder will sell off any item it wins
and does not strongly desire, on a market where it is a price
taker, so that there are no substitution or complementarity
effects with such an item.)

In designing the auction, we required ex-interim IR and im-
plementation in Bayes-Nash equilibrium. Randomization
was allowed (although in this setting, it turned out that the
probabilities were all 0 or 1). The objective to maximize
was the expected payments from the bidders to the seller.
The mechanism generated by the solver has the following
allocation rule: 1. If one bidder bidLL, then the other bid-
der gets all the items he bid high on, and all the other items
(that both bid low on) are burned. 2. If exactly one bid-
der bidHH, that bidder gets both items. If both bidHH,
bidder1 gets both items. 3. If both bidders bid high on
only one item, and they did not bid high on the same item,
each bidder gets his preferred item. 4. If both bidders bid
high on only one item, and they bid high on the same item,
bidder2 gets the preferred item, and bidder1 gets the other
item.

LL LH HL HH
LL 0,0 0,2 2,0 2,2
LH 0,1 1,2 2,1 2,2
HL 1,0 1,2 2,1 2,2
HH 1,1 1,1 1,1 1,1

The allocation rule in the optimal combinatorial auction. The row indicates bidder

1’s type, the column bidder 2’s type.i, j indicates that itemA goes to bidderi, and

itemB to bidderj. (0 means the item is burned.)

It is interesting to observe that suboptimal allocations occur
only when one bidder bidsLL and the other other does
not bid HH. All the inefficiency stems from burning items,
never from allocating items to a suboptimal bidder.

We omit the payment rule because of space constraint. The
expected revenue from this mechanism is 3.9375. For com-
parison, the expected revenue from the VCG mechanism is
only 2.6875. It is interesting to view this in light of a re-
cent result that the VCG mechanism is asymptotically (in
the number of bidders) optimal in multi-item auctions, that
is, it maximizes revenue in the limit [12].4 Apparently the
auction will need to get much bigger (have more bidders)
before no significant fraction of the revenue is lost by us-
ing the VCG mechanism. (Of course, this is only a single
instance—future research may determine how much rev-
enue is typically lost by the VCG mechanism for instances
of this size, as well as determine how this changes when
the instances become somewhat larger.)

5.2.2 An optimal 3-bidder, 2-item combinatorial
auction with substitutability and
complementarity

We omit this (large) example because of space constraint.

6 Public goods problems

Public goods problems are another key area of mechanism
design [11]. In such problems, the agents have to make
a joint decision that pertains to all of the agents. For ex-
ample, the agents may vote over whether or not to build
a bridge, but once the bridge is built, no agent can be ex-
cluded from using it. This gives rise to afree-ridingprob-
lem. TheGroves mechanismis a general solution to this
problem (for agents with quasilinear preferences). It guar-
antees that the ex post social welfare maximizing choice
is made, that the mechanism isex postIR, and the truth-

4This result is particularly easy to prove in a discretized setting
such as the one we are considering. The following sketches the
proof. As the number of bidders grows, it becomes increasingly
likely that for each winning bid, there is another submitted bid
that is exactly identical, but not accepted. If this is the case, the
VCG payment for the winning bid is exactly the value of that
bid, and thus the VCG mechanism extracts the maximum possible
payment. (This is also roughly the line of reasoning taken in the
more general result [12].)

ful revelation of preferences is each agent’s dominant strat-
egy [10]. The Groves mechanism collects payments from
the agents depending on what preferences they revealed;
these payments set the correct incentives for the agents to
tell the truth. Unfortunately, the Groves mechanism does
not maintain budget balance. Usually the sum of payments
is greater than the cost of the project, and these extra pay-
ments have to be burned (redistributing them back to the
agents or to any cause that the agents care about would dis-
tort the incentives for truth-telling). In fact, for the general
class of quasilinear preferences, there exists no mechanism
that achieves budget balance, truth-dominance, and ex post
efficiency (social welfare maximization) [9].

The advantage of applying AMD in this setting is that we
do not desire to design a mechanism for general (quasi-
linear) preferences, but merely for the specific mechanism
design problem instance at hand. In some settings this may
allow one to circumvent the impossibility entirely, and in
all settings it minimizes the pain entailed by the impossi-
bility. We use AMD to design a truth-dominant, ex post IR
mechanism that is as ex post efficient as possible—taking
into account money burning as a loss in efficiency.

6.1 Building a bridge

Two agents are deciding whether to build a good that will
benefit both (say, a bridge). The bridge, if it is to be built,
must be financed by the payments made by the agents.
Building the bridge will cost 6. The agents have the fol-
lowing type distribution: with probability .4, agent 1 will
have a low type and value the bridge at 1. With probability
.6, agent 1 will have a high type and value the bridge at 10.
Agent 2 has a low type with probability .6 and value the
bridge at 2; with probability .4, agent 2 will have a high
type and value the bridge at 11. (Thus, agent 2 cares for
the bridge more in both cases, but agent 1 is more likely to
have a high type.)

We used AMD to design the optimal randomized
dominant-strategy mechanism that is ex post IR, and as ex
post efficient as possible—taking into account money burn-
ing as a loss in efficiency. The optimal mechanism gener-
ated by our AMD implementation has the following out-
come function (here the entries of the matrix indicate the
probability of building the bridge in each case):

Low High
Low 0 .67
High 1 1

The payment function is as follows (herea, b gives the pay-
ments of agents 1 and 2, respectively):

Low High
Low 0,0 .67,3.33
High 4,2 4,2

The payments in the case where agent 1 bids low but agent
2 bids high are theexpected payments(as we argued be-
fore, risk-neutral agents only care about this); the agents
will need to pay more than this when the good is actually
built, but can pay less when it is not. (The constraints on
the expected payments in the linear program are set so that
the good can always be afforded when it is built.) It is easy
to see that no money is burned: all the money the agents
pay goes towards building the bridge. However, we do
not always build the bridge when this is socially optimal—
namely, when the second agent has a high type (which is
enough to justify building the bridge) we do not always
build the bridge.

If we relax our solution concept to implementation in
Bayes-Nash equilibrium, however, we get a mechanism
with the following outcome function:

Low High
Low 0 1
High 1 1

The payment function is now as follows:

Low High
Low 0,0 0,6
High 4,2 .67,5.33

Again, no money is burned, but now also, the optimal out-
come is always chosen. Thus, with Bayes-Nash equilib-
rium, our mechanism achieves everything we hope for.

For Bayes-Nash implementation among agents with que-
silinear preferences, thedAGVAmechanism achieves bud-
get balance, truth-telling as the equilibrium strategy, and
ex post efficiency [8, 2]. However, no mechanism achieves
these properties and ex post IR for general (quasilinear)
preferences [14]. As our mechanism above shows, AMD
can circumvent this impossibility in specific settings.

6.2 Building a bridge and/or a boat

Now let us move to the more complex public goods setting
where two goods could be built: a bridge and a boat. There
are 4 different outcomes corresponding to which goods are
built: None, Boat, Bridge, Boat and Bridge. The boat costs
1 to build, the bridge 2, and building both thus costs 3.

The two agents each have one of four different types: None,
Boat Only, Bridge Only, Boat or Bridge. These types indi-
cate which of the two possible goods would be helpful to
the agent (for instance, maybe one agent would only be
helped by a bridge because this agent wants to take the
car to work, which will not fit on the boat). All types are
equally likely; if something is built which is useful to a
agent (given that agent’s type), the agent gets a utility of 2,
otherwise 0.

We used AMD to design the optimal randomized
dominant-strategy mechanism that is ex post IR, and as ex

post efficient as possible—taking into account money burn-
ing as a loss in efficiency. The mechanism has the follow-
ing outcome function, where a vector(a, b, c, d) indicates
the probabilities for None, Boat, Bridge, Boat and Bridge,
respectively.

None Boat Bridge Either
None (1,0,0,0) (0,1,0,0) (1,0,0,0) (0,1,0,0)
Boat (.5,.5,0.0) (0,1,0,0) (0,.5,0,.5) (0,1,0,0)
Bridge (1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,1,0)
Either (.5,.5,0.0) (0,1,0,0) (0,0,1,0) (0,1,0,0)

The (expected) payment function is as follows:

None Boat Bridge Either
None 0,0 0,1 0,0 0,1
Boat .5,0 0,1 1,1 0,1
Bridge 0,0 0,1 1,1 1,1
Either .5,0 0,1 1,1 0,1

Again, no money is burned, but we do not always build
the public goods that are socially optimal—for example,
sometimes nothing is built although the boat would have
been useful to someone.

7 Scalability experiments

To assess the scalability of the automated mechanism de-
sign approach in general, we generated random instances
of the automated mechanism design problem. Each agent,
for each of its types, received a utility for each out-
come that was uniformly randomly chosen from the in-
tegers0, 1, 2, . . . , 99. (All random draws were indepen-
dent.) Real-world automated mechanism design instances
are likely to be more structured than this (for example, in
allocation problems, if one agent is happy with an outcome,
this is because it was allocated a certain item that it wanted,
and thus other agents who wanted the item will be less
happy); such special structure can typically be taken ad-
vantage of in computing the optimal mechanism, even by
nonspecialized algorithms. For instance, a random instance
with 3 agents, 16 outcomes, 8 types per agent, with pay-
ment maximization as its goal, ex-interim IR, implemen-
tation in Bayes-Nash equilibrium, where randomization is
allowed, takes 14.28 seconds to solve on average in our
implementation. The time required to compute the optimal
combinatorial auction from subsection 5.2.2, which had ex-
actly the same parameters (but much more structure in the
utility functions), compares (somewhat) favorably to this at
5.90 seconds.

We are now ready to present the scalability results. For
every one of our experiments, we consider both implemen-
tation in dominant strategies and implementation in Bayes-
Nash equilibrium. We also consider both the problem of
designing a deterministic mechanism and that of designing
a randomized mechanism. All the other variables that are
not under discussion in a particular experiment are fixed at

a default value (4 agents, 4 outcomes, 4 types per agent, no
IR constraint, no payments, social welfare is the objective);
these default values are chosen to make the problem hard
enough for its runtime to be interesting. Experiments tak-
ing longer than 6 hours were cancelled, as well as experi-
ments where the LP size was greater than 400MB. CPLEX
does not provide runtime information more detailed than
centiseconds, which is why we do not give the results with
a constant number of significant digits, but rather all the
digits we have.

The next table shows that the runtime increases fairly
sharply with the number of agents. Also (as will be con-
firmed by all the later experiments), implementation in
dominant strategies is harder than implementation in BNE,
and designing deterministic mechanisms is harder than de-
signing randomized mechanisms. (The latter part is consis-
tent with the transition from NP-completeness to solvabil-
ity in polynomial time by allowing for randomness in the
mechanism [5, 6, 7].)

#agents D/DS R/DS D/BNE R/BNE
2 .02 .00 .00 .00
3 .04 .00 .05 .01
4 8.32 1.32 1.68 .06
5 709.85 48.19 10.47 .52

The time (in seconds) required to solve randomly generated AMD instances for

different numbers of agents, for deterministic (D) or randomized (R) mechanisms,

with implementation in dominant strategies (DS) or Bayes-Nash equilibrium

(BNE). All experiments had 4 outcomes and 4 types per agent, required no IR

constraint, did not allow for payments, and had social welfare as the objective.

The next table shows that the runtime tends to increase with
the number of outcomes, but not at all sharply.

#outcomes D/DS R/DS D/BNE R/BNE
2 .07 .07 .04 .03
3 .36 .08 .46 .05
4 8.32 1.32 1.68 .06
5 10.91 .59 .69 .07

The next table shows that the runtime increases fairly
sharply with the number of types per agent.

#types D/DS R/DS D/BNE R/BNE
2 .00 .00 .00 .00
3 .04 .01 .30 .01
4 8.32 1.32 1.68 .06
5 563.73 14.33 36.60 .21

Because the R/BNE case scales reasonably well in each set-
ting, we increased the numbers of agents, outcomes, and
types further for this case to test the limits of our imple-
mentation. Our initial implementation requires the linear
program to be written out explicitly, and thus space eventu-
ally became the bottleneck for scaling in agents and types.

(“*” indicates that the LP size exceeded 400MB.) Mature
techniques exist for linear programming when the LP is
too large to write down, and future implementations could
make use of these techniques.

agents outcomes types
6 4.39 .07 .88
7 33.32 .07 1.91
8 * .09 4.52
10 * .11 22.05
12 * .13 67.74
14 * .13 *
100 * 1.56 *

The next table shows that the impact of IR constraints on
runtime is entirely negligible.

IR constraint D/DS R/DS D/BNE R/BNE
None 8.32 1.32 1.68 .06
Ex post 8.20 1.38 1.67 .12
Ex interim 8.11 1.42 1.65 .11

The next table studies the effects of allowing for payments
and changing the objective. Allowing for payments (with-
out taking the payments into account) in social welfare
maximization reduces the runtime. This appears consis-
tent with the fact that for this setting, a general mechanism
exists that always obtains the maximum social welfare—
the VCG mechanism . However, this speedup disappears
when we start taking the payments into account. Interest-
ingly, payment maximization appears to be much harder
than social welfare maximization. In particular, in one case
(designing a deterministic mechanism without randomiza-
tion), an optimal mechanism had not been constructed after
6 hours!

Objective D/DS R/DS D/BNE R/BNE
SW (1) 8.20 1.38 1.67 .12
SW (2) .41 .14 .92 .10
SW (3) 7.98 .51 4.44 .10
π - 1.89 84.66 3.47

SW=social welfare (1) without payments, (2) with payments that are not taken into

account in social welfare calculations, (3) with payments that are taken into account

in social welfare calculations;π=payment maximization.

The sizes of the instances that we can solve may not ap-
pear very impressive when compared with the sizes of (for
instance) combinatorial auctions currently being studied in
the literature. While this is certainly true, we emphasize
that 1. We are studying a much more difficult problem
than the auction clearing problem: we aredesigningthe
mechanism, rather than executing it; 2. AMD is still in
its infancy, and it is likely that future (possibly approxi-
mate) approaches will scale to much larger instances; and
3. Although many real-world instances are very large, there

are also many small ones. Moreover, the “small” instances
may concern equally large dollar values as the large ones.

8 Conclusions

In this paper, we presented (to our knowledge) the first ap-
plications of automated mechanism design (AMD). This
yielded several mechanisms for a divorce settlement sce-
nario (each of them optimal for a particular purpose); it
rederived the Myerson optimal auction for selling a sin-
gle good; it produced novel optimal combinatorial auction
mechanisms for maximizing the seller’s expected revenue
(a recognized difficult problem in the combinatorial auction
literature); and it produced novel optimal mechanisms for
public goods problems (both with a single good and with
multiple goods). As the examples show, AMD can circum-
vent seminal impossibility results in mechanism design be-
cause the mechanism is not designed for a general class of
problems, but rather for the specific setting at hand. Even
when the optimal mechanism—created using AMD—does
not circumvent the impossibility, it always minimizes the
pain entailed by impossibility.

Finally, we studied the scalability of AMD on unstructured
problems. The experiments show that the runtime is heav-
ily dependent upon 1. the number of agents (the more the
harder), 2. the number of types per agent (the more the
harder), 3. whether implementation in dominant strate-
gies or in Bayes-Nash equilibrium is required (the former
is harder), 4. whether randomization is allowed (determin-
istic mechanism design is harder), and 5. which objective
is pursued (from social welfare with payments that are not
taken into account (easy) to payment maximization (hard)).
Other variables, such as the number of outcomes and which
(if any) IR constraint is used, turned out to matter much
less. In the case that some of these variables in the prob-
lem can be changed in order to achieve feasibility, these re-
sults are a valuable guideline in selecting which variables to
change. On the other hand, given that in many settings, we
will not be able to change these variables, these results also
indicate where new, faster algorithms will be most valu-
able.

References

[1] Mark Armstrong. Optimal multi-object auctions.Re-
view of Economic Studies, 67:455–481, 2000.

[2] Kenneth Arrow. The property rights doctrine and de-
mand revelation under incomplete information. In
M Boskin, editor, Economics and human welfare.
New York Academic Press, 1979.

[3] Christopher Avery and Terrence Hendershott.
Bundling and optimal auctions of multiple products.
Review of Economic Studies, 67:483–497, 2000.

[4] E H Clarke. Multipart pricing of public goods.Public
Choice, 11:17–33, 1971.

[5] Vincent Conitzer and Tuomas Sandholm. Complexity
of mechanism design. InProceedings of the 18th An-
nual Conference on Uncertainty in Artificial Intelli-
gence (UAI-02), pages 103–110, Edmonton, Canada,
2002.

[6] Vincent Conitzer and Tuomas Sandholm. Auto-
mated mechanism design: Complexity results stem-
ming from the single-agent setting. InThe 5th Inter-
national Conference on Electronic Commerce (ICEC-
03), pages 17–24, Pittsburgh, PA, USA, 2003.

[7] Vincent Conitzer and Tuomas Sandholm. Self-
interested automated mechanism design and implica-
tions for optimal combinatorial auctions. InProceed-
ings of the ACM Conference on Electronic Commerce
(ACM-EC), New York, NY, 2004.

[8] C d’Aspremont and L A Ǵerard-Varet. Incentives
and incomplete information.Journal of Public Eco-
nomics, 11:25–45, 1979.

[9] J Green and J-J Laffont. Characterization of satisfac-
tory mechanisms for the revelation of preferences for
public goods.Econometrica, 45:427–438, 1977.

[10] Theodore Groves. Incentives in teams.Econometrica,
41:617–631, 1973.

[11] Andreu Mas-Colell, Michael Whinston, and Jerry R.
Green. Microeconomic Theory. Oxford University
Press, 1995.

[12] Dov Monderer and Moshe Tennenholtz. Asymptot-
ically optimal multi-object auctions for risk-averse
agents. Technical report, Faculty of Industrial En-
gineering and Management, Technion, Haifa, Israel,
February 1999.

[13] Roger Myerson. Optimal auction design.Mathemat-
ics of Operation Research, 6:58–73, 1981.

[14] Roger Myerson and Mark Satterthwaite. Efficient
mechanisms for bilateral trading.Journal of Eco-
nomic Theory, 28:265–281, 1983.

[15] Ryan Porter, Amir Ronen, Yoav Shoham, and Moshe
Tennenholtz. Fault tolerant mechanism design. In
Proceedings of the 18th Annual Conference on Un-
certainty in Artificial Intelligence (UAI-02), Edmon-
ton, Canada, 2002.

[16] W Vickrey. Counterspeculation, auctions, and com-
petitive sealed tenders.Journal of Finance, 16:8–37,
1961.

[17] Rakesh V. Vohra. Research problems in combinatorial
auctions. Mimeo, version Oct. 29, 2001.

