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Abstract. A mechanism is manipulable if it is in some agents’ best in-
terest to misrepresent their private information. The revelation principle
establishes that, roughly, anything that can be accomplished by a manip-
ulable mechanism can also be accomplished with a truthful mechanism.
Yet agents often fail to play their optimal manipulations due to computa-
tional limitations or various flavors of incompetence and cognitive biases.
Thus, manipulable mechanisms in particular should anticipate byzantine
play. We study manipulation-optimal mechanisms: mechanisms that are
undominated by truthful mechanisms when agents act fully rationally,
and do better than any truthful mechanism if any agent fails to act ra-
tionally in any way. This enables the mechanism designer to do better
than the revelation principle would suggest, and obviates the need to
predict byzantine agents’ irrational behavior. We prove a host of possi-
bility and impossibility results for the concept which have the impression
of broadly limiting possibility. These results are largely in line with the
revelation principle, although the considerations are more subtle and the
impossibility not universal.

1 Introduction

Mechanism design is the science of generating rules of interaction—such as auc-
tions and voting protocols—so that desirable outcomes result despite partici-
pating agents (humans, companies, software agents, etc.) acting in their own
interests. A mechanism receives a set of preferences (i.e. type reports) from the
agents, and based on that information imposes an outcome (such as a choice of
president, an allocation of items, and potentially also payments).

A central concept in mechanism design is truthfulness, which means that an
agent’s best strategy is to report its type (private information) truthfully to the
mechanism. The revelation principle, a foundational result in mechanism design,
proves that any social choice function that can be implemented in some equi-
librium form can also be implemented using a mechanism where all the agents
are motivated to tell the truth. The proof is based on simply supplementing
the manipulable mechanism with a strategy formulator for each agent that acts
strategically on the agent’s behalf (see, e.g., [1]). Since truthfulness is certainly
worth something—simplicity, fairness, and the removal of incentives to invest



in information gathering about others—the revelation principle produces some-
thing for nothing, a free lunch. As a result, mechanism design research has largely
focused on truthful mechanisms.

In this work, we explore what can happen in manipulable mechanisms when
agents do not play optimally. Is it possible to design mechanisms with desirable
off-equilibrium properties? There are several reasons why agents may fail to play
their optimal manipulations. Humans may play sub-optimally due to cognitive
limitations and other forms of incompetence. The field of behavioral game the-
ory studies the gap between game-theoretic rationality and human behavior (an
overview is given in [2]). Agents may also be unable to find their optimal ma-
nipulations due to computational limits: finding an optimal report is NP-hard
in many settings (e.g., [3-6]), and can be #P-hard [4], PSPACE-hard [4], or
even uncomputable [7]. One notable caveat is that an agent’s inability to find its
optimal manipulation does not imply that the agent will act truthfully. Unable
to solve the hard problem of finding its optimal manipulation, an agent may
submit its true private type but she could also submit her best guess of what
her optimal manipulation might be or, by similar logic, give an arbitrary report.
A challenge in manipulable mechanisms is that it is difficult to predict in which
specific ways agents will behave if they do not play according to game-theoretic
rationality. Byzantine players, who behave arbitrarily, capture this idea.

In this paper, we explore mechanism design beyond the realm of truthful
mechanisms using a concept we call manipulation optimality, where a mechanism
benefits—and does better than any truthful mechanism—if any agent fails in
any way to play her optimal manipulation. This enables the mechanism designer
to do better than the revelation principle would suggest, and obviates the need
to predict agents’ irrational behavior. Conitzer and Sandholm [5] proved the
existence of such a mechanism in one constructed game instance, but this work
is the first to explore the concept formally and broadly.

2 The general setting

Each agent ¢ has type 6; € ©; and a utility function ufi(o) : O — R, which
depends on the outcome o € O that the mechanism selects. An agent’s type
captures all of the agent’s private information. For brevity, we sometimes write
u;(0). A mechanism M : @1 X Oy X --- X O, — O selects an outcome based on
the agents’ type reports.

The mechanism designer has an objective (which can be thought of as mech-
anism utility) which maps outcomes to real values:

M) = 3 yiui(0) +m(o),
i=1

where m(-) captures the designer’s desires unrelated to the agents’ utilities, and
~; > 0. This formalism has three widely-explored objectives as special cases:

— Social welfare: ; = 1 and m(-) = 0.



— Affine welfare: v; > 0 and m(-) > 0.
— Revenue: Let outcome o correspond to agents’ payments, m1(0), ..., 7, (0),
to the mechanism. Fix v; = 0 and m(o) = Y., mi(0).

Definition 1. Agenti has a manipulable type 6; if, for some report of the other
agents’ types 0_;, there exists 0} # 0; such that

Note that a type that is manipulable for some reports of the other agents, but
not for other reports of the other agents, is still manipulable.

Definition 2. Types 0; and 0. are distinct if there exists some report of other
agents 0_;, such that the best response for type 0; is to submit t and the best
response for type 0. is t', where

M(t,0_;)=o0#0 =M({',0-;), and

0;

uli(0) > uli(0'), and u?’i (o) > qu (0)

Put another way, types are distinct only if there exists a circumstance under
which agents with those types will be motivated to behave distinctly, causing
distinct outcomes that provide distinct payoffs.

Definition 3. A mechanism is (dominant-strategy) truthful if no agent has a
manipulable type.

Definition 4. Let f and g be functions mapping an arbitrary set S — R. We
say f Pareto dominates g (or g is Pareto dominated by f) if for all s € S,

f(s) = g(s),
where the inequality is strict for at least one s.

Definition 5. A type report of 87 € O, is optimal for agent i if, given reports
of other agents 0_;, u;(M(0*,0_;)) > ui(M(0,0_;)), for all 0 € O;.

Now we are ready to introduce the main notion of this paper. We define
a manipulable mechanism to be manipulation optimal if it does as well as the
best truthful mechanism if agents play their optimal manipulations, and strictly
better if any agent fails to do so in any way:

Definition 6. For an arbitrary collection of types, let o represent the outcome
that arises when all agents with manipulable types play optimally, and let 6
represent an outcome that can arise when some agents with manipulable types do
not play optimally. We call a manipulable mechanism M a strictly manipulation
optimal mechanism (strict MOM) if:

1. No truthful mechanism Pareto dominates agents playing optimally in M.
(Here the inputs are the true types of the agents and we measure based on
the mechanism designer’s objective.)



2. For all 6, M(6) > M(o), where M(-) represents the designer’s objective.

If instead of the second condition holding strictly (i.e., for all 6), it holds with
equality in some places and with strict inequality in others, we call M a Pareto
manipulation optimal mechanism (Pareto MOM).

We assume that, if an agent’s optimal play is to reveal its true type, then it
will do so. The mechanism, for instance, can publish which types are truthful, and
it can be expected that those agents will behave rationally. With software agents,
such behavior can be hard-coded. However, our setting and results translate
straightforwardly to a fully byzantine setting, where the behavior of every agent
(regardless of the truthfulness of their type) is arbitrary. We discuss this setting
at the conclusion of this section.

On the other hand, agents with manipulable types may not behave opti-
mally; for instance, finding an optimal manipulation can be computationally
intractable. It is important to note that we do not assume that an agent neces-
sarily tells the truth if it fails to find its optimal manipulation. We require that
our MOMs do well for any failure to manipulate optimally.

2.1 A broad impossibility result for strict MOMs

While Conitzer and Sandholm [5] showed that manipulation-optimal mechanisms
do exist, the following result strongly curtails their existence.

Proposition 1. No mechanism satisfies Characteristic 2 of Definition 6 if any
agent has more than one distinct manipulable type.

Proof. Suppose for contradiction that M is a manipulable mechanism satisfying
Characteristic 2 such that agent ¢ has two distinct manipulable types. Let the
types be a and b, and let x represent the reports of other agents where they
express its distinction, so that agent 7 of type a has best response a’, and agent
1 of type b has best response b, and:

M(a',x) # M ,x)
We first define the following shorthand notation:
Y (@)= vu(M(d,x)) + m(M(d,x))
i

Do) =D u (M, %)) + m(M (Y, x))

J#

Because M satisfies the strict form of Characteristic 2, we get the following
two inequalities on mechanism utilities—for agent i of type b and agent 7 of type
a, respectively.

it (MY, %))+ Y (6) < vl (M(a',x)) + ) (a)
yiud (M(a', %)) + ) (') < yiug (MY,x)) + > (¥)



But because a’ and b’ are distinct, u (M (a’,x)) > u®(M (', x)) and u? (M (', x)) >
u?(M (a’,x)). Thus since ; > 0 we have

yiug(M(a', %))+ _(a') <yl (MY, %)) + Y _(a)
yiug (MY, x)) + Z (b') < yiuf (M(d',x)) + Z(b/)

Combining the first lines of the above two equation blocks yields > (b)) < > (a'),
while combining the second lines yields > (a’) < >"(b'), a contradiction. O

This impossibility result is driven by the strict inequality in Characteristic 2
of Definition 6. In the next section, we consider what happens to this result when
we loosen the strict inequality.

2.2 A characterization of Pareto MOMs

Recall that the difference between the two MOM concepts was that strict MOMs
require that the mechanism always do strictly better when an agent plays sub-
optimally, while Pareto MOMSs only require that the mechanism does not do
worse and does strictly better at some point when an agent plays sub-optimally.
It follows that possibility results for strict MOMs implies possibility for Pareto
MODMs, and impossibility results for Pareto MOMs imply impossibility for strict
MOMs.

We now revisit the impossibility of Proposition 1, but with the Pareto MOM
notion. Instead of obtaining impossibility, we derive the following result:

Proposition 2. In any mechanism that satisfies the Pareto version of Char-
acteristic 2 of Definition 6, the report of every type that is a manipulable best-
response for any other type results in identical mechanism utility. Furthermore,
for any agent i with more than one distinct manipulable type, v; = 0.

Proof. This proof follows the same guidelines as the one for strict MOMs. Define
a, b, a', b, x, Y (a') and > (V') as before. The difference is that we now have
only:

%ub M%)+ Y () < %u’? M(a@x)) +> ()
viud (M(a',x)) + Z ) < yul (MY, %)) + Z(b’)

because there is no guarantee that the strict relation is expressed at x. But
because a and b are distinct, u?(M(a’,x)) > u(M(¥',x)) and ub(M(b',x)) >
ub(M(a’,x)). Now if v; > 0, we have

viui (M(a',x) +Z <y (M, %) + > (a')
Yiu )+ Y (V) < yeud (M(a',x)) + (V)



which yields a contradiction. However, if v; = 0, we get

yiub (M (a +Za’ = U (b’,x))—i—Za’
yiud (M (b +Z (a/,x) +Z

which, when combined with the MOM characterization above, yields possibility
only when > (a’) = > (¥'), which, because v; = 0, indicates that mechanism
utility is identical for reports of a’ and ¥'. O

Corollary 1. There exist no mechanisms with the social welfare mazrimization
objective that satisfy the Pareto version of Characteristic 2 of Definition 6 if any
agent has more than one distinct manipulable type.

Corollary 2. In any mechanism that satisfies the Pareto version of Character-
istic 2 of Definition 6, the mechanism utility corresponding to reports of types
that are not the best responses of some manipulable type must be at least the
mechanism utility obtained from the best-response type reports, with at least one
report inducing strictly greater mechanism utility.

Proposition 3. If every type is a manipulable best response for some other type,
then there exist no mechanisms that satisfy the Pareto version of Characteristic 2
of Definition 6.

Proof. Since every type is a manipulable best response for some other type, we
have that every outcome must have identical mechanism utility. But then the
“at least one strict” condition of Pareto dominance fails. a

From Proposition 3 we see that we get almost as broad impossibility for
Pareto MOMs as we did for strict MOMs (Proposition 1).

We consider the strict MOM notion more compelling than the Pareto MOM
notion for two reasons:

— Strict inequality is in line with prior work. It was the MOM notion used in
the original paper by Conitzer and Sandholm [5] that proved that MOMs
exist (although they did not call the mechanisms MOMs).

— The motivation of MOMs is to have a mechanism that does better when
agents make mistakes—not to impose artificial caveats on the mechanism
designer’s utility function. Thus we consider the blanket impossibility re-
sult that we obtained for strict MOMs more relevant than the somewhat
contrived, barely broader possibility we obtained for Pareto MOMs.

The results in this section extend straightforwardly to a fully byzantine set-
ting, where all agents (including those with truthful types) behave arbitrarily.
It is easy to see that no strict MOMs exist in this setting, because participating
agents must have more than one type (or else the setting would not require the
report of private information), and so the impossibility result of Proposition 1
holds. Furthermore, while there can exist Pareto MOMs for the fully byzantine



setting, because truthful types are their own best response the results of Propo-
sition 2 and its corollaries hold, in the sense that the report of any truthful type
must also result in identical mechanism utility. Finally, for the fully byzantine
setting, Proposition 3 adjusts so that if every type is the best response for any
other type (rather than only just manipulable types) we get impossibility.

For the remainder of the paper, we return to our original setting, in which
only players with manipulable types are byzantine. We feel the argument that
truthful behavior for certain types can be hard-coded into computational agents,
and publicly published and verified for human agents, to be the most convincing
reason why we should expect players with truthful types to actually behave
truthfully.

2.3 Single-agent settings

In this subsection we study settings where there is only one agent reporting its
private information. If there are other agents, their types are assumed to be
known, so there is only one type-reporting agent.

Proposition 4. There exist no single-agent Pareto MOM with the objective of
social welfare mazximization.

Proof. In the single-agent context, social welfare maximization indicates that
the utility of the mechanism is equivalent to the utility of the single agent. Let
the agent have manipulable type a, which has optimal report a’. Denote a as
the report satisfying the strict Pareto MOM criterion (we could have & = a, but
both a # a’ (because @ is manipulable) and @ # o’ hold). In particular:

u(M(@)) > u®(M(a'))

but @’ was an optimal report, so:

u®(M(a')) = u®(M(a))

which is a contradiction. a
The impossibility for Pareto MOMs directly implies impossibility for strict MOMs.

Proposition 5. There exist single-agent strict MOMs with the objective of affine
welfare maximization.

Proof. We can derive this result from the constructive proof of Conitzer and
Sandholm [5] by recasting parts of their construction within our framework.

There exists a manager with three possible true types for a team of workers
that needs to be assembled:

— “Team with no friends”, which we abbreviate TNF.
— “Team with friends”, which we abbreviate TF.
— “No team preference”, which we abbreviate NT.



The mechanism implements one of two outcomes: picking a team with friends
(TF), or picking a team without friends (TNF). The manager gets a base utility
1 if TNF is chosen, and 0 if TF is chosen. If a manager has a team preference,
implementing that team preference (either with or without friends) gives the
manager an additional utility of 3.

In addition to the manager, the other agent in the game is the HR director,
who has utility 2 if a team with friends is chosen. Even though there are two
agents in the game, because the HR director does not report a type, this is not
a multiagent setting. In fact, the HR director’s utilities are equivalent to the
payoffs from the outcome-specific mechanism utility map m(-) (as we defined
earlier in this paper).

The optimal truthful mechanism maps reports of NT and TNF to TNF and
TF to TF. Now consider the manipulable mechanism that maps reports of TNF
to TNF and NT and TF to TF. Note that in this mechanism there is only one
manipulable type, NT, and that its optimal strategic play is to report TNF. This
mechanism is manipulation-optimal: if the manager has type NT and reports NT
or TF instead of TNF, the mechanism generates affine welfare of 2, whereas the
optimal truthful mechanism generates affine welfare of 1. ad

This possibility of strict MOMSs implies possibility of Pareto MOMs.

In this example, it is NP-hard for an NT agent to report TNF because con-
structing a team of size k without friends requires solving the independent set
problem in a graph of people where the edges are friend relationships [5]. Com-
putational complexity is a strong justification for why an agent may not be able
to find its optimal manipulation.

2.4 Multi-agent settings
Though we proved above that there do not exist single-agent social welfare max-
imizing MOMs, they do exist in multi-agent settings!

Proposition 6. There exist strict multi-agent MOMs with the objective of social
welfare maximization.

Proof. Consider a mechanism in which two agents, the row agent and the column
agent, can have one of two types each, a or a’. Our mechanism maps reports to
one of four different outcomes:

Report|a’| a
a’ 01|02
a 03|04

The following two payoff matrices over the four outcomes constitute a manipulation-
optimal mechanism. Payoffs for type a are on the left and payoffs for type a’ are
on the right:

! !

Report| a’ | a Report| a’ | a
a 1,14,0 a' 3,415,0
a 0,3/3,0 a 0,6(0,0




Another way to view these payoffs is the following table:

Outcome| Urow |Ucolumn
01 al 1 1

a'| 3 4
09 al 4 0

al 5 0
03 al O 3

al 0 6
04 al 3 0

al 0 0

In the mechanism, reporting a’ is a strictly dominant strategy for agents of
both types. By the revelation principle, we can “box” this mechanism into a
truthful mechanism, M;, that always chooses o;. However, when an agent of
type a plays a rather than o', social welfare is strictly higher than with oy (this
property holds regardless of how the other agent behaves). We have now proven
(the strict form of) Characteristic 2.

What remains to be proven is Characteristic 1: we need to prove that M is
Pareto undominated among truthful mechanisms. We begin by examining the
following table, which shows the social welfare (sum of agents’ utilities) for the
four possible true type combinations (listed as 60w, Ocotumn)-

True types|o1|02|03|04
a,a 214133
a,a 514163
a,a 415310
a,a 7151610

Suppose that there exists a truthful mechanism, M, that Pareto dominates
M. Note that M; delivers the highest payoff when both agents are of type a’.
Thus, MP(a’,a’) = o0;. But this implies that M (a,a’) and MP(a’,a) must
also equal 01: mapping them to the outcome that gives higher social welfare (in
the former case, o3, and in the latter, o2) is not truthful because the agent of
type a has incentive to report a’ and force o;. At the same time, mapping to
an outcome that is not o; delivers less social welfare than M;. So, MP(da’,a") =
MP(a’';a) = MP(a,a’) = o;. But if these three inputs map to oy, M cannot
truthfully map revelations of (a,a) to any outcome other than oy, because some
agent will always want to deviate by reporting type a’, and force outcome o;.
Therefore MP = M! and so M" is undominated among truthful mechanisms.

O

The result above uses dominant strategies as the solution concept. Therefore,
the result implies possibility for weaker equilibrium notions as well, such as
Bayes-Nash equilibrium. Furthermore, this possibility for strict MOMs implies
possibility for Pareto MOMs.

Definition 7. An anonymous mechanism selects an outcome based only on the
distribution of reported types, rather than based on the identities of the agents
who reported those types.
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Definition 8. Let i and j be any two symmetric agents, 0 be a true type, 0 be

a report, and X be some report of the n — 1 other agents. Then u’(M(,x)) =

uf(M(g, x)) for all true types 6, all reports 9 and all other report vectors X.

The agents in our construction in the proof above are not symmetric. We may
ask whether MOMs exist for what can be considered the most common setting:
where agents are symmetric, the equilibrium concept is dominant strategies, the
mechanism is anonymous, and the objective is welfare maximization.

Proposition 7. There exist no dominant-strategy anonymous strict multi-agent
MOMs with the objective of social welfare mazximization for symmetric agents.

Proof. By Proposition 1, we can restrict attention to settings with a single ma-
nipulable type. Call the type a, and let the best report of that type of an agent be
a’. Suppose mechanism M satisfies Characteristic 2. By the revelation principle
it has a corresponding truthful mechanism M. We show that we can construct
a truthful mechanism MP that Pareto dominates M.

First, if a set of reports includes a type other than a or a’, we set MP to
simply mirror the action taken by M. Strategic implications for agents other
than types a and a’ are unaffected because for agents of those types, reporting
the true type was a dominant strategy under M.

Let o be the outcome implemented by M when all agents report a, and let o’
be the outcome implemented by M when all agents report a’. Denote by a any
combination of reports a and a’; observe that M(a) = o'.

By Characteristic 2 we know that we get higher social welfare if agents of
type a—whose best manipulation is to report a’—cannot find the manipulation
and report a instead. Since agents are symmetric, this implies u®(0") < u®(0).
This is akin to the Prisoner’s Dilemma: the dominant strategy of type a is to
report a’, but the outcome is worse for agents if they all report a’ rather than a.

Now we construct MP based on the payoff structure of agents of type a’.

— Case I: u*(0/) < u® (o). In this case we let MP map each @ to o. MP
Pareto dominates M.

— Case II: u® (0') > u® (o). In this case we let MP select o if all agents
report a, and o’ for any other & MP Pareto dominates M. Note that MP
is identical to M for all reports except the one where all agents report a.

While the impossibility results earlier in this paper were based on a violation
of Characteristic 2 of MOMs alone, here the impossibility comes from not being
able to satisfy Characteristics 1 and 2 together. a0

We use the strict MOM concept here rather than the Pareto MOM concept,
because we cannot assert that u®(o’) < u®(0) necessarily in the Pareto context.
Both our possibility results and this impossibility result have used the dominant
strategy solution concept. This implies the strongest possibility, but the weakest
impossibility. Here, our requirement for dominant strategy manipulability avoids
issues with degenerate special cases.
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We can circumvent the above impossibility by moving to the affine welfare
objective. Note that for an anonymous mechanism, the outcome-specific mech-
anism utility function m(-) can depend only on the distribution of types, rather
than the identities of the agents reporting those types.

Proposition 8. There exist dominant-strateqy anonymous multi-agent strict
MOMs with the objective of affine welfare mazximization, even for symmetric
agents.

Proof. We provide a constructive proof with the same structure as Proposition 6,
but now let the payoff matrices be as follows (the left matrix is for type a and
the right matrix for type a’).

Report| a’ | a Report| a’ | a
22011 a |44]1.3
a 1,10,0 a 3.1[0,0

Let «; = 1 for all 4, and let the mechanism’s additional payoff, m(-), be
{0,3,3,5} for outcomes o; through o4, respectively. Note that the row and
column agents are symmetric (the payoff matrices are symmetric) and that
m(o2) = m(o3). The dominant strategy is for every agent to report type a'.
Therefore this mechanism has truthful analogue M7, the mechanism that always
chooses o07.

We now show that M; is Pareto undominated among truthful mechanisms.
First, note that M; maximizes the objective when both agents have type a'.
It can be shown that (using a construction akin to the last table in the proof
of Proposition 6) that due to agent incentives to deviate, any truthful mecha-
nism that would dominate M; must map all reports to o;. Thus M; is Pareto
undominated among truthful mechanisms.

The manipulation-optimality of the mechanism defined by the payoff matrices
above comes from noting that whenever agents of type a fail to report o', affine
welfare is strictly higher. ad

3 Conclusions and future work

The strategic equivalence of manipulable and non-manipulable mechanisms—
captured by the revelation principle—does not mean that every manipulable
mechanism is automatically flawed. It is well-known that agents often fail to
play their optimal manipulations in mechanisms due to computational limita-
tions or various flavors of incompetence and cognitive biases. Yet it is difficult to
predict how such game-theoretically irrational agents will act (or which partic-
ular equilibrium, among many, each agent will play). We studied the notion of
manipulation-optimal mechanisms: mechanisms that are undominated by truth-
ful mechanisms when agents play fully rationally, and do better than any truth-
ful mechanism if any agent fails to play rationally in any way. This enables the
mechanism designer to do better than the revelation principle would suggest,
and obviates the need to predict agents’ irrational behavior.
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For the general setting, we showed that manipulation optimality is limited
to mechanisms that have at most one manipulable type per agent. We also
proved a host of other impossibility and possibility results for the existence of
manipulation-optimal mechanisms for a variety of settings and mechanism design
objectives. In particular, the possibility result for strict MOMs in the multi-agent
social welfare maximization setting was very surprising. However, the overall
impression was one of broad impossibility. Thus, our results suggest that in
many settings there is a “cost of manipulability”: implementing a manipulable
mechanism inherently exposes the designer to achieving an unnecessarily poor
result when agents do not perform optimally.

Manipulation-optimal mechanisms open an avenue for numerous forms of
future research. For one, it would be interesting to study manipulation optimality
under other objectives, such as notions of fairness. As another direction, we
plan to explore whether automated mechanism design [8] can be used to design
manipulation-optimal mechanisms. Given priors over types (and perhaps also
over behaviors), it may be possible to ignore incentive compatibility constraints
and design manipulable mechanisms that yield higher mechanism utility.
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