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Abstract. Many recent applications of interest involve self-interested
participants. As such participants, termed agents, may manipulate the
algorithm for their own benefit, a new challenge emerges: The design
of algorithms and protocols that perform well when the agents behave
according to their own self-interest.

This led several researchers to consider computational models that are
based on a sub-field of game-theory and micro-economics called mecha-
nism design.

This paper introduces this topic mainly through examples. It demon-
strates that in many cases selfishness can be satisfactorily overcome,
surveys some of the recent trends in this area and presents new challeng-
ing problems.

The paper is mostly based on classic results from mechanism design as
well as on recent work by the author and others.

1 Introduction

A large part of research in computer science is concerned with protocols and
algorithms for inter-connected collections of computers. The designer of such an
algorithm or protocol always makes an implicit assumption that the participating
computers will act as instructed — except, perhaps, for the faulty or malicious
ones. While this assumption seems obvious for “traditional” applications pro-
grammed by a single entity, it cannot be taken for granted when considering, for
example, applications which are intended to operate on the Internet. Many of
these applications involve self-interested participants (e.g. individual users and
private companies). Such participants have their own goals and preferences and
are likely to follow their own self interest. Algorithmic problems that stem from
such applications give rise to a new and exciting challenge: The design of algo-
rithms and protocols that perform well when the participants behave selfishly.

Applications that involve self-interested parties emerge from several domains:
Participants in an electronic trade pursue their personal profit, users of a wide
area network want their own traffic to be optimized and software agents are
self-interested by definition. Problems that stem from such applications are es-
sentially different from traditional algorithmic problems. To make this difference
concrete, consider an imaginary system aimed to utilize resources on the Inter-
net:
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Ideally, such a system would function like a regular distributed system. It
would efficiently allocate CPU-intensive jobs to CPU-servers, store data in com-
puters with free disk space, extract necessary information from various available
databases and combine the services of the many software packages found on the
Internet. Beyond many difficult coordination and optimization problems which
need to be overcome, such a system faces a major novel challenge: All these
resources belong to self-interested parties (such as private companies or institu-
tions) and there is no a-priory reason that these parties will allow the system to
freely use them, in particular when they are costly. The system may, thus, need
to provide some motivation for these owners to “play along”. Supplying such
motivation is likely to involve some sort of payment. Payment, real or virtual,
carries however problems of its own. A payment model which is not carefully
designed can easily lead into a situation where manipulating the system’s algo-
rithms and protocols can significantly increase the profits of the participants (for
example, participants may pretend that they are not capable of performing tasks
which are not profitable enough). Such manipulations might severely damage the
efficiency of such a system, preventing it to accomplish the purposes which it
was designed for. As we shall see, the algorithmic and the monetary aspects of
protocols for such systems are tightly coupled. Any solution for an algorithmic
problem that involves selfish participants should simultaneously deal with these
two aspects. Solving such problems is therefore a difficult and exciting challenge!

Mechanism design is a sub field of game theory and micro economics which
deals with the design of protocols for rational agents. Generally, a mechanism
design problem can be described as the task of selecting from a collection of feasi-
ble games, a game which will yield desirable results for the designer. Specifically,
the theory has focused on problems where the goal is to satisfactorily aggregate
privately known preferences of several agents towards a “social choice”.

An application of this theory within the framework of computer science is by
no means straight-forward. There are two main reasons for that:

Different goals Traditionally, mechanism design theory was developed for ap-
plications that arise from economics. Naturally, problems that stem from
computer science applications have different goals and assumptions.

Computational complexity Mechanism design theory ignores the computa-
tional aspect of the protocol. This turns essentially all solutions proposed by
this theory to be impractical for computationally complex problems.

In recent years, problems which lie on the border of computer science and
mechanism design were studied by several researchers. Numerous fundamental
result however are yet to be discovered.

This paper is intended to serve as an introduction for this topic. It demon-
strates that in many cases selfishness can be satisfactorily overcome, surveys
some of the recent trends in this area and presents new challenging problems.
The paper is mostly based on classic results from mechanism design as well as
on recent work by the author and others.



The rest of this paper is organized as follows: Sections 2 and 3 exemplify mecha-
nism design problems that arise in computer science and demonstrates that they
can be handled. Section 4 formally defines mechanism design problems and their
valid solutions, describes the celebrated VCG mechanisms and shows some of
their properties. Section 5 discusses the computational aspects of mechanisms
focusing on the important problem of combinatorial auctions. Section 6 consid-
ers problems which cannot be addressed by the standard tools of mechanism
design theory. Section 8 surveys recent work on the intersection between com-
puter science and mechanism design and section 9 describes some fundamental
open issues.

2 A Simple Routing Problem

We begin with a problem which has a very simple combinatorial structure:

Consider a communication network consisting of k¥ > 1 parallel links between
two points s and t. Each link e is owned by a different agent (e.g. a company)
and the cost ¢, of sending a message along this link is privately known to its
owner.

A natural requirement from a “traditional” network is to be efficient, i.e.
to send each message from s to ¢ along the cheapest link. Clearly, such effi-
ciency cannot be guaranteed in a network where resources are privately owned.
We would like however, to construct a protocol that will reach efficiency under
reasonable assumptions on the agents’ behavior.

2.1 Some Naive Solutions

First, consider a “traditional” algorithmic approach for such a problem: The
algorithm first requests from each agent to report its cost. It then chooses the
link with the minimal declared cost and routes the message along that link.

Although this approach is “correct” from an algorithmic perspective, it is
likely to fail. Clearly, a rational agent will try to avoid being chosen by declaring
a very high cost. Since such a strategy has nothing to do with the real cost of
the agent, the chosen link will be arbitrary.

It seems therefore unavoidable that a mechanism (a protocol) for such a
problem will also be able to pay the agents. Such payment however needs to be
done carefully.

Consider for example a mechanism which is identical to the previous one
except that it pays the chosen agent a fixed amount (say $100) per message.
Such a mechanism may have two potential problems: First, all agents with costs
which are higher than $100 are likely to declare arbitrarily high values. As this
may include all agents, a problem similar to the previous might occur. Second,
agents with costs which are lower than $100 are likely to declare arbitrarily small
values. This is likely to reduce the efficiency of the network.

An auction may seem a better idea: each agent will declare her cost d. ,
the mechanism will select the link with the lowest declared cost and pay the



corresponding agent d. units of currency. Note however that an agent can gain
money only if she declares a cost which is higher than her actual cost. Her
optimal declaration depends heavily on the declarations of the others. As even
the costs of the other agents are not known to her, it is hard to give a convincing
prediction of what will happen!.

Another possible solution is the following multi-rounded protocol: In each
round j the mechanism declares a payment p; starting from a low value and
incrementing it. The protocol stops when the first agent accepts the offer. This
agent will be payed the p;, units of currency where j* denotes the last round.
Although such a protocol is likely to make the right decision and route the
message through the cheapest link, it might use a lot of communication. In the
next subsection we’ll see that we can achieve the same result in a single round!

2.2 A Good Solution

Consider the following solution (hereby called a mechanism) to our routing prob-

lem: Each agent is first required to declare its cost. Let d. denote the declaration

of e’s agent. Note that it may be falsified. The mechanism selects the link with

the minimal declared cost (ties are broken arbitrarily) and pays the owner of this

link the minimum among the declared costs of the other agents, i.e. min, . de.
Let us examine some of the properties of this mechanism:

Truthfulness It is not difficult to see that it is always for the benefit of an agent
to declare her true cost to the mechanism. In a game theoretic language,
truth-telling is a dominant strategy. In the literature, a mechanism with this
property is called truthful or incentive compatible. One possible way to prove
the truthfulness of this mechanism is to observe that the selected agent is
payed an amount that equals the mazimal (supremum) declaration that will
still allow her to win. This can be thought of as if the mechanism offers the
agent a payment of 0 if she is not selected and a payment of min. -, der if
she is. These two payments do not depend on the agent’s declaration. The
only thing one must verify is that the agent’s benefit is maximized when she
declares her true cost. This is obvious since a (truthful) agent is selected iff
her costs are lower than the maximal amount that allows her to be selected,
i.e. iff her costs are lower than her payment. A rational agent will therefore
report her true cost to the mechanism.

Participation constraints and zero normalization Another desirable prop-
erty of such a mechanism is that the profit of a truthful agent is guaranteed
to be non-negative. In many cases the agent’s participation is voluntary and
therefore this property is important. In the literature, a mechanism with
this property is said to satisfy participation constraints. We shall say that a
mechanism is zero normalized if an agent who is not selected by the mecha-
nism is always payed zero. In principal, this property implies participation

1 Analysis of such situations under various assumptions do exist in the economic and
game theoretic literature.



constraints except for some degenerate mechanisms. From reasons, similar
to the truthfulness of the proposed mechanism, it is also zero normalized
and in particular satisfies participation constraints.

Specification compatibility The fact that our mechanism is truthful and sat-
isfies participation constraints has a strong influence on the agent’s behavior.
A rational agent will choose to cooperate with the mechanism and to reveal
her true cost to it. When the agents act rationally, our mechanism makes
the right decision and selects the link with the minimal cost. We shall call
a mechanism specification compatible if when the agents report their true
input (cost in our case), the problem’s specification is met.

The proposed mechanism is likely to make the right decision despite the fact
that the “input” of the problem is not known to it and that it is exposed to
agents’ manipulations!

Definition 1. (good mechanism) We say that a mechanism is good if it is
truthful, zero normalized, satisfies participation constraints and is specification
compatible.

Note that the suggested mechanism is very simple in two perspectives. First,
the agents’ dominant strategies are straight-forward. Second, it is a single rounded
protocol. Throughout this paper we shall mostly seek for good mechanisms.

3 A More Complicated Routing Problem

We now complicate the example in section 2 and consider a general network
topology. Formally:

We have a communication network modeled by a directed graph G, and two
special nodes s and t in it. Each link e is owned by a different agent and the
cost ¢, of sending a message along this link is privately known to its owner. The
goal of the mechanism is to find the cheapest path from s to t. We will assume
for simplicity that the graph is bi-connected.

Note that unlike the previous problem, each possible solution may involve
several agents. Despite that, we can construct a good mechanism for this problem
as well.

3.1 A Good Mechanism

The mechanism first requires each agent to report its cost to it. Let us denote
the declaration of an agent that corresponds to a link e by d.. According to
these declarations, the mechanism selects the cheapest path from s to ¢. The
trick is in the payment function: agent e is given 0 if e is not in the chosen path
and pe = dg|e=co — dg|e=o if it is. Here dg|o—o denotes the cost of the cheapest
path which does not contain e (according to the inputs reported), and dgo—o is
the cost of the cheapest path when the cost of e is assumed to be zero (again
according to the reported types).



It is a good exercise to prove the correctness of this mechanisms directly. In
fact, the mechanism is a private case of VCG mechanisms. Their properties will
be proven in section 4.2.

3.2 Further Comments

The proposed mechanism solves this problem in a central fashion requiring all
agents to report directly to it. For many applications, a real distributed mech-
anism is necessary. This is a major open issue which gives rise to many open
problems. For example, what is the influence of the network topology on the
agents’ strategies? How good can a mechanism perform when only local deci-
sions are allowed? Etc.

Many other natural open questions can be asked on such a network. In par-
ticular, several problems emerge when considering settings in which messages
are coming stochastically into the network. This affects both the requirements
from the mechanism and the agents’ strategies.

Finally, the calculation of the payments of the suggested mechanism hinders
an interesting algorithmic problem: Is it possible to do better than calculating
the payment of each agent on the chosen path separately?

4 Mechanism Design

The problems that were presented in the previous sections differ from usual
algorithmic problems in two main aspects. Firstly, the problems’ input was not
accessible to the mechanism but was privately held by the participants. Secondly,
while the goal of the mechanism was to maximize the efficiency of the network,
each participant had a totally different goal which was to maximize her own
profit.

Similar problems has been studied for several decades by economists and
game theorist within the framework of mechanism design theory. Generally, a
mechanism design problem could be described as task of selecting from a col-
lection of feasible games one that will yield results which are desired by the
designer. Specifically, the theory focuses on various variants of the canonical
problem presented in section 4.1. An introduction to this field can be found at
[18, chapter 23].

As we shall see, the previous examples can all be described as sub-cases
of this canonical problem. However, many additional questions emerge when
applying mechanism design theory to applications that stem from computer
science applications.

4.1 Mechanism Design Problems And Solutions

In this section we shall formally define the canonical problem of mechanism
design and its valid solutions.



Definition 2. (The Canonical Problem) A mechanism design problem is
described by the following:

1. A finite set O of allowed outputs.

2. Each agent i = (1,...,n) has a real function vi(o € O) called her valuation
or type. This is a quantification of her benefit from each possible output o
in terms of some common currency. v is privately known to agent i. The
space V' of all possible valuation functions is called the type space of the
agent.

3. If the mechanism’s output is o and in addition the mechanism hands an
agent p* units of this currency, then her utility u® equals® v'(o) + p*. This
utility is what the agent aims to optimize.

4. The goal of the mechanism is to select an output o € O that maximizes the
total welfare g(v,0) = >, v%(0).

Let us try to present the example of section 3 within the framework of the
canonical problem. The set of allowable outputs contains all paths from s to t.
The valuation of agent e from each possible output o, equals —c, if e is in the
chosen path o, or 0 otherwise. The utility of each agent equals the sum of her
valuation from the chosen output and her payment. The goal of the mechanism is
to select a path with minimal total cost. Clearly, such a path maximizes the total
welfare. This problem can therefore be presented as a sub-case of the canonical
problem.

In a direct revelation mechanism, the participants are simply asked to reveal
their types to the mechanism. Based on these declarations the mechanism then
computes the output o and the payment p* for each of the agents.

Definition 3. (A mechanism) A (direct revelation) mechanism is a pair m =
(k,p) such that:

— The output function k(.) accepts as input a vector w = (w',...,w™) of
declared valuation functions and returns an output k(w) € O.
— The payment function p(w) = (p'(w),...,p"(w)) returns a real vector. This

is the payment handed by the mechanism to each of the agents.

A revelation mechanism computes its output according to the type declara-
tions of the agents. As agents may lie to the mechanism, it should be carefully
designed such that it will be for the benefit of each agent to reveal her true type
to the mechanism.

Notation: We denote the tuple (a',...a’~! @'t ..., a") by a~ . We let (a%,a™?)
denote the tuple (al,...,a").

Definition 4. (truthful mechanism) A mechanism is called truthful if truth-
telling is a dominant strategy. Le. for every agent i of type v* and for every type
declaration w=" for the other agents, the agent’s utility is maximized when she
declares her real valuation function v'.

2 This is called the quasi-linearity assumption.



A simple well known observation called the revelation principle [18, page 871]
greatly facilitates the analysis of mechanism design problems. It states that in
order to prove or disprove the existence of good mechanisms for a given problem,
one can consider only truthful revelation mechanisms.

4.2 VCG mechanisms

Arguably the most important result in mechanism design is the observation
that the canonical problem can be solved by a class of mechanisms called VCG
(named after Vickrey, Clarke and Groves) [36, 1, 8]. Intuitively, these mechanisms
solve the canonical problem by identifying the utility of truthful agents with the
declared total welfare.

Definition 5. (VCG mechanism) A mechanism m = (k,p) belongs to the
VCG family if:

— k(w) mazimizes the total welfare according to w. . .

— The payment is calculated according to the VCG formula: p*(w) =3~ w’ (k(w))+

hi(w=%) (h¥() is an arbitrary function of w™¢).

Proof. Assume by contradiction that the mechanism is not truthful. Then there
exists an agent i of type v’, a type declaration w~* for the other agents, and w’ #
v such that v’ (k((v', w™ "))+, ; w (k((v', w™*)))+h (w™") < v (k((w',w™")))+
> W (E((w',w™"))) + hi(w™*). Let o = k((v*,w™")) denote the chosen out-
put when the agent is truthful and let o' = k((w*,w™*)). The above inequality
implies that g((v, w=%),0) < g((v*,w™*),0"). This contradicts the optimality of
k. a

It is worth notify that weighted versions of this method are possible as well
(e.g. [28] [26]). To date, VCG is the only general known method for the construc-
tion of truthful mechanisms. Roberts [28] showed that under certain conditions,
VCG mechanisms are indeed the only truthful mechanisms. These conditions
however are not satisfied for many natural problems.

Clarke’s Mechanism: Clarke’s mechanism is a VCG mechanism which satis-
fies participation constraints and zero-normalization. (It is not feasible to ev-
ery mechanism design problem, but it is for most of the natural ones.) The
mechanism chooses hf(w~%) to be the maximal welfare that can be achieved if
agent ¢ would choose not to participate. Formally if there exists a type v’ such
that for each v=¢ g((v?,v™%), k((v%,v™%))) < g((vi,v7%), k((v},v™%))), then the
mechanism defines hi(w=%) = g((v?,v~%), k((v},v™?))). For the example of sec-
tion 3 we can define v’ as an infinite cost. In this case the output algorithm
never selects a path that goes through this agent’s link. The mechanism sat-
isfies participation constraints as the total utility of a truthful agent i equals
g((vh,v78), k((v',v™%))) — g((v?,v™%)) > 0. It is not difficult to see that the zero
normalization condition is also satisfied. The reader is welcome to verify that all
the good mechanisms presented so far are Clarke mechanisms.

We shall comment again that an efficient computation of the agents’ pay-
ments is an interesting algorithmic challenge.



5 The computational aspect

The theory of mechanism design does not take into consideration the compu-
tational complexity of the mechanism. In recent years, mechanisms have be-
come quite complicated, requiring implementation on computer systems. Con-
sequently, the necessity of a theory that will regard both the computational and
the game theoretic aspects of mechanisms became clear to many researchers. In
this section we bring as an example, the important problem of combinatorial
auctions and briefly survey works that are trying to cope with its computational
difficulty.

5.1 Combinatorial Auctions

The problem of combinatorial auctions has been extensively studied in recent
years (see e.g. [16] [32] [7] [9] [24] ). The importance of this problem is twofold.
First, several important applications rely on it (e.g. the FCC auction sequence
[19] that raised Billions of dollars). Second, it is a generalization of many other
problems of interest, in particular in the field of electronic commerce.

The problem: A seller wishes to sell a set S of items (radio spectra licenses,
electronic devices, etc.) to a group of agents who desire them. Each agent i has,
for every subset s C S of the items, a number v’(s) that represents how much s
is worth for her. We assume that v?(.) is privately known to the agent.

We take two standard additional assumptions on the type space of the agents:

No externalities The valuation of each agent depends only on the items allo-
cated to her, i.e. {v'(s)|s C S)} completely represents the agent’s valuation.

Free disposal Items have non-negative values. Le if s C ¢ then vi(s) < v'(t).
Also vi(¢) = 0.

Note that the problem allows items to be complementary, i.e. v*(S|JT) >
v'(S)+vi(T) or substitutes, i.e. v*(S|JT) < v*(S)+v(T) (S and T are disjoint).
For example a buyer may be willing to pay $200 for T.V set, $150 for a VCR,
$450 for both and only $200 for two VCRs.

When an agent’s payment is p’ for a set of items s, her overall utility is
p' + vi(s?). Note that p’ is always non-positive. This utility is what each agent
tries to optimize. For example, an agent prefers to buy a $1000 valued VCR for
$600 gaining $400 to buying a $1500 valued VCR for $1250.

In a VCG mechanism for such an auction, the participants are first required
to reveal their valuation functions to the mechanism. The mechanism then com-
putes, according to the declarations of the agents, an allocation s that maximizes
the total welfare. The payment for each of the agents is calculated according to
the VCG formula.

Consider however the computational task faced by such a mechanism. Af-
ter the types are declared, the mechanism needs to select, among all possible
allocations, one that maximizes the total welfare. This problem is known to be



NP-Complete. Therefore, unless the number of agents and items is very small,
such a mechanism is computationally infeasible. Note that even the problem of
finding an allocation that approximates the optimal allocation within a reason-
able factor is NP-Complete (under the common complexity assumption that
RP # Co— NP, see e.g. [32,16]).

5.2 Coping With The Computational Complexity Of Combinatorial
Auctions

Several researchers in recent years have considered the computational difficulty of
combinatorial auctions. Many researchers focused on the algorithmic side of the
problem [32,7,9,24,35]. These efforts include various tractable sub-cases where
additional limitations where assumed on the agents’ valuations and also several
heuristics. A truthful mechanism which does not fall into the VCG category was
constructed for a sub-case of combinatorial auction at [16].

A recent paper [27] by Nisan and the author studies VCG mechanisms where
the optimal algorithm is replaced by by a computationally tractable approxima-
tion algorithm or heuristic. The paper shows that it is impossible to construct,
in this method, truthful computationally feasible mechanisms that produce rea-
sonable results for combinatorial auctions as well as for many cost minimization
problems. Since VCG is the only general method known to date for the construc-
tion of truthful mechanisms, there is not much hope for solving mechanism design
problems by truthful mechanisms. The paper introduces a slight relaxation of
the truthfulness called feasible truthfulness. It shows that under reasonable as-
sumptions on the agents, it is possible to turn any VCG-based mechanism into
a feasibly truthful one, using an additional appeal mechanism. The resulting
mechanism also satisfies participation constraints and zero normalization.

The proposed mechanism may also be used to overcome another problem
that emerges from combinatorial auctions — that a full description of the agents’
valuation may also be intractable. Thus, it is not clear how to construct an
“interface” between the agent and the mechanism [24]. For details see [29].

The results of [27] however have not yet been checked experimentally.

6 Beyond The Canonical Problem: Task Scheduling

The problems that we have presented so far are all sub-cases of the canoni-
cal problem and henceforth can be addressed by VCG mechanisms. For many
problems that stem from computer science applications this is not likely to be
the case. First, in many cases, in particular for task allocation problems, the
designer’s goal is dependent, not on agents’ valuations but on other private pa-
rameters such as her capability to perform various tasks. Secondly, even when
such a dependency does exist, the objective of the designer may not be to max-
imize the total welfare.

Nisan and the author studied [26] (a preliminary version appeared at [25]),
the following representative problem:



Task Scheduling: There are k£ tasks that need to be allocated to n agents.
Each agent i’s type is, for each task 7, the minimum amount of time t; in which
she is capable of performing this task. The goal is to minimize the completion
time of the last assignment (the make-span). The valuation of an agent i is the
negation of the total time she has spent on the tasks allocated to her.

The results of this paper refer to three different models — the “classical”
model of mechanism design, a model where the mechanism can use randomiza-
tion and a model where additional natural verification information is available
to the mechanism. In particular the paper shows that when additional verifica-
tion information is available, the problem can be optimally solved. This result
remains true even without the (artificial) assumption that the agent’s valuation
equals the negation of her working time.

Many problems were left open in this paper. In particular it was conjectured
that no classical mechanism can approximate this problem by a factor better
than the number of agents. However, only a basic lower bound of 2 was proven.
The limitations of the model that allows verification are also not known.

7 Revenue Considerations

So far we have treated money only as a mean of motivating the agents to behave
well. For many applications however, revenue is a major concern. Very little is
currently known about the revenue of truthful mechanisms. In this section we
demonstrate that many beautiful open questions can be asked even on a very
simple problem — the allocation of a single object. This section is based on [29].

The Problem: A single object allocation problem is a mechanism design prob-
lem of the following form:

— There are n + 1 possible outputs. An output ¢ > 0 means that the object is
allocated to agent 7. 0 means that the object is not allocated to any agent.
— The type of each agent is any strictly positive number.

We shall call a mechanism for this problem agent-compatible if it is truth-
ful and satisfies zero-normalization and participation constraints. We shall first
characterize these mechanisms.

Definition 6. (proper function) An output function x : R}, — {0,...,n}
is called proper if for every type vector t = t',... t", and an agent i such that
i=x(t), if s* > t* then i = x((s?,t7%)).

In other words if an agent wins the object with type ¢’ she will keep winning
when her type increases.

Definition 7. (implied payment) Let = be a proper function. We say that
a payment function p is implied by =, if —p(t) is 0 when i # x(t) or equals
inf{s|i = z((s*,t7%))} when i = x(t).



In other words ¢ pays zero if she looses or the minimal type that enables her to
win the object. It is not difficult to see that the infimum exists.

Theorem 1. A mechanism for this problem is agent-compatible iff it is of the
form m = (k,p) where:

— k(.) is proper.
— p(.) is implied by k.
O

Given a probability distribution on the type space, there are several interesting
open questions that emerge. Here are a few examples:

— Does a polynomial algorithm that chooses a mechanism that maximizes the
expected revenue exist?

— Given also a risk parameter 0 < r < 1 and a probability p, is it possible
to find a mechanism that in probability at least p generates a revenue of at
least 7 - max; t*?

— For the above questions: Each agent-compatible mechanism defines a boolean
function of the type space (1 means good, e.g. close to the maximum possible
revenue, and 0 means bad). Is the resulting family learnable in the PAC
sense?

8 Work On The Border Of Computer Science And
Mechanism Design

Problems on the border of computer science and mechanism design were studied
by several researchers in recent years. This section briefly surveys these works.

Many researchers studied the problem of combinatorial auctions. This line of
research is surveyed in section 5.1. Other cases where mechanism design models
were applied to computational problems include resource and task allocation
problems [25,39,38], communication networks [5,14,13], multi-agent systems
[30,40,4] and others [37,15,6,34,17]. Several aspects of mechanism design were
recently studied in [22,21,15,33]. The computational aspect of mechanisms for
cost sharing was studied at [5]. This recent paper investigates two ingredients
absent from this work — a distributed model and budget balance requirement.
These two fundamental aspects are surely to play a significant role in future re-
search in this area. The implementation of mechanism design theory for Internet
environments may require new assumptions. This issue is discussed at [31, 21].

Another line of research which is related to mechanism design are models
which are based on markets [6,10,20,23,23,3]. The main difference between
these models and mechanism design is that instead of doing strategic manipula-
tions, the participants are assumed to “honestly response to prices” (i.e. behave
as price-takers).

Problems that stem from electronic commerce have a tight relationship with
mechanism design and game theory and economics in general. Several papers on
these topics can be found at [11,2].



Finally, works in which the author was involved were surveyed in sections 5.1
and 6.

9 Further Research

This paper demonstrates that in many cases it is possible to design protocols
that perform well despite the selfishness of the participants. However, there are
numerous directions for further research. I mention some of the most basic ones:
The computational power of strategy-proof mechanisms is far from being under-
stood, even in the classical model. Probabilistic models and further relaxation of
the concept of dominant strategies are yet to be explored. Concrete connections
between mechanism design and computational complexity are yet to be discov-
ered. Moreover, in practice, mechanisms will have to handle additional issues like
irrationality and collusive behavior of the agents. Issues like revenue maximiza-
tion, risk, and budget balance are very important to many applications. In a lot
of cases, mechanisms will have to be carried out in a ”real” distributed environ-
ment. Finally, solution concepts other than dominant strategy implementation
(e.g. Bayesian Nash) may be considered.

I am certain that all these issues and a lot of others will provide researchers
with many beautiful research problems in the years to follow!

Acknowledgments: I would like to thank Noam Nisan and Inbal Ronen for
comments on earlier drafts of this paper.
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