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Abstract

The preferred treatment for kidney failure is a trans-
plant; however, demand for donor kidneys far outstrips
supply. Kidney exchange, an innovation where will-
ing but incompatible donor-patient pairs can exchange
organs—via cycles and altruist-initiated chains—
provides a life-saving alternative to long waiting lists for
deceased-donor organs. Typically, fielded exchanges act
myopically, considering only the current pool of pairs
when planning the cycles and chains. Yet kidney ex-
change is inherently dynamic, with participants arriv-
ing and departing. Also, many planned exchange trans-
plants do not go to surgery due to various failures. Thus,
it is important to consider the future when matching.
Motivated by our experience running the computational
side of the US nationwide kidney exchange, we present
FUTUREMATCH, a framework for learning to match in
a general dynamic model. We validate FUTUREMATCH
on the real nationwide exchange data. Not only does
dynamic matching result in more expected transplants
than myopic matching, but also even dynamic matching
under economically inefficient objectives that enforce
equity can result in statistically significant increases in
social welfare over efficient myopic matching.

Introduction

Chronic kidney disease is a life-threatening health issue that
affects millions of people worldwide; its societal burden is
likened to that of diabetes (Neuen et al. 2013). Damage from
kidney disease can cause irreparable loss of organ func-
tion and, eventually, complete kidney failure. Such failure
requires either continual dialysis or an organ transplant to
maintain life.

The preferred treatment for kidney failure is transplan-
tation. However, the demand for donor kidneys is far
greater than supply. In the US alone, the waiting list for
a kidney transplant had 100,175 patients as of April 21,
2014 (UNOS). Demand is increasing: for example, 36,397
people were added to the US national waiting list in 2013,
while only 16,415 left it due to receiving a kidney.

Patients can receive a transplant organ from either a de-
ceased or living donor. Roughly two thirds of transplanted
kidneys are sourced from cadavers, while one third come
from living donors. Patients who are fortunate enough to find
a willing living donor must still contend with compatibility
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issues like blood type, tissue type, and other medical or lo-
gistical factors. If a willing would-be donor is incompatible
with a patient, the kidney cannot be transplanted.

Kidney exchange (Rapaport 1986) is a recent innovation
that allows patients to swap willing but incompatible donors.
Figure 1 shows a graphical view of a pool consisting of three
patient-donor pairs, where an arrow from pair ¢ to pair j
means the patient at j is compatible with the donor at i. Also
shown is a donor without a paired patient who is willing
to donate a kidney altruistically. The basic kidney exchange
problem is then to recommend a “good” set of organ swaps.

Figure 1: Example kidney exchange pool with three patient-
donor pairs and one altruistic donor.

In this paper, we concentrate on balancing two
objectives—efficiency and fairness—in dynamic kidney ex-
change, where the future composition of the kidney ex-
change pool is explicitly considered during the optimization
process.! In terms of efficiency, we are interested in maxi-
mizing the total number of transplants performed over time.
As in many healthcare applications, emphasizing overall ef-
ficiency can come at disproportional cost to certain classes
of patients; thus, we also consider fairness, where “hard-to-
match” patients are given varying levels of preference during
the matching process.

Motivated by our experience running the computational
side of the United Network for Organ Sharing (UNOS) US
nationwide kidney exchange, which has grown to include
133 transplant centers since its inception in Oct. 2010, we
present FUTUREMATCH, a general framework for learning
how to match in dynamic environments. To our knowledge,
FUTUREMATCH is the first data-driven learning framework
for complex (i.e., where the goal is more complicated than
just pairing up vertices) online matching. We validate the
framework on real data drawn from the nationwide ex-
change. We find that using FUTUREMATCH even with eco-
nomically inefficient objectives—Ilike maximizing the match

'This workshop paper summarizes recent work (Dickerson,
Procaccia, and Sandholm 2014; Dickerson and Sandholm 2014).



size subject to equity constraints—results in significantly
higher social welfare than efficient but myopic matching.

Kidney Exchange Model

We begin by overviewing the standard computational model
for kidney exchange, which encodes a kidney exchange pool
as a directed compatibility graph G = (V, E) by construct-
ing one vertex for each patient-donor pair in the pool. An
edge e from v; to v; is added if the patient in v; wants the
donor kidney of v;. A paired donor is willing to give her
kidney if and only if the patient in her vertex v; receives a
kidney. The weight w, of an edge e represents the utility to
v; of obtaining v;’s donor kidney.

A cycle c in the graph G represents a possible kidney
swap, with each vertex in the cycle obtaining the kidney of
the previous vertex. If ¢ includes k patient-donor pairs, we
refer to it as a k-cycle. For example, the compatibility graph
in Figure 1 includes two possible cycles: a 2-cycle between
vertex v; and vy, and a 3-cycle consisting of vertices v;, v;,
and vg. In kidney exchange, cycles of length at most some
small constant L are allowed—all transplants in a cycle must
be performed simultaneously so that no donor backs out af-
ter his patient has received a kidney but before he has do-
nated his kidney. In most fielded kidney exchanges, includ-
ing the United Network for Organ Sharing (UNOS) nation-
wide kidney exchange, L = 3 (i.e., only cycles of length at
most 3 are allowed).

Fielded kidney exchanges gain great utility through the
use of chains (Roth et al. 2006; Rees et al. 2009). Chains
start with an altruistic donor donating his kidney to a pa-
tient, whose paired donor donates her kidney to another pa-
tient, and so on. The compatibility graph in Figure 1 in-
cludes four possible chains: (a,v;), {a,v;,v;), (@, v;, vg),
and (a, v, v;, vx). Chains can be (and typically are) longer
than cycles 1n practice because it is not necessary to carry
out all the transplants in a chain simultaneously. There is a
chance that a bridge donor backs out of his/her commitment
to donate—which has happened (albeit rarely) already in the
United States. Cycles cannot be executed in parts because if
someone backs out of a cycle, then some pair has lost a kid-
ney (i.e., their “bargaining chip”). In contrast, if someone
backs out of a chain, no pair has lost their bargaining chip
(although it is unfortunate that the chain ends).

A matching M is a collection of disjoint cycles and chains
in the graph G. The cycles and chains must be disjoint be-
cause no donor can give more than one of her kidneys. Given
the set of all legal matchings M, the clearing problem in
kidney exchange is to find a matching M™ that maximizes
some utility function v : M — R. Formally:

M™ = argmax u(M)
MeM

The standard clearing problem for finite cycle cap L > 2
is NP-hard (Abraham, Blum, and Sandholm 2007). Abra-
ham, Blum, and Sandholm (2007) took the first serious com-
putational step toward solving the kidney exchange problem
by providing a specialized branch-and-price-based (Barn-
hart et al. 1998) integer program solver; subsequent work
by Dickerson, Procaccia, and Sandholm (2013; 2014) has
increased solver speed and generality. We use an adapted
version of that clearing algorithm as the batch clearing algo-
rithm module in this work.

Three Sample Utility Functions

In fielded kidney exchanges, one typically finds the maxi-
mum weighted cycle cover (i.e., u(M) = > 1/ D e We).
This utilitarian objective can favor certain classes of patient-
donor pairs while marginalizing others, a phenomenon that
we explore—and help alleviate—in this paper.

The medical and legal communities in kidney exchange
are concerned about a wide variety of match characteristics.
In our experience, the most frequently discussed include
the number of overall matches, the number of overall trans-
plants, the quality of transplants, and the preference applied,
if any, to specific subgroups in the exchange (children, sensi-
tized patients, underrepresented ethnicities). Other concerns
might include some sort of equitable treatment between par-
ticipating transplant centers, minimizing legal exposure, and
fair compensation.

In this paper, we consider two different kidney exchange
models—deterministic, where post-algorithmic match fail-
ures are not quantified in the optimization problem and
failure-aware, where they are—and three formal matching
objectives in each of the two models:

1. MAXCARD: Maximize the total number (i.e., cardinality)
of patients who are algorithmically matched (in the deter-
ministic model) or receive transplants in expectation (in
the failure-aware model);

2. MAXCARD-FAIR: Maximize the total number of pa-

tients who are algorithmically matched (in the determin-
istic model) or receive transplants in expectation (in the
failure-aware model), where “marginalized” patients are
weighted in the objective by some constant factor /5 more
than others; and

3. MAXLIFE: Maximize the total time algorithmically-

matched (deterministic) or transplanted (failure-aware)
donor organs will last in patients.

Each of these objectives amounts to setting weights
on edges in the input graph (e.g., Figure 1). We give
edge weighting algorithms for the MAXCARD and MAX-
CARD-FAIR objectives.> The MAXCARD-FAIR objective
can viewed as a generalized form of MAXCARD (that is,
MAXCARD is just MAXCARD-FAIR with an empty set of
vertices who are preferred by the objective).

Deciding which class of vertices are preferred is a com-
plex ethical and medical decision. We use two common pref-
erence criteria in this paper: pediatric status and sensitiza-
tion. Children (in the US, those who are under age 18) are
typically treated preferentially in medical systems; we fol-
low that rule here. For kidney exchange it has explicitly
been articulated that such pediatric patients should be pre-
ferred not only because they have a lot of life left (barring
their kidney disease) but also because having poor kidney
function stunts growth. Some patients are highly sensitized,
which means they are extremely unlikely to be medically
compatible with a random organ. For these patients, find-
ing a kidney is difficult (UNOS). The percentage of highly-
sensitized patients in fielded kidney exchanges is high; over
60% of the patients in the UNOS kidney exchange are highly
sensitized (Kidney Paired Donation Work Group 2013).

’Due to space constraints, we guide the reader to §3.2.2 of
Dickerson and Sandholm (2014) for a derivation of the MAXLIFE
edge weighting function, which learns a match quality metric from
historical US data between 1987 and mid-2013.
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Figure 2: The FUTUREMATCH framework.

V]| =300 |V|=400 [V|=500 |V|=600 |V|=700 [V]|=800 |V|=900
Gain _ p [ Gain  p [ Gain p [ Gain  p [ Gain p [ Gain p [ Gain p
MAXCARD +2 v +4 v +5 v +6 v | 410 Vv | +11 v/ | +13 /
MAXCARD-FAIR, 5 = 1 +1 4 +4 4 +6 v +8 v +9 v +11 v | +12  /
MAXCARD-FAIR, § = 2 +1 +2 v +3 v +3 v +5 v +6 v +10 v

MAXCARD-FAIR, § = 3 +1 +0 +3 v +1 +1 v +3 v +2

MAXCARD-FAIR, =4 -1 +1 +1 +1 +3 v +3 +2

MAXCARD-FAIR, 5 =5 +0 +0 +1 +1 +1 +2 +3
MAXLIFE +2 v +3 v +6 v +8 v +7 v | +11 7/ +9 v

Table 1: Median gains in expected total number of transplants under FUTUREMATCH. A v represents statistical significance

(Wilcoxon signed-rank test, p < 0.01).

V]| =300 |V|=400 [V|=500 |V|=600 |V|=700 [V]|=800 |V|=900
Gain _p [ Gain  p [ Gain p [ Gain  p [ Gain p [ Gain  p [ Gain p
MAXCARD -2 X -2 X -3 X -4 X -6 X -7 X -9 X
MAXCARD-FAIR, 5 = 1 -1 X -1 X -1 X -2 X -3 X -3 X -5 X

MAXCARD-FAIR, = 2 +0 +0 +1 v +1 v +2 v +1 +1
MAXCARD-FAIR, § = 3 +1 v +1 v +3 v +3 v +3 v +5 v +4 v
MAXCARD-FAIR, =4 +1 v +2 v +3 v +4 v +4 v +5 v +5 v
MAXCARD-FAIR, 5 =5 +1 v +2 v +3 v +4 v +5 v +7 v +5 v
MAXLIFE -1 X -3 X -3 X -5 X -6 X -6 X -9 X

Table 2: Median gains in expected total number of marginalized transplants under FUTUREMATCH. A v or X represents
statistically significant gains or losses, respectively (Wilcoxon signed-rank test, p < 0.01).

While defining fairness is a contentious issue in social
science, a recent paper by Dickerson, Procaccia, and Sand-
holm (2014) formalizes two natural “fair” utility functions
and shows how to optimize either of these functions in the
deterministic or failure-aware static models of kidney ex-
change. We adapt the weighted fairness rule from that paper
to FUTUREMATCH. The weighted fairness rule adjusts edge
weights by some re-weighting function A : F — RT. A
simple example re-weighting function is multiplicative:

{ (1+ B)we

We

8 - if e ends in Vs
A7(e) = otherwise

Here, Vy C V is the set of vertices with marginalized
patients. Intuitively, for some 5 > 0, this function scales the
weight of edges ending in marginalized vertices by (1 + 3).
For example, if 3 = 1.5, then the optimizer will value edges
that result in a marginalized patient receiving a transplant at
250% of their initial weight (possibly scaled by factors like
edge failure probability or chain position).

For any M € M, let M’ be the matching such that every
edge e € F has augmented weight A”(e). Then the MAX-
CARD-FAIR utility function ua is defined in terms of the

utilitarian MAXCARD utility function u applied to the aug-
mented matching M’, such that ua (M) = w(M’). In our
experiments, we vary the parameter 3 to empirically quan-
tify its effects on each of the three objective functions.

The FUTUREMATCH Framework

We are interested in learning from demographically accurate
data how to match in the present such that some overarch-
ing objective function is maximized over time. Scalability is
important: heavy offline statistics can be computed and peri-
odically updated, but the fielded clearing algorithm must run
quickly (within minutes or at most hours).

Figure 2 depicts the FUTUREMATCH framework. A do-
main expert (e.g., a committee of medical and legal profes-
sionals) begins by describing an overall objective function
for the exchange. Even measuring this objective can be dif-
ficult: for example, if the goal is to maximize the number of
days added to patients’ lives via kidney transplantation, then
calculating the relative quality of a proposed match requires
knowing some notion of utility for each edge—representing
a potential transplant—in the compatibility graph. We learn
this edge weight function w : £ — R from data, and gave



examples objective functions in the previous section.

The learned weight function w is then fed into a param-
eterized instance generator that mimics the underlying dis-
tribution. This generator in turn feeds training and test sets
into a system for learning the potentials of various element
classes in the compatibility graph. Intuitively, given an ele-
ment 6 (e.g., vertex, edge, cycle, or chain type), a potential
Py € R quantifies the expected utility to the exchange of
that element in the future (Dickerson, Procaccia, and Sand-
holm 2012). Potentials are combined with w to quantify an
edge-specific quality rating. In our experimental results, we
learned potentials® for the combinations of different blood
types for patient-donor pairs under each of the three objec-
tives defined earlier.

Finally, the fielded clearing algorithm incorporates the

combined weight function w and set of potentials Pg into its
myopic weighted matching algorithm. For example, to com-
bine patient-donor blood type potentials with the learned
weight function w, we could use a function f,, : £ — R
such that f,,(e) = w(e) - (1 — Px — Py ), with X the donor
blood type at e’s source and Y the patient blood type at e’s
sink. This incorporation of potentials into the myopic algo-
rithm comes at very low or no cost to the runtime of the
clearing algorithm; indeed, the final “potential-aware” input
graph is simply a re-weighted version of the original com-
patibility graph, using the weights that encode the future.
A Realistic Simulator. When learning potentials offline, it
is important to mimic closely the behavior of the fielded
exchange online. If the distribution of incoming potential
types is significantly different than expected, so too will be
the estimates of potentials. We built a dynamic simulator of
kidney exchange using data from the UNOS exchange (and
APD (Ashlagi et al. 2011)). This work significantly extends
that of Dickerson, Procaccia, and Sandholm (2013), which
defined and experimentally evaluated a model of the evo-
lution of dynamic kidney exchange. Critically, they did not
perform dynamic optimization in that model—just myopic
optimization applied sequentially in a dynamic model. They
also sampled from a basic generator that is no longer ac-
cepted in the kidney exchange community (Saidman et al.
2006), while we sample from an accurate distribution—the
historical UNOS exchange pool.

Our simulator works as follows. New pairs and altruis-
tic donors enter the pool at each time period, while some
leave the pool due to a variety of non-exchange-related rea-
sons (e.g., becoming too ill to transplant). A matching is per-
formed at each time period, which results in a set of matched
pairs leaving the pool for ¢ > 0 time periods. This reflects
the length of time required to medically and logistically ver-
ify the implementability of the planned match. Matched pa-
tients then either leave the pool permanently after success-
fully receiving a kidney, or return to the pool after failing to
receive a kidney. We set the relevant entrance and exit proba-
bilities based on the real UNOS kidney exchange data (Kid-
ney Paired Donation Work Group 2013).

A matching is determined at each time period based on
either a deterministic or failure-aware clearing algorithm,
which we briefly describe here. Both models compute an op-
timal matching M* = argmax;c \, u(M), where u(M) =
> cear u(c). Here, u(c) represents the utility of a cycle or
chain c. In the deterministic model, u(c) = »_ .. fuw(e):

3 Again, due to space constraints, we guide the reader to §3.3
of Dickerson and Sandholm (2014) for a complete derivation of
potentials and an explanation of the potential learning system.
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that is, the sum of the weights of the constituent edges in
a cycle or chain subject to the weight function w and po-
tential mapping f,,. The deterministic model is suscepti-
ble to edge failures. For example, if a single edge in a 3-
cycle fails, that entire cycle fails to execute. Similarly, if
the third edge in a long chain fails, then the tail of that
chain (after the failed edge) is cut off. Let ¢. € [0,1]
be the probability that an edge succeeds. Then the failure-
aware model defines the discounted utility for a cycle c as

u(c) = [Zeec fw(e)] . [HeEC qe], and the discounted util-

ity for a chain ¢ = (eg, €1,...,€5_1) as
k—1 i—1 i—1 k—1 k—1
ule) = > (1=a) > fule) [Tar| + | D fule) T1 qz} :
i=1 =0 =0 i=0 i=0

Results

We compare FUTUREMATCH against a baseline of myopic
deterministic matching under each of the objectives. Con-
servatively, statistical significance was determined using the
Wilcoxon signed-rank test, which is a nonparametric alter-
native to the paired t¢-test. Table 1 shows the median ex-
pected gain in the overall number of transplants from using
FUTUREMATCH under each of the objectives. Each column
labeled |V'| = k corresponds to a simulation over k patient-
donor pairs and altruists sampled as described earlier.

Table 1 shows that the two objectives that do not re-
gard fairness—MAXCARD and MAXLIFE—significantly
beat myopic deterministic matching under the same objec-
tive. Interestingly, so too does MAXCARD-FAIR for low
values of 8. As (3 increases, the gain in overall number of
transplants decreases (although it never drops below the de-
terministic matching algorithm with significance). This de-
crease in overall gain is incurred because marginalized pa-
tients, who (i) generally have lower in-degree, and (ii) have a
higher probability of match failure, are being weighted more
than easier to match pairs.

Table 2 explores this tradeoff between fairness and ef-
ficiency explicitly. For the fairness-agnostic and lightly
fairness-preferring objectives, a relative loss of a few
marginalized transplants is realized—although this loss of
marginalized transplants is always less (typically much less)
than the overall gain in transplants. Increasing the opti-
mizer’s preference for marginalized patients results in statis-
tically significant gains in the number of marginalized trans-
plants at no statistically significant loss in the overall ex-
pected number of transplants. In fact, for a middle ground
around § = 2, FUTUREMATCH often shows statistically
significant gains in both overall transplant and marginalized
transplant counts—a clear win over myopia.

Our experiments support the following conclusions:

e FUTUREMATCH under MAXCARD and MAXCARD-
FAIR with low § = 1 results in a significant increase in
the overall number of transplants compared to myopic, at
the cost of a smaller decrease in the number of marginal-
ized transplants.

e FUTUREMATCH under MAXCARD-FAIR with high j3 re-
sults in a significant increase in marginalized transplants,
at no cost to the overall number of transplants under my-
opic matching.

e For a middle ground around 5 = 2, FUTUREMATCH can
result in both more overall expected transplants and more
marginalized transplants.

We note that we are not making policy recommenda-
tions; rather, we are giving a proof of concept that the FU-



TUREMATCH framework can effectively balance conflicting
wants in an exchange. Indeed, the exact fairness quantifica-
tion 3 that most effectively balances efficiency and fairness
is a function of the underlying graph dynamics, which ver-
tices are considered marginalized, and the ethical and legal
wants of an exchange. All of these dimensions can be effec-
tively encoded and validated through FUTUREMATCH.
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