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Abstract

Ascending price auctions involving a single price path and buyers paying their final bid price cannot
achieve the Vickrey–Clarke–Groves (VCG) outcome in the combinatorial auctions setting. Using a notion
called universal competitive equilibrium prices, shown to be necessary and sufficient to achieve the VCG
outcome using ascending price auctions, we define a class of ascending price auctions in which buyers bid
on a single price path. Truthful bidding by buyers is an ex post Nash equilibrium in such auctions. By giving
discounts to buyers from the final price, the VCG outcome is achieved for general valuations.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Ascending price auctions are preferred over their sealed-bid counterparts in practical settings
[10,9,25]. In the context of selling a single item, the ascending price English auction shares the
economic efficiency of the sealed-bid second-price Vickrey auction [31] for private value models.
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The sealed-bid Vickrey–Clarke–Groves (VCG) mechanism [31,8,15] generalizes the Vickrey
auction to combinatorial auctions [29,30] with multiple items and general (private) non-additive
valuations and retains its ex post efficiency and dominant-strategy incentive-compatibility proper-
ties. Taken together, the economic properties of the VCG mechanism and the practical benefits of
an ascending price auction have generated interest in designing efficient ascending price combi-
natorial auctions, achieving the outcome of the VCG mechanism. Several papers have addressed
this issue for restricted valuation domains: for the one-to-one assignment problem by Demange
et al. [13], for homogeneous items with non-increasing marginal valuations by Ausubel [1], for
heterogeneous valuations with gross substitutes valuations by Ausubel and Milgrom [3] and de
Vries et al. [11].

For a general private valuations model, i.e., with no externalities and free disposal but no other
restrictions on valuations (such as requirement that items are substitutes of each other), there
is a negative result due to de Vries et al. [11]. They show that gross substitutes valuations are
almost the largest valuation domain for which an ascending price auction can achieve the VCG
outcome. Of course, this negative result depends on how an ascending price auction is defined.
These authors adopted a definition in which the auction should have a single price path (a sequence
of increasing prices) and the buyers should pay the final price in this price path. Unlike an earlier
definition of an ascending price auction, due to Gul and Stacchetti [16], they did not restrict prices
to item prices but allowed a non-anonymous (i.e., personalized for every buyer) and non-linear
(i.e., non-additive over items) price path.

To overcome this impossibility, one needs to relax the definition of an ascending price auction.
One possible relaxation is to allow multiple price paths in an auction. For instance, in the restricted
case of gross substitutes valuations, Ausubel [2] defines an auction that uses multiple price paths
where the prices quoted on each path are anonymous and linear. Combining information from all
price paths, Ausubel’s auction is able to incrementally determine the VCG payments to be made
by buyers upon termination. This idea is further generalized by de Vries et al. [11], who show that
their auction can be run multiple times, once for every buyer, to calculate the VCG payments of
buyers for general valuations.

The use of multiple price paths in these auctions requires each buyer to bid on price paths
which are only used to calculate payment of a specific buyer and serve no other purpose. This
is not appealing in practice because buyers have no incentive to participate in such price paths.
Besides, introducing multiple price paths creates overhead for buyers to bid in an auction. It also
has less transparency and simplicity than a single price path auction. For this reason, the following
question merits research and is the focus of this paper:

Is there a relaxation of the traditional definition of ascending price auctions which maintains
a single price path and still terminates with the VCG outcome for general valuation profiles
in an ex post Nash equilibrium?

In pursuit of an answer to this question, we explore an alternative relaxation of the definition
of ascending price auctions in de Vries et al. [11] that maintains a single price path. We allow
the final payments made by each buyer to differ from the final clearing prices. In fact, this
relaxation is already present in Ausubel’s auctions [2,1]. The final payments made by each buyer
in our auctions can be determined either as a one-time discount from the final clearing prices
or dynamically during the auction. In this sense, one can consider that our auctions generalize
Ausubel’s single price path auction [1] from diminishing marginal values to arbitrary preferences.
We believe that the use of a single price path together with incremental discounting makes for
transparent and simple combinatorial auctions.
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Our main contribution is a broad class of ascending price auctions which achieve the VCG
outcome for general valuations using a single price path. For this, we introduce the concept of
universal competitive equilibrium (UCE) prices. UCE prices are competitive equilibrium (CE)
prices (possibly non-linear and non-anonymous) of the main economy as well as CE prices of every
“marginal economy” (an economy where a single buyer is excluded). We show that UCE prices
are necessary and sufficient to achieve the VCG outcome using an ascending price auction. Our
broad class of ascending price auctions search for UCE prices, with VCG payments determined
either as one-time discounts from the clearing prices or dynamically during the auction. The
overall discount to a buyer from the final clearing price on his bundle of items is his marginal
contribution to the revenue of the seller at the final auction prices. Truthful bidding is an ex post
Nash equilibrium in such auctions.

Even though discounts are given, a buyer still responds to non-discounted prices while bidding
and the prices in our auctions still act as a means for eliciting preferences of buyers. Discounts
mean that the actual payments of buyers, while functions of the final auction prices, may not
always be the quoted prices.

The general class of auctions is described as a “black-box model” in which prices are maintained
in each round and buyers can report their demand set at current prices as bids. The auctions increase
prices in each round, maintaining quasi-CE prices for the main economy and marginal economies
and making progress towards UCE prices. We present two specific auctions within this class. One
of them generalizes the primal-dual auction in de Vries et al. [11] and the other generalizes the
iBundle auction in Parkes and Ungar [26] (known to implement a subgradient algorithm [11,12]).
The beauty of the latter auction is the simple and transparent price adjustment step. But, auctions
based on primal-dual algorithms are believed to have faster convergence properties [11]. In both
cases, we present the first ascending (multi-item) Vickrey auction for general valuations with a
single price path. Instead of giving discounts to buyers at the end of our auctions, we can also
dynamically calculate their discounts during the auction.

For the special case of buyers-are-substitutes, known to be necessary and sufficient for the
existence of CE prices that simultaneously give VCG payoffs to each buyer [7], UCE prices are
achieved as soon as CE prices of the main economy are achieved and no additional rounds of
bidding are required to determine final payments. In comparison, the auctions in deVries et al. [11]
and Ausubel and Milgrom [3] need a stronger condition to achieve the VCG outcome because
they do not allow discounts upon termination.

The rest of the paper is organized as follows. In Section 2, we introduce the concept of UCE
price and give its connection to the VCG mechanism. In Section 3, we define our broad class
of auctions. We give two specific auctions and analyze their theoretical properties in Sections 4
and 5. We summarize and conclude in Section 6.

2. Universal competitive equilibrium

We define the combinatorial allocation problem and the concept of universal competitive equi-
librium (UCE) price. Later, we will illustrate how this UCE price concept can be used to design
ascending price auctions.

2.1. The model

A seller has n heterogeneous indivisible items to sell. The set of items is denoted by A =
{1, . . . , n}. There are m (�2) buyers, denoted by B = {1, . . . , m}. The set of all bundles of items
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is denoted by � = {S ⊆ A}. Naturally, ∅ ∈ �. For every buyer i ∈ B and every bundle S ∈ �,
the valuation of i on bundle S is denoted by vi(S)�0, assumed to be a non-negative integer. We
impose the following restrictions on valuations of any buyer:

(A1) Private valuations: Each buyer knows his own valuation and it does not depend on the
valuations of other buyers.

(A2) Quasi-linear utility: The utility or payoff of any buyer i ∈ B on a bundle S is given by
vi(S) − p, where p is the price paid by buyer i on bundle S. Also, if a buyer gets nothing
and pays nothing, then his utility is zero: vi(∅) := 0 ∀ i ∈ B.

(A3) Free disposal (monotonicity): vi(S)�vi(T ) ∀ i ∈ B, ∀ S, T ∈ � with S ⊆ T .
(A4) Zero seller valuations: The seller values the items at zero. His utility or payoff or revenue

is the total payment he receives at a price.

Assumptions (A1)–(A4) are standard in literature. Unless stated explicitly, we do not pose any
restriction on the valuations of the buyers besides these four assumptions and call them the general
valuations.

Let B−i = B \ {i} be the set of buyers without buyer i. Let B = {B, B−1, . . . , B−m}. We will
denote the economy with buyers only from set M ⊆ B as E(M). Whenever, M �= B and M ∈ B,
we call economy E(M) a marginal economy. E(B) is called the main economy.

We now define the combinatorial allocation problem [30]. The combinatorial allocation problem
seeks to find an efficient allocation of the main economy. Let X denote a feasible allocation in
economy E(M) (M ∈ B).Allocation X is both a partitioning of the set of items and an assignment
of the elements of the partition to buyers. Allocation X assigns bundle Xi to buyer i for every
i ∈ M and for every i �= j , Xi ∩ Xj = ∅. The possibility of Xi = ∅ is allowed. We will denote
the set of all feasible allocations of economy E(M) as X(M).

An allocation X is efficient in economy E(M) if there does not exist another allocation Y ∈
X(M) such that

∑
i∈M vi(Yi) >

∑
i∈M vi(Xi). From assumption (A3), every efficient allocation

X ∈ X(M) should have
⋃

i∈M Xi = A.
Despite the indivisibility of items, the problem of finding an efficient allocation can be formu-

lated and solved as a linear program [7]. Let yi(S) ∈ {0, 1} be a variable which is assigned value 1
if a buyer i ∈ B is allocated a bundle S ∈ � (S = ∅ is allowed) and assigned zero otherwise. Let
z(X) ∈ {0, 1} be a variable which is assigned 1 if allocation X ∈ X(M) is selected. The efficient
allocation problem of economy E(M) (for any M ⊆ B) is as follows:

V (M) = max
y,z

∑
i∈M

∑
S∈�

vi(S)yi(S) (P(M))

s.t. ∑
S∈�

yi(S) = 1 ∀ i ∈ M.

∑
X∈X(M)

z(X) = 1.

yi(S) =
∑

X:Xi=S

z(X) ∀ S ∈ �, ∀ i ∈ M.

yi(S)�0 ∀ i ∈ M, ∀ S ∈ �.

z(X)�0 ∀ X ∈ X(M).
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Bikhchandani and Ostroy [7] show that formulation (P(M)) has integral optimal solutions. The
dual problem is defined as:

V (M) = min
�,�s ,p

�s +
∑
i∈M

�i (DP(M))

s.t.

�s �
∑
i∈M

pi(Xi) ∀ X ∈ X(M).

�i �vi(S) − pi(S) ∀ i ∈ M, ∀ S ∈ �.

Dual variables pi(S) can be interpreted as the price on bundle S to buyer i, with �i being the
maximum payoff to buyer i across all bundles and �s being the maximum payoff to the seller
across all allocations in X(M).

Define the demand set of buyer i at price vector p ∈ R
|M|×|�|
+ as

Di(p) := {S ∈ � : vi(S) − pi(S)�vi(T ) − pi(T ) ∀ T ∈ �}

and the supply set of the seller at price vector p ∈ R
|M|×|�|
+ in economy E(M) as

L(p) :=
{

X ∈ X(M) :
∑
i∈M

pi(Xi)�
∑
i∈M

pi(Yi) ∀ Y ∈ X(M)

}
.

Definition 1 (Competitive equilibrium). Price vector p ∈ R
|M|×|�|
+ (feasible solution of

(DP(M))) and allocation X (feasible solution of (P(M))) are a competitive equilibrium (CE)
of economy E(M) for some M ⊆ B if X ∈ L(p), and Xi ∈ Di(p) for every buyer i ∈ M . Price
p is called a CE price vector of economy E(M).

From standard duality theory we can understand why the allocation supported in CE prices is
efficient. 1 Given a feasible solution (y, z) to (P(M)) and a feasible solution (p, �, �s) to (DP(M)),
we have the following complementary slackness (CS) conditions:

yi(S)
[
�i − [vi(S) − pi(S)]] = 0 ∀ i ∈ M, ∀ S ∈ �, (CS-1)

z(X)

[
�s −

∑
i∈M

pi(Xi)

]
= 0 ∀ X ∈ X(M). (CS-2)

Solutions (y, z) and (�, �s , p) are optimal for the primal and dual problems respectively if and
only if these CS conditions hold. From this we recover the standard intuition for CE prices: if
yi(S) = 1 then S ∈ Di(p) from CS-1 (buyers receive a bundle in their demand set) and if
z(X) = 1 then X ∈ L(p) from CS-2 (the seller maximizes his revenue).

In the rest of the paper, every price vector p will be defined on p ∈ R
|B|×|�|
+ (unless stated

otherwise) and the projection of p on R
|M|×|�|
+ will be denoted as pM (or, p−i if M = B−i). A

component of pM will still be denoted as pi(·) for every i ∈ M .

1 Bikhchandani and Ostroy [7] were the first to observe that non-anonymous and non-linear CE prices support the
efficient allocation in the combinatorial allocation problem.
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Definition 2 (Universal competitive equilibrium price). A price vector p is a universal compet-
itive equilibrium (UCE) price vector if pM is a CE price vector of economy E(M) for every
M ∈ B.

We provide some examples to illustrate the idea of UCE prices in Section 2.3. For now, we note
that UCE prices do not require any similarity between the allocations that are supported in the
CE of each of the marginal economies. Also, UCE prices always exist since p := v are (trivial)
UCE prices.

2.2. Vickrey payments and UCE prices

The Vickrey–Clarke–Groves (VCG) mechanism [31,8,15] is an ex post efficient and ex post
individually rational direct revelation mechanism for which truth revelation is a dominant strategy
(i.e., it is strategyproof, or truthful). Given submitted valuation profiles v̂ = (v̂1, . . . , v̂m), v̂i

representing the submitted valuation function (a vector on bundles) of buyer i, theVCG mechanism
solves the efficient allocation problem for the main economy and the marginal economies. The
implemented allocation X∗ is an efficient allocation in the main economy and the payment for
buyer i is calculated as p

vcg
i = v̂i (X

∗
i ) − [V (B) − V (B−i )]. We refer to a buyer’s (equilibrium)

payoff in the VCG mechanism, which is his marginal product V (B) − V (B−i ) as the Vickrey
payoff and the payment as the Vickrey payment.

Consider the problem of determining Vickrey payments from a CE (p, X). We show that it is
necessary and sufficient that p is a UCE price vector.

For simplicity, we will often denote �i (p) as the payoff of buyer i and �s(pM) (or, simply
�s(p−i ) if M = B−i) as the payoff or revenue of the seller in economy E(M) at prices p. If we
are considering buyers from set M only, then the vector of payoffs for buyers from M is simply
denoted as �M(p) (or, simply �−i (p) if M = B−i).

Theorem 1. Let (p, X) be a CE of the main economy. The Vickrey payments of every buyer can be
calculated from (p, X) if and only if p is a UCE price vector. Moreover, if p is a UCE price vector,
then for every buyer i ∈ B, the Vickrey payment of buyer i is p

vcg
i = pi(Xi)−[�s(p)−�s(p−i )].

Proof. Sufficiency of UCE prices. Consider a buyer i ∈ B. Let (p−i , Y ) be a CE of economy
E(B−i ). From the definition of Vickrey payment, we have:

p
vcg
i = vi(Xi) − [V (B) − V (B−i )].

= vi(Xi) −
∑
j∈B

[[vj (Xj ) − pj (Xj )] + pj (Xj )
]

+
∑

j∈B−i

[[vj (Yj ) − pj (Yj )] + pj (Yj )
]

= pi(Xi) −
∑
j∈B

pj (Xj ) +
∑

j∈B−i

pj (Yj )

−
∑

j∈B−i

[
vj (Xj ) − pj (Xj )

]
+

∑
j∈B−i

[
vj (Yj ) − pj (Yj )

]
(rearranging terms). (1)
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Since (p, X) is a CE of the main economy we have Xj ∈ Dj(p) for every j ∈ B. Similarly,
(p−i , Y ) is a CE of economy E(B−i ). So, Yj ∈ Dj(p) for every j ∈ B−i . This means vj (Xj ) −
pj (Xj ) = vj (Yj ) − pj (Yj ) for every j ∈ B−i . This cancels terms in (1) and transforms it as

p
vcg
i = pi(Xi) −

[∑
j∈B pj (Xj ) − ∑

j∈B−i
pj (Yj )

]
= pi(Xi) − [�s(p) − �s(p−i )].

Necessity of UCE prices. Construct the valuation profile v′ as v′
i (S) := pi(S) for every i ∈ B

and every S ∈ �. p is a CE price vector of the main economy at valuation profile v′. The
Vickrey payment of every buyer i ∈ B at valuation profile v′ is v′

i (Xi) − V (B) + V (B−i ) =
pi(Xi) − �s(p) + �s(p−i ). Since the Vickrey payments are calculated only from (p, X), they
should be calculated in the same manner for all the valuation profiles for which (p, X) is a CE of
the main economy. This means, for every buyer i ∈ B, the Vickrey payment should be calculated
as: pi(Xi) − �s(p) + �s(p−i ).

Assume for contradiction that p is a CE price vector for the main economy but not a UCE
price vector. This means, for some marginal economy E(B−j ), p−j is not a CE price vector.
(p−j , �−j (p), �s(p−j )) constitute a dual feasible solution of formulation (DP(B−j )) but not an
optimal solution since p−j is not a CE price vector of E(B−j ). So, we can write

∑
i∈B−j

�i (p)+
�s(p−j ) < V (B−j ). Since (p, X) is a CE of the main economy, we have

∑
i∈B �i (p) +

�s(p) = V (B). Substituting into the standard expression for the Vickrey payment of buyer j ,
we have:

p
vcg
j = vj (Xj ) − V (B) + V (B−j ) < pj (Xj ) − �s(p) + �s(p−j ).

This gives us a contradiction. �

We refer to the term �s(p)−�s(p−i ) as the discount for buyer i and the term pi(Xi)−[�s(p)−
�s(p−i )] as the discounted price for buyer i. Notice that the claims in Theorem 1 continue to hold
for restricted classes of valuations and for simpler prices such as anonymous or item prices. Also,
notice that the adjustment reduces immediately to the standard VCG payment definition for UCE
prices p := v.

Before continuing to provide some examples of this correspondence between UCE prices and
Vickrey payments we define the following restricted class of valuations:

Definition 3 (Buyers are Substitutes). We say buyers are substitutes (BAS) if V (B) − V (K)�∑
i∈B\K

[
V (B) − V (B−i )

] ∀ K ⊆ B.

Intuitively, BAS holds when buyers are more alike than different and contribute decreasing
marginal product as the size of the economy grows. The gross substitutes condition, familiar in
economics, implies that BAS holds [5]. BAS is important in the current context because it exactly
characterizes the restriction on valuations required for each buyer to simultaneously receive his
Vickrey payoff at some CE price vector [7].

2.3. Examples

We now give some examples to demonstrate the concept of UCE prices and the discounted
prices which give Vickrey payments. The UCE prices that we provide for illustrative purposes in
these examples are not the trivial prices equal to the valuations of buyers.
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Table 1
Examples to show the correspondence between UCE prices and Vickrey payments

∅ {1} {2} {1, 2}
(a) Buyers are substitutes
1 0 8 9 12
2 0 6 8 14

(b) Buyers are not substitutes
1 0 3 0 3
2 0 0 6 6
3 0 0 2 4

Table 1(a) illustrates a problem with two buyers and two items and valuations. It is easy to
verify that buyers are substitutes in this example. A UCE price vector (p) in this example is
p1(∅) = p2(∅) = 0, p1({1}) = p

vcg
1 = 6, p1({2}) = 8, p1({1, 2}) = p2({1, 2}) = 10,

p2({1}) = 2, p2({2}) = p
vcg
2 = 4. In the main economy, the efficient allocation (buyer 1

gets item 1 and buyer 2 gets item 2) is supported at p. In the marginal economy with only
buyer 1, efficient allocation (buyer 1 gets both items) is supported at p−2. Also, in the marginal
economy with only buyer 2, efficient allocation (buyer 2 gets both items) is supported at p−1.
Also, observe thatVickrey payments are directly represented (without discounts) at this UCE price
vector.

Table 1(b) provides an example with three buyers and two items. It is easy to verify that buyers
are not substitutes in this example. A UCE price vector (p) is the following: p1(∅) = p2(∅) =
p3(∅) = 0, p1({1}) = 2, p1({2}) = 0, p1({1, 2}) = 2, p2({1}) = 0, p2({2}) = 4, p2({1, 2}) =
4, p3({1}) = 0, p3({2}) = 2, p3({1, 2}) = 4. In the main economy and in the marginal economy
with buyers 1 and 2 only, the efficient allocation (buyer 1 gets item 1, buyer 2 gets item 2 and
buyer 3 gets nothing) is supported at p−3. In the marginal economy with buyers 1 and 3 only, the
efficient allocation (buyer 1 gets item 1 and buyer 3 gets item 2) is also supported at p−2. Similarly,
in the marginal economy with buyers 2 and 3 only, the efficient allocation (buyer 2 gets item 2 and
buyer 3 gets item 1) is supported at p−1. The Vickrey payments for buyers can be calculated as:
p

vcg
1 = p1({1})−[�s(p)−�s(p−1)] = 2−[6−4] = 0, p

vcg
2 = p2({2})−[�s(p)−�s(p−2)] =

4 − [6 − 4] = 2, p
vcg
3 = 0.

3. A class of ascending price Vickrey auctions

We provide a relaxation of the traditional definition of ascending price auctions to retain a single
price path but allow for final payments to be determined as an adjustment from (final) clearing
prices. We introduce a “black-box model” for the general class of ascending priceVickrey auctions
that fall within this definition, and provide ex post efficiency and equilibrium claims for any auction
in this class. This reverses a negative result in de Vries et al. [11], which holds for a more restricted
auction definition. In addition, we demonstrate that auctions within our class must maintain both
non-anonymous and non-linear prices to achieve the VCG outcome, even in the special cases of
gross substitutes valuations.

The specific auction protocols, namely a generalization of the primal-dual auction in de Vries
et al. [11] and the subgradient auction in Parkes and Ungar [26], are defined in subsequent sections.
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In Sections 3.1–3.3 we will assume that buyers submit true demand sets in each round, i.e., bid
truthfully. This bidding strategy is shown to be an ex post Nash equilibrium in Section 3.4.

3.1. A relaxed definition of ascending price auctions

In defining a class of ascending price auctions we mainly follow de Vries et al. [11] and Gul
and Stacchetti [16]. The main difference is that we relax the requirement that the final prices in
the auction define payments of buyers. First, we define the notion of a price path:

Definition 4. A price path is any of these four types of functions:

• Linear and anonymous price path: P : T → R
|A|
+ ,

• Linear and non-anonymous price path: P : T → R
|A|×|B|
+ ,

• Non-linear and anonymous price path: P : T → R
|�|
+ ,

• Non-linear and non-anonymous price path: P : T → R
|�|×|B|
+ ,

where T denotes the set of rounds in an auction and t ∈ T denotes a round in an auction with
P(t) denoting a price vector seen at time t . A price path is ascending if P(t) is non-decreasing
with time.

Definition 5 (Ascending price auction). An ascending price auction is a single ascending price
path P(·) which starts from P(0) and ends at P(T ) with an allocation and payment for buyers
such that:

(C1) At every round t , buyers report their demand set (bids) at price vector P(t).
(C2) For every round t ∈ T, the price adjustment is determined only by current price vector P(t)

and current demand set information: Di(P (t)) for every buyer i ∈ B.
(C3) Every buyer i ∈ B gets a bundle (possibly ∅) from his demand set Di(P (T )) at the end of

the auction.
(C4) The final payment of buyers is determined from the final allocation and price vector in the

last round (P(T )) only.

Many auctions in the literature fall into this class of ascending price auctions including the single-
path auctions in Ausubel [1] and de Vries et al. [11]. 2,3

One notable exception isAusubel’s multi-item auction [2], which maintains multiple price paths,
each linear and anonymous, and performs clinching and unclinching of items in determining
payments dynamically during the auction. This auction achieves the VCG outcome for gross
substitutes valuations. Similarly, the multi-path variation of the auction in de Vries et al. [11] lies
outside of this class.

2 The auction of Ausubel and Milgrom [3] can also be provided with a non-proxied, ascending-price interpretation, at
which point it is equivalent to the iBundle auction [23].

3 Ausubel’s auction [1] for homogeneous items may not appear to fall within this class because it performs clinching
of items during the auction. However, Bikhchandani and Ostroy [6] show that it can be considered to be an elegant
interpretation of an auction within our class that maintains a single non-linear and non-anonymous price path and terminates
with a CE price vector that gives the Vickrey payments. The clinching in Ausubel’s auction provides for an implicit
calculation of a non-linear and non-anonymous price component and allows the prices quoted to bidders in each round to
be simple linear prices.
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The traditional definition of ascending price auctions, as formalized by de Vries et al. [11] is
the following. We call these ascending price(0) auctions to indicate that no adjustment to final
prices is done in these auctions to calculate payments of buyers.

Definition 6 (Ascending price(0) auctions). An ascending price (0) auction is an ascending price
auction with Step C4 modified as follows:

(C4′) The final payment of buyers is the final price seen by them on their respective final allocation.

Clearly, every ascending price(0) auction is also an ascending price auction. Besides the multi-
path auctions discussed, all previously known auctions are ascending price(0) auctions. For such
auctions, de Vries et al. provide the following negative result.

Theorem 2 (de Vries et al. [11]). Suppose there are two items and at least three buyers. If the
valuation of one of the buyers fail the gross substitutes condition, then there exists a class of val-
uations for other buyers satisfying the gross substitutes condition such that no ascending price(0)
auction can terminate with VCG prices for these valuations when buyers bid truthfully.

The proof of this Theorem is done by constructing a parametric valuation profile with valuations
of all but one buyer satisfying the gross substitutes condition and showing that the VCG payments
of buyers depend on the parameter but the final prices of ascending price(0) auctions do not. To
overcome this negative result of Theorem 2, we propose ascending price auctions by relaxing
condition (C4′) in Definition 6 to (C4).

We consider ascending price auctions in which truthful submission of demand sets in response
to prices in each round is an ex post Nash equilibrium in the sense of Jehiel et al. [17].

Definition 7. Truthful bidding in every round of an auction is an ex post Nash equilibrium if for
every buyer i ∈ B, if buyers in B−i follow the truthful bidding strategy, then buyer i maximizes
his payoff in the auction by following the truthful bidding strategy.

A strategy profile that is an ex post Nash equilibrium is invariant to the private valuation of
each buyer. This makes it appropriate for auctions in which buyers have incomplete information
about valuations of others. 4,5

As we will elaborate later, prices in our auctions act as means for eliciting preferences and not
as prices paid by buyers in the end. Our auctions will involve discounts for buyers at the end (or,
discounts calculated incrementally across rounds). Truthful bidding does not take into account
such discounts while calculating bids (demand sets). Truthful bidding involves, for every buyer,
calculation of demand sets with respect to true valuation and current auction prices (without any
discounts).

4 An ex post Nash equilibrium is also a Bayesian Nash equilibrium because a buyer maximizes his payoff in an ex post
Nash equilibrium for any belief about the valuations of other buyers, but more robust [17].

5 Ex post Nash equilibrium has been adopted as a solution concept in other ascending price auction models, for instance
in [11]. Ex post implementation has also been adopted for direct-revelation mechanisms with interdependent values, see
for instance [28].
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More specifically, we are concerned with efficient ascending price auctions, i.e., auctions in
which truthful bidding is an ex post Nash equilibrium strategy and in which the auction terminates
with an efficient allocation.

Proposition 1. If X is the final allocation and p is the final price vector in an efficient ascending
price auction in which buyers bid truthfully, then (p, X) is a CE of the main economy. 6

Proof. First, X is an efficient allocation of the main economy by the definition of efficient as-
cending price auction. Any ascending price auction selects a final allocation from the price and
demand set information in the final round. Thus, if X is an efficient allocation, then it is an efficient
allocation for all valuations consistent with demand set profile D(p) := (D1(p), . . . , Dn(p)).

By property (C3) of an ascending price auction, Xi ∈ Di(p) for all i ∈ B. Assume for
contradiction X /∈ L(p). Now, consider the valuation profile v� as follows. If ∅ /∈ Di(p), then

v�
i (S) =

{
pi(S) + � ∀ S ∈ Di(p),

pi(S) otherwise

for some small � > 0. If ∅ ∈ Di(p), then

v�
i (S) =

{
pi(S) ∀ S ∈ Di(p),

pi(S) − � otherwise.

Clearly, v� is consistent with D(p). Consider an allocation X̂ ∈ L(p). There can be a maximum
of min(m, n) non-empty bundles in X̂. Since X̂ ∈ L(p), we can find small enough � > 0 (� <∑

i∈B [pi(X̂i )−pi(Xi)]
min(m,n)

) such that
∑

i∈B v�
i (X̂i) >

∑
i∈B v�

i (Xi). This means, X is not an efficient
allocation for valuation profile v� for some small enough � > 0. This gives us a contradiction. So,
X ∈ L(p) and Xi ∈ Di(p) for every i ∈ B. Thus, (p, X) is a CE of the main economy. �

Using Proposition 1, we prove a stronger result for efficient ascending price auctions.

Proposition 2. An efficient ascending price auction in which buyers bid truthfully and all buyers
that are allocated no items have zero payment must terminate with a UCE price vector.

Proof. From Proposition 1, an efficient ascending price auction must terminate at CE price vector
of the main economy. From the revelation principle, the direct revelation mechanism of an efficient
ascending price auction has an equilibrium in which truthful bidding is a dominant strategy. But
Groves mechanisms are the only strategy-proof and efficient direct mechanisms [14]. Moreover,
the VCG mechanism is the only Groves mechanism in which every loser pays nothing. This
means, the final payment in an efficient ascending price auction in which every loser pays nothing
is the Vickrey payment. From property (C4) of ascending price auctions, the final payments are
determined from the final CE price vector and efficient allocation. From Theorem 1, this price
vector must be a UCE price vector. �

6 Results similar to Proposition 1 can be found in Nisan and Segal [21] and Parkes [24]. The result in Nisan and Segal,
applicable for a more general setting than combinatorial auctions, states that if we can determine an efficient allocation
from a set of “messages” (demand sets and prices in our case), then we can also construct a CE price from these messages.
These earlier results do not appear to imply our result because they do not require that the prices in the message are already
CE prices.
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3.2. Insufficiency of simpler prices

Many known combinatorial auctions (e.g., [23,11]) maintain non-linear and non-anonymous
prices. This requires maintaining an exponential number of prices in the auction in the worst case,
although in practice one only needs to report explicit prices on bundles that receive bids.

We briefly consider whether one can maintain simpler prices and still achieve the VCG out-
come in the auctions within our class. Since the definition of ascending price auctions requires
termination with CE prices (Proposition 1) we have the following proposition.

Proposition 3 (Bikhchandani and Ostroy [7]). Every efficient ascending price auction in which
buyers bid truthfully must allow a non-linear and non-anonymous price path.

We are interested to understand whether simpler price paths are sufficient for special cases,
such as that of gross substitutes preferences. This is a broad class of preferences for which a linear
and anonymous CE price vector exists [18], and thus interesting to consider.

Definition 8 (Gross substitutes). A valuation function vi satisfies gross substitutes (GS) if, for
all price vectors p, p′ ∈ R

|�|×|B|
+ such that pi(S) = ∑

j∈S pi({j})�p′
i (S) = ∑

j∈S p′
i ({j}),

∀ i ∈ B, ∀ S ∈ � and for all S ∈ Di(p), there exists S′ ∈ Di(p
′) such that {j ∈ S : pi({j}) =

p′
i ({j})} ⊆ S′.

Informally, valuations satisfy gross substitutes (or simply substitutes) if a buyer continues to
demand the same item when the price on another item increases.

Gul and Stacchetti [16] already established that a traditional ascending price auction with a
linear and anonymous price path cannot terminate with VCG prices for substitutes valuations. On
the other hand, Ausubel [2] showed that multiple anonymous and linear price paths are sufficient
by cleverly using information collected from buyers in these price paths.

Considering anonymous but possibly non-linear prices, we can first observe that anonymous
UCE prices only exist when BAS. To see this, notice that the discount is zero when prices are
anonymous (by the definition of the price adjustment in Theorem 1), and thus prices must already
support VCG payments if they are UCE. Yet, this equivalence between UCE and VCG payments
(and thus between CE and VCG) requires BAS. So, non-anonymous prices will be required in
most interesting cases.

We also have the following negative result, which shows that both non-linear and non-
anonymous prices are required even for the restricted case of substitutes valuations.

Proposition 4. An efficient ascending price auction in which buyers bid truthfully and losers pay
nothing must maintain a non-linear and non-anonymous price path for substitutes valuations.

Proof. We will show that for the example in Table 1(a), the UCE price vectors are non-linear and
non-anonymous. From Proposition 2, the result then follows.

Assume for contradiction that p ∈ R
|B|×|A|
+ is a UCE price vector for the example. It is easy

to see that in the CE of E(B), buyer 1 is assigned item 1 and in the CE of E(B−2), buyer 1
is assigned bundle {1, 2}. This means, 8 − p1({1}) = 12 − [p1({1}) + p1({2})]. This gives us
p1({2}) = 4. Similarly, buyer 2 is assigned item 2 in CE of E(B) and bundle {1, 2} in CE of
E(B−1). This means, 8 − p2({2}) = 14 − [p2({1}) + p2({2})]. This gives us, p2({1}) = 6. Now,
since buyer 1 is assigned item 1 in CE of E(B), we have 8−p1({1})�9−p1({2}) = 5. This gives
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us, p1({1})�3. Also, the seller should maximize his utility in the CE allocation of E(B). This
means, p1({1})+p2({2})�p2({1})+p2({2}). This gives us, p1({1})�p2({1}) = 6. Putting these
together, we have a contradiction. A similar argument shows that there does not exist p ∈ R

|�|
+ ,

which is a UCE price vector in example in Table 1. A non-linear and non-anonymous UCE price
vector is the “value=price” UCE price vector. �

There are examples of auctions with anonymous and linear price paths, but only for very
restricted valuations. For instance, in the unit-demand case there exists anonymous linear CE
prices which give every buyer his Vickrey payoff [19], and Demange et al. [13] have designed an
auction which ends with such CE prices.

3.3. A general class of ascending price Vickrey auctions

Continuing, we now define a black-box model for the general class of ascending price auctions
to which our main results apply. The auctions maintain non-anonymous and non-linear prices and
adjust prices until a UCE price vector is established.

As before, let �i (p) := maxS∈�[vi(S)−pi(S)] denote the maximum payoff of a buyer i at price
vector p, with Di(p) denoting his demand set. Also, let �s(pM) := maxX∈X(M)

∑
i∈M pi(Xi)

denote the maximum revenue to the seller in economy E(M) for every M ∈ B and L(pM)

denoting the supply set of the seller. Notation M+(p) := {i ∈ M : ∅ /∈ Di(p)} denotes buyers in
economy E(M) who do not have ∅ in their demand set. We define

L∗(pM) := {X ∈ L(pM) : Xi ∈ Di(p) ∪ {∅} ∀ i ∈ M} ⊆ L(pM) ∀ M ⊆ B (2)

to denote the subset of the revenue maximizing allocations (if any) of the seller that assigns to
every buyer either a bundle from his demand set or the ∅ bundle.

Definition 9 (Quasi-CE price). Price vector p ∈ R
|M|×|�|
+ is a quasi-CE (QCE) price vector of

economy E(M) for some M ∈ B, if L∗(p) is non-empty. Price vector p ∈ R
|B|×|�|
+ is a universal

QCE (uQCE) price vector if pM is a QCE price vector of economy E(M) for every M ∈ B.

Intuitively, prices are QCE if demand is no less than supply and prices are universal QCE if
demand is no less than supply in any marginal economy.

Using the notion of a uQCE price vector, we define a class of uQCE-invariant auctions and
show that any auction in this class maintains a uQCE price vector. In defining the critical buyers
in a round, who are those buyers that see a price increase, we use notation B+(pt ) ⊆ B to denote
the buyers who do not demand the ∅ bundle at a price vector pt .

Definition 10 (uQCE-invariant auctions). A uQCE-invariant auction is defined as follows:

(S0) The auction starts at the zero price vector.
(S1) In round t of the auction, with price vector pt :

(S1.1) Collect demand sets of buyers at price vector pt .
(S1.2) If pt is a UCE price vector with respect to reported demand sets, then go to Step S2.
(S1.3) Else, select a set of critical buyers ∅ �= Ut ⊆ B+(pt ) who will see a price increase.
(S1.4) If i ∈ Ut and S ∈ Di(p

t ), then pt+1
i (S) := pt

i (S) + 1. Else, pt+1
i (S) := pt

i (S).
Repeat from Step (S1.1).
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(S2) The auction ends with final allocation of the auction being any X ∈ L∗(pT ) and final
payment of every buyer i ∈ B being pT

i (Xi) − [
�s(pT ) − �s(pT−i )

]
, where pT is the final

price vector of the auction.

The uQCE-invariant auctions clearly fall within the class of auctions introduced in Definition 5.
A single price vector is maintained in each round, and buyers respond with demand sets. uQCE-
invariant auctions adjust the price vector until there is no excess demand in the main or the
marginal economies. Notice that prices are only increased to buyers that still report a non-empty
demand set (Step (S1.3)), and that prices on all bundles in such a buyer’s current demand set
are increased by unity (Step (S1.4)). The price adjustment suggested in Theorem 1 is adopted on
termination (Step (S2)).

The price adjustment process (selection of Ut in Step (S1.3)) defines a class of uQCE-invariant
auctions. Besides ∅ �= Ut ⊆ B+(pt ), we place no restriction on the choice of Ut . For various
selections of critical buyers, we will get different auctions. All will be valid ascending price
Vickrey auctions. However, the specifics will affect both the simplicity and transparency of the
auction as well as the speed of termination (see Section 3.5).

The auctions in this class may be called clock auctions because they maintain an ask price
and require that buyers state demand sets in each round. Buyers do not submit bid prices. The
traditional role of winner determination is still present, even if implicitly, and even though feedback
to buyers can be limited to ask prices and need not include information about a provisional
allocation. Winner determination is a natural way to test for UCE prices and thus termination (Step
(S1.2)) and also to determine the set of critical buyers that will be used to define price updates
(Step (S1.3)).

Here are two simple restrictions on the uQCE-invariant auctions:

• A uQCE-invariant(0) auction is a uQCE-invariant auction with Step S2 modified as follows:
(S2(0)) The auction ends with the final allocation of the auction being any X ∈ L∗(p) and

final payment of every buyer i ∈ B being pi(Xi), where p is the final price vector
of the auction.

• A uQCE-invariant auction for the main economy is a uQCE-invariant auction with Step (S1.2)
modified as:
(S1.2m) If pt is a CE price vector of the main economy, then go to Step (S2).

• A uQCE-invariant(0) auction for the main economy is a uQCE-invariant auction for the main
economy with Step (S2) modified as Step (S2(0)).

Most auctions in the literature are uQCE-invariant(0) auctions for the main economy. Examples
include auctions in de Vries et al. [11], Ausubel and Milgrom [3], Parkes [23] 7, and Bikhchandani
and Ostroy [6]. These uQCE-invariant(0) auctions for the main economy can be easily converted
to uQCE-invariant auctions for the main economy, and thus ascending price Vickrey auctions
for general valuations. We extend two such auctions to uQCE-invariant auctions in Sections 4
and 5.

If a uQCE-invariant auction is not a uQCE-invariant(0) auction, then the prices in such an
auction act as a means to elicit preferences of buyers. Payments of buyers are calculated as a

7 Although iBundle [23] also reports the provisional allocation in each round, this is not necessary for the functioning
of the auction.
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function of auction prices but need not equal the auction prices. Importantly, buyers need to
respond to auction prices, without considering discounts, for bidding. As we will show, doing
so truthfully will constitute an ex post Nash equilibrium for buyers in every uQCE-invariant
auction.

Our first result is a theorem showing that every uQCE-invariant auction maintains uQCE prices
in every round and terminates with UCE prices.

Theorem 3. Every uQCE-invariant auction achieves the VCG outcome if all buyers submit their
true demand sets in each round.

Proof. Let pt be the price vector in round t of a uQCE-invariant auction.

Lemma 1. In any round t of a uQCE-invariant auction for every buyer i ∈ B the demand-set
weakly increases with Di(p

t ) ⊆ Di(p
t+1).

Proof. From the price adjustment and the starting price vector, the price vector in a uQCE-
invariant auction is an integer vector. In any round the auction, for every buyer i ∈ Ut , the prices
of bundles demanded by i are increased by unity. Since valuations of buyers are assumed to be
integers, the change in payoff of i from such a price adjustment is −1. Since the price of any buyer
not in Ut is unchanged, their payoff is also unchanged. This implies that the demand set of every
buyer weakly increases after a price adjustment, i.e., Di(p

t ) ⊆ Di(p
t+1) for any non-terminal

round t in the auction. �

From Lemma 1, if S /∈ Di(p
t ), then S was never demanded by i in any round before t . From the

starting price and price adjustment rule of the auction, this further implies that if S /∈ Di(p
t ), then

pt
i (S) = 0. Now, consider economy E(M) for any M ∈ B. Clearly, L(pt

M) is non-empty. Consider
X ∈ L(pt

M). Construct allocation Y ∈ X(M) as Yi = Xi if Xi ∈ Di(p
t ) and Yi = ∅ otherwise.

As argued before, for any i ∈ M , if Xi /∈ Di(p
t ), then pt

i (Xi) = 0 = pt
i (∅) = pt

i (Yi). This
means,

∑
i∈M pt

i (Xi) = ∑
i∈M pt

i (Yi). This further means that Y ∈ L(pt
M). By the definition

of Y , Y ∈ L∗(pt
M) indicating non-emptiness of L∗(pt

M). This means, the price vector in every
round of a uQCE-invariant auction is a uQCE price vector.

For the second claim, observe that in any round t of a uQCE-invariant auction Ut ⊆ B+(pt ).
This means, if i /∈ B+(pt ), then the price of buyer i will not increase in any round t of a
uQCE-invariant auction. Due to the unit price increase, the valuations of a buyer provides an
upper bound on the price in a uQCE-invariant auction. Since valuations of buyers are finite, every
uQCE-invariant auction will terminate finitely. By the termination condition in Step (S1.2) of
Definition 10, the final price vector is a UCE price vector and the final allocation is an efficient
allocation of the main economy. From the payment rule in Step (S2) and from Theorem 1, every
uQCE-invariant auction achieves a VCG outcome. �

Using arguments similar to Lemma 1, it is also simple to show that the prices in every round
of uQCE-invariant auctions for the main economy and uQCE-invariant(0) auctions for the main
economy are uQCE prices. Given this, we can also consider the special case of uQCE-invariant
auctions for the main economy.

Theorem 4. If buyers are substitutes, then every uQCE-invariant auction for the main economy
achieves the VCG outcome if buyers submit true demand sets in each round.
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Proof. On termination of a uQCE-invariant auction for the main economy we have a uQCE price
vector that is also a CE price vector in the main economy. We show that such a price vector is a
UCE price vector when BAS holds. The result follows from Theorem 1.

Let p be a uQCE price vector. Consider a buyer i ∈ B. Since p−i is a QCE price vector in
economy E(B−i ), consider X ∈ L∗(p−i ) and let K = {k ∈ B−i : Xk �= ∅}. Now,

�s(p−i ) =
∑
k∈K

pk(Xk) =
∑
k∈K

[vk(Xk) − �k(p)] �V (K) −
∑
k∈K

�k(p). (3)

Now,

�i (p) + �s(p) − �s(p−i )

��i (p) + �s(p) − V (K) +
∑
k∈K

�k(p) (From (3))

= �i (p) + V (B) −
∑
k∈B

�k(p) − V (K) +
∑
k∈K

�k(p) (Since p is a CE)

= V (B) − V (K) −
∑

k∈B\(K∪{i})
�k(p)

�
∑

k∈B\K
�vcg

k −
∑

k∈B\(K∪{i})
�k(p) (Since buyers are substitutes)

�
∑

k∈B\K
�vcg

k −
∑

k∈B\(K∪{i})
�vcg

k = �vcg
i .

The last inequality comes from a result in Bikhchandani and Ostroy [7] which states that under
BAS the core payoff (payoff of buyers from a CE price vector) vectors form a lattice and the unique
maximum core payoff is theVickrey payoff vector. But,�i (p)+�s(p)−�s(p−i ) = ∑

k∈B �k(p)−∑
k∈B−i

�k(p) + �s(p) − �s(p−i )�V (B) − V (B−i ) = �vcg
i , where the inequality comes from

the fact that (p−i , �−i (p), �s(p−i )) is a dual feasible solution of formulation (DP(B−i )). This
means, for BAS, that �vcg

i = �i + �s(p) − �s(p−i ). This is true for every buyer i ∈ B. From
Theorem 1, p is a UCE price vector. �

As noted earlier, the auctions in Ausubel and Milgrom [3] and de Vries et al. [11] are uQCE-
invariant(0) auctions of the main economy. These auctions can be converted to a uQCE-invariant
auction for the main economy (by modifying Step (S2(0)) to Step (S2)), and Theorem 4 shows
that they terminate with VCG outcome under the BAS condition.

3.4. Incentives

Although the VCG mechanism is strategyproof and supports truthful bidding in a dominant
strategy equilibrium, an ascending price auction that achieves theVCG outcome will not in general
support truthful bidding in a dominant strategy equilibrium [16,27,3,6,11]. Instead, and with
additional consistency requirements, truthful bidding can be made an ex post Nash equilibrium
for a uQCE-invariant auction.

Definition 11. In an ascending price auction, the bidding strategy of buyer i is consistent if there
is some general valuation profile v′ for which the reported demand set Di(p

t ) in each round t
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satisfies

Di(p
t ) = {S ∈ � : v′

i (S) − pt (S)�v′
i (T ) − pi(T ), ∀ T ∈ �}. (4)

In words, there is a valuation profile that explains the bidding strategy of a buyer as a truthful
bidding strategy across all rounds of the auction.

Consistency can be achieved in a uQCE-invariant auction through appropriate activity rules
(e.g., see [4]). Denote the demand set submitted (possibly untruthfully) by buyer i in round t as
Di(p

t ) and consider the following activity rules (to be imposed in every round t):

• Round Monotonicity (RM): For every buyer i ∈ B, Di(p
t ) ⊆ Di(p

t+1).
• Bundle Monotonicity (BM): For every buyer i ∈ B, if S ⊆ T and S ∈ Di(p

t ), then T ∈ Di(p
t ).

Under truthful bidding, round monotonicity is satisfied by Theorem 3. Bundle monotonicity is
satisfied under truthful bidding in the first round by free disposal and in subsequent rounds by
round monotonicity. We provide the proof of the sufficiency of the activity rules in theAppendix. 8

Proposition 5. Under activity rules RM and BM, every bidding strategy of buyers is consistent
in uQCE-invariant auctions.

If we assume such consistency, then we have the following result. The proof resembles similar
proofs in [16,6,11] and is provided in the Appendix.

Theorem 5. In a uQCE-invariant auction with activity rules that ensure consistency, truthful
bidding is an ex post Nash equilibrium.

This equilibrium does not require that the auction terminates with UCE prices for every valuation
profile, as long as the auction terminates with CE prices of the main economy for any deviation
from truthful bidding. This is useful for auctions that terminate with UCE prices for restricted
valuations, but for which a deviation from truthful bidding may lead to termination with CE prices
but not UCE prices, e.g., auctions in [3,11].

This gives us a corollary for a uQCE-invariant auction for the main economy which achieves
the VCG outcome only in restricted valuation domains. A sufficient condition for the existence
of such an auction is the BAS condition (Theorem 4).

Corollary 1. If buyers are substitutes, then every uQCE-invariant auction for the main economy
with activity rules that ensure consistency has truthful bidding as an ex post Nash equilibrium.

3.5. Discussion

Having defined ascending price auctions by relaxing the condition that payments should be
equal to final prices, we defined a class of auctions that we term the uQCE-invariant auctions.
These auctions provide some structure in that they restrict the price path to one in which prices
are only increased to active buyers in a particular way, and in that they require termination as soon
as a UCE price vector is achieved.

8 There are other interesting ways to ensure such consistency in bidding (see for instance [27,3]).
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In choosing the critical buyers, to whom prices are increased, we can define different uQCE-
invariant auctions. In fact, one can select an arbitrary set of buyers Ut ⊆ B+(pt ) (i.e., who do not
have ∅ in their demand sets and are still actively bidding) as the critical buyers. Such an auction
will still maintain uQCE prices and terminate with the VCG outcome. This illustrates the power
of our construction.

However, there is a drawback in selecting a completely arbitrary set of critical buyers to define
price adjustments. For instance, we prefer not to select the largest possible set of critical buyers in
each round. This extreme case would simply increase prices to a buyer as long as it is still actively
bidding. We prefer to avoid this because such an auction would tend to terminate with final prices
that approach the valuations of buyers. Unless a UCE price vector is discovered sooner, such an
auction could even terminate with prices equal to valuations and elicit all preference information.
This will make the ascending price auction equivalent to a sealed-bid auction in terms of preference
elicitation. This is clearly undesirable and serves to illustrate that some care in selecting the critical
buyers is important to maintain the elicitation properties that we associate with ascending price
auctions.

In addition to avoiding unnecessary elicitation, smaller UCE prices imply smaller discounts
and this serves to improve the auction’s transparency and simplicity. Indeed, we prefer to achieve
zero discounts when possible. On the other hand, selecting a minimal set of critical buyers in each
round would mean choosing to increase prices to a single buyer still actively bidding. This could
lead to very slow progress, particularly when additional price adjustments are already known to
be necessary.

So, we prefer to strike a balance and adjust the prices on a set of buyers such that:

(i) we maintain transparency and avoid unnecessary demand revelation by making only those
price adjustments that are necessary to make progress towards UCE prices, and

(ii) we make quick enough progress in the auction by making multiple price adjustments in each
round when there is evidence that prices to multiple buyers must be increased to make progress
towards UCE prices.

In the rest of the paper, we will discuss two approaches to identify critical buyers in every round
of a uQCE-invariant auction. These two approaches define two types of uQCE-invariant auctions
which we relate to existing auctions in the literature. Besides adopting the economic properties
outlined in this section, the specific auctions that we identify also have appeal to optimization
algorithms (discussed in detail in [11]), and thus have a nice algorithmic justification.

4. Identifying critical buyers via a primal-dual algorithm

One choice of a set of critical buyers is inspired by de Vries et al. [11]. Using this choice
allows us to interpret the corresponding auction as a primal-dual algorithm that terminates with
UCE prices. We will defer these interpretation details to the Appendix. Instead, we will simply
introduce the method used to define the critical buyers, which pins down the price adjustment
method and thus the particular auction instance in the class.

In general, our auction maintains a price vector p ∈ R
|B|×|�|
+ . Consider an economy E(M) for

some M ∈ B. For any X ∈ L∗(pM) at price vector p, we say a buyer i is unsatisfied in economy
E(M) if Xi /∈ Di(p). Denote the total set of unsatisfied buyers in a set of buyers K ⊆ M+(p) at
price vector p in allocation X ∈ L∗(pM) as �(X, K, pM). Find an allocation in X∗ ∈ L∗(pM) at
price vector p such that |�(X∗, K, pM)|� |�(X, K, pM)| for every X ∈ L∗(pM). For simplicity,
denote such a group of buyers as �(K, pM).
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Definition 12 (Universally undersupplied buyers).9 A set of buyers K ⊆ M+(p) are undersup-
plied in economy E(M) for some M ∈ B at price vector p if |�(K, pM)| > 0 and pM is a QCE
price vector of economy E(M).

A set of buyers K ⊆ B+(p) are universally undersupplied at price vector p if buyers in
K ∩ M+(p) are undersupplied in economy E(M) for some M ∈ B at price vector p and p is a
u-QCE price vector.

A set of buyers K ⊆ B+(p) are minimally universally undersupplied at price vector p if there
is no smaller K ′�K such that buyers in K ′ are also universally undersupplied at price vector p

and p is a u-QCE price vector.

If a set of buyers K are universally undersupplied at price vector p, then by definition p

is a uQCE price vector but not a UCE price vector. Thus, the buyers in K cannot be satisfied
simultaneously in any solution to winner determination in at least one economy E(M), for some
M ∈ B.

Definition 13 (Price adjustment rule I). The critical buyers for the primal-dual uQCE-invariant
auction in round t is a set of minimally universally undersupplied buyers at price vector pt .

To determine this set of critical buyers we need to solve the traditional problem of winner
determination in the following modified way:

(i) Find the solutions to winner determination for economy E(M), for each M ∈ B.
(ii) For every M ∈ B and for every K ⊆ B+(p) at price p in the auction, pick a solution to

the winner determination problem of economy E(M) to minimize the number of unsatisfied
buyers in the set of buyers K .

From the results of the computation we can find a minimally universally undersupplied set of
buyers by finding a minimal set K for which there is at least one unsatisfied buyer in at least one
economy.

From Theorems 3 and 5, we immediately give the following corollary.

Corollary 2. The primal-dual uQCE-invariant auction achieves the VCG outcome for general
valuations and truthful bidding is an ex post Nash equilibrium.

The primal-dual uQCE-invariant auction generalizes the primal-dual auction in de Vries
et al. [11]. The critical buyers in round t in the auction in de Vries et al. are a set of buyers
which are minimally undersupplied in the main economy at price vector pt . In our auction, we
look for minimally universally undersupplied buyers for price adjustment.

Observe that if K ⊆ B+(p) is a set of minimally universally undersupplied buyers at price
vector p, then K is minimally undersupplied in economy E(M) for some M ∈ B at price vector
p. The approach of considering all economies simultaneously, using universally undersupplied
buyers, is appealing because it gives us a natural way to select an economy E(M) from which
a set of minimally undersupplied buyers are chosen. Besides, it has a primal-dual algorithm
interpretation that considers the main economy and every marginal economy simultaneously (see
Appendix).

9 The idea of undersupplied buyers was introduced in de Vries et al. [11] and we generalize it to define universally
undersupplied buyers.
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One can also adopt a sequential approach, which generalizes the primal-dual auction in de
Vries et al. [11]. For this, at any round of the auction, we just pick some economy E(M) for
which a CE is not achieved yet and run one round of this earlier auction design on that marginal
economy from the current prices. As noted above, de Vries et al. [11] find a set of minimally
undersupplied buyers in order to adjust prices. In particular, in this sequential approach we can
place the elements in B in some order and run this earlier auction for every element with each new
stage starting from the closing prices of the last. If the main economy, E(B), is the first element
chosen, then in the first stage we run the exact auction in de Vries et al. [11].

4.1. A clinching interpretation

We will provide an alternative method to calculate the final discount in the primal-dual uQCE-
invariant auction. This method determines the final discount dynamically during the auction and
thus improves the transparency of the auction. This interpretation of the auction highlights some
similarities with the earlier clinching and credit/debit auctions of Ausubel [1,2].

For this, we will first define some concepts.At any round t of the auction, let Kt be the minimally
universally undersupplied set of buyers. We will say a buyer i ∈ Kt is satisfied in economy E(M)

in round t if i /∈ �(Kt , pt
M). Define Q(pt

M) := Kt \ �(Kt , pt
M). Informally, Q(pt

M) is the set
of all buyers who are satisfied and belong to Kt (i.e., see a price increase) in economy E(M)

in round t . For simplicity, we will write the set of satisfied buyers in the main economy in
round t who see a price increase as Q(pt ). Now, we can track the revenue of the seller across
rounds.

Proposition 6. The change in revenue of the seller in economy E(M) in a round t of the primal-
dual uQCE-invariant auction is |Q(pt

M)| for every M ∈ B.

Proof. The proof proceeds in two steps.
Step 1: Consider economy E(M) for any M ∈ B and let Kt be a minimally universally under-

supplied set of buyers in round t . So, we can satisfy any proper subset of buyers of Kt ∩ M+(pt )

simultaneously, i.e., for every K ′�Kt , �(K ′, pt
M) = ∅. Consider T �(Kt ∩ M+(pt )) such that

T = (Kt ∩ M+(pt )) \ {i}. Since Kt is minimally universally undersupplied, there exists some
allocation X ∈ L∗(pt

M) such that for every j ∈ T , Xj ∈ Dj(p
t ). By considering X again

for simultaneously satisfying buyers in Kt , we get �(Kt , pt
M)�1 (the only potential buyer

who cannot be satisfied is i). This means, |Q(pt
M)|� |Kt ∩ M+(pt )| − 1. From the defini-

tion of Q(pt
M), we have Q(pt

M) ⊆ Kt ∩ M+(pt ). This gives us |Kt ∩ M+(pt )|� |Q(pt
M)|�

|Kt ∩ M+(pt )| − 1.
Step 2: Again, consider economy E(M) for any M ∈ B and let Kt be a minimally universally

undersupplied set of buyers in round t . Let X∗ ∈ L∗(pt
M) be an allocation such that �(Kt , pt

M) =
�(X∗, Kt , pt

M). Since Q(pt
M) denotes the set of satisfied buyers from Kt ∩ M+(pt ) in economy

E(M), the revenue of the seller from X∗ is increased by |Q(pt
M)| due to price increase. Now,

consider any other feasible allocation X �= X∗ of economy E(M). If X /∈ L(pt
M), then the

revenue from X can increase by a maximum |Kt ∩ M+(pt )|. If X ∈ L(pt+1
M ), then the change

in revenue of the seller in economy E(M) is upper-bounded by |Kt ∩ M+(pt )| − 1� |Q(pt
M)|

(using the result in Step 1). If X ∈ L(pt
M), the maximum number of buyers that can be satisfied

in K ∩ M+(pt ) is |Q(pt
M)| (using the result in Step 1). This means, the revenue from allocation

X can increase by a maximum of |Q(pt
M)|. These arguments imply that the change in revenue of

the seller is |Q(pt
M)| in economy E(M). �
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Proposition 6 shows that by identifying the critical buyers, we can also determine the change
in revenue of economy E(M) for every M ∈ B in a round of the primal-dual uQCE-invariant
auction.10 This fact enables us to improve the transparency and simplicity of our auction by
allowing us to calculate the discounts of the buyers dynamically.

In this modified version of the primal-dual uQCE-invariant auction, we maintain a vector of
discounts on buyers in each round, starting from zero. In every round t of the auction, the discount
of buyer i is updated by |Q(pt )| − |Q(pt

−i )|. From Proposition 6, this is the difference between
the increase in revenue in the main economy and the increase in revenue in the marginal economy
without buyer i.

It is important to observe that for any buyer i, the discount (henceforth, denoted by �i)
can increase or decrease or remain the same across rounds of the auction. For instance, con-
sider a scenario when the minimally universally undersupplied set is a singleton set {k}. If k

is not in any of the revenue maximizing allocations of the main economy, then the revenue of
the main economy will not increase. But k can be in the revenue maximizing allocation of a
marginal economy. This can increase the revenue of that marginal economy and thus decrease
the discount of the corresponding buyer. An analogous analysis explains how the discount can
increase in some rounds. If the value |Q(pt )| − |Q(pt

−i )| is positive (negative), then it indi-
cates crediting (debiting) to the price in a particular round. This is illustrated with an example in
Table 2 in Section 4.2. Thus, we have both crediting and debiting. We call this variant of the primal-
dual uQCE-invariant auction the primal-dual credit-debit auction. We give a formal definition
below.

Definition 14 (Primal-Dual Credit-Debit auction). The primal-dual credit-debit auction is de-
fined as follows:

(S0) The auction starts at the zero price vector. Set the initial discounts of buyers to zero: �i = 0
for all i ∈ B.

(S1) In round t of the auction, with price vector pt :
(S1.1) Collect demand sets of buyers at price vector pt .
(S1.2) If pt is a UCE price vector, then go to Step S2.
(S1.3) Else, select a set of minimally universally undersupplied buyers Kt ⊆ B+(pt ), who

will see a price increase.
(S1.3) If i ∈ Kt and S ∈ Di(p

t ), then pt+1
i (S) := pt

i (S) + 1. Else, pt+1
i (S) := pt

i (S).
(S1.4) For every buyer i ∈ B, update the discount �i as �i := �i + [|Q(pt )| − |Q(pt

−i )|
]
.

Repeat from Step (S1.1).
(S2) The auction ends with the final allocation of the auction being any X ∈ L∗(p) and final

payment of every buyer i ∈ B being pi(Xi) − �i , where p is the final price vector of the
auction.

Using Theorems 3 and 5, we immediately get the following corollary.

Corollary 3. The primal-dual credit-debit auction achieves the VCG outcome for general valu-
ations and truthful bidding is an ex post Nash equilibrium.

10 We show in the Appendix that the minimally universally undersupplied buyers is the solution to a linear program and
the change in revenue of every economy in a round can be found from the solution of the same linear program.
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Table 2
Progress of the primal-dual credit-debit auction in an example for which buyers are not substitutes

Buyer 1 Buyer 2 Buyer 3 Revenues Discounts
{1} {2} {1, 2} {1} {2} {1, 2} {1} {2} {1, 2} �s (·) �1,�2,�3

Values → 3 0 3 0 6 6 0 2 4

1 (0) 0 (0) 0 (0) (0) 0 0 (0) 0,0,0,0 0,0,0
A minimally universally undersupplied set of buyers: {1, 3}

2 (1) 0 (1) 0 (0) (0) 0 0 (1) 1,1,1,1 0,0,0
A minimally universally undersupplied set of buyers: {2}

3 (1) 0 (1) 0 (1) (1) 0 0 (1) 2,1,1,2 1,1,0
A minimally universally undersupplied set of buyers: {3}

4 (1) 0 (1) 0 (1) (1) 0 (0) (2) 2,2,2,2 0,0,0
A minimally universally undersupplied set of buyers: {2}

5 (1) 0 (1) 0 (2) (2) 0 (0) (2) 3,2,2,3 1,1,0
A minimally universally undersupplied set of buyers: {1}

6 (2) 0 (2) 0 (2) (2) 0 (0) (2) 4,2,2,4 2,2,0
A minimally universally undersupplied set of buyers: {2, 3}

7 (2) 0 (2) 0 (3) (3) 0 (1) (3) 5,3,3,5 2,2,0
A minimally universally undersupplied set of buyers: {2, 3}

8 (2) 0 (2) 0 (4) (4) (0) (2) (4) 6,4,4,6 2,2,0
A UCE price vector is found (Note: Buyer 3 also demands ∅ in this round).
Final allocation: {{1}, {2}, ∅}; Final payment: (0, 2, 0)

It is interesting to compare this credit-debit auction with Ausubel’s earlier auctions. Ausubel’s
auctions in [2,1] calculate VCG payments dynamically during the auction, through clinching in
the case of homogeneous items and decreasing marginal valuations [1], and through the “crediting
and debiting” of payments in the case of heterogeneous items and substitutes valuations [2]. As
in our auctions, the prices in Ausubel’s auctions do not reflect the actual payment of buyers. As
discussed earlier, Ausubel’s auction for homogeneous items [1] can be interpreted as a uQCE-
invariant auction [6] and our auction generalizes this to allow for arbitrary preferences. In contrast,
each buyer in Ausubel’s auction for heterogeneous items [2] faces multiple price paths and this
is not a uQCE-invariant auction. There is no single final price vector that corresponds to a UCE
price vector.

4.2. An example

Table 2 shows the progress of the primal-dual credit-debit auction for an example. The columns
corresponding to buyers show prices on bundles. The bundles which have prices in (·) are
in the demand set of the respective buyers. The seller’s revenue in economy E(M) for M ∈
{B, B−1, B−2, B−3} is shown in every round. In the last column, we show the update to the dis-
counts of each buyer. Observe that the discount of each buyer (weakly) increases in every round
except from round 3 to round 4. The auction ends at a UCE price vector in 8 rounds.
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5. Identifying critical buyers as an extension to the iBundle auction

In Parkes [23] (also see Parkes and Ungar [26]), an auction called iBundle was designed. The
auction is also designed within a linear programming framework, but is distinguished from the
auction of de Vries et al. [11] in that the price adjustment step in each round is that of a subgradient
algorithm rather than a primal-dual algorithm. iBundle, like the auction of de Vries et al. [11], is
an uQCE-invariant(0) auction for the main economy.

In this section, we extend iBundle to define a uQCE-invariant auction.We call this generalization
iBundle, Extend andAdjust (iBEA). The price adjustment step in this auction is simpler than in the
primal-dual uQCE-invariant auction. Also, the natural perception about auctions in practice is that
only losing buyers should face higher prices. This is the case in iBEA, in which the critical buyers
in each round are a set of losing buyers of some economy, but is not the case in the primal-dual
uQCE-invariant auction.

To describe iBundle, we reiterate that �(M, pM) denotes a minimum set of buyers from M

who cannot be satisfied at price pM in any allocation in L∗(pM). iBundle chooses such a set of
buyers as the critical buyers. iBundle terminates as soon as CE prices of the main economy is
reached and with no discount to buyers from the final prices.

To define iBEA as a uQCE-invariant auction, we need to define the critical buyers for this
auction.

Definition 15 (Price adjustment rule II). The critical buyers for iBEA are found in round t as
follows:

• Select an economy E(M) (M ∈ B) for which �(M, pt
M) �= ∅. Then �(M, pt

M) is the set of
critical buyers.

Call the selected economy the pivot economy. In this definition, an economy that is not yet in
CE is selected at random in each round and prices of a minimal set of unsatisfied buyers in that
economy are adjusted. Using Theorems 3 and 5, the following corollary is immediate.

Corollary 4. iBEA achieves the VCG outcome for general valuations and truthful bidding is an
ex post Nash equilibrium.

The following properties of uQCE-invariant auctions allow for a simplification to the definition
of iBEA.

Lemma 2. Consider a round t of a uQCE-invariant auction where the price vector pt is adjusted.
If pt

M is a CE price vector of economy E(M) for some M ∈ B, then pt+1
M is also a CE price

vector of economy E(M).

Proof. Let Ut be the set of critical buyers in round t of the uQCE-invariant auction. By definition,
(Ut ∩M) ⊆ M+(pt ). Since price increase in a uQCE-invariant auction is by unity, the maximum
revenue increase of the seller is |Ut ∩ M|. Let (pt

M, X) be a CE of economy E(M). Since
(Ut ∩ M) ⊆ M+(pt ), Xi ∈ Di(p

t ) for every i ∈ (Ut ∩ M). By the price adjustment in uQCE-
invariant auctions, the increase in revenue from allocation X in economy E(M) is |(Ut ∩ M)|.
This means, X remains revenue maximizing for the seller at price vector pt+1

M . From Lemma 1,
for every buyer i ∈ M , if Xi ∈ Di(p

t ), then Xi ∈ Di(p
t+1). Thus, (pt+1

M , X) is a CE of economy
E(M). �
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The implication of Lemma 2 is that once we realize that a CE of economy E(M) is achieved
in iBEA we will not need to consider that economy again when selecting critical buyers in later
rounds.

As with our first auction, we can again implement a “sequential” variation of iBEA in which
we order the economies defined in B in some sequence. Then, we consider these economies in
that order one by one. For every set of buyers M in that sequence, construct critical buyers as
in Definition 15 in every round of iBEA until a CE of economy E(M) is reached. If the main
economy is the first such economy selected, then buyers will know about their final allocation
of items at the end of this phase. So, they may lose interest in participating in later rounds of
the auction because bidding in these stages does not change their final allocation. By making the
main economy the last pivot economy this issue can be overcome.

5.1. A clinching interpretation of iBEA

The clinching interpretation idea for the primal-dual credit-debit auction can also be extended
to iBEA. At every round of iBEA, for every buyer i ∈ B, we can define the new discount of i as
�s(pt ) − �s(pt

−i ). With this, we can track the discounts of every buyer dynamically and apply it
at the end of the auction. For an economy that has reached a CE, the increase in revenue can be
calculated from the following lemma, proof of which follows from the arguments in the proof of
Lemma 2.

Lemma 3. Consider a round t of a uQCE-invariant auction where the price vector pt is adjusted.
If pt is a CE price vector of economy E(M) for some M ∈ B, then the increase in revenue of the
seller in economy E(M) is |Ut ∩ M|, where Ut is the set of critical buyers in round t .

Note that the increase in revenue of an economy that has not yet reached a CE in iBEA is more
difficult to track than in the earlier auction. Now, we must explicitly calculate the revenue in such
an economy in each round, by solving an additional winner determination problem.

5.2. An example

The example in Table 3 has three buyers and two items. The values of buyers are shown in the
third row. Subsequent rows illustrate the progress of the auction in each round. Each row provides
the prices on each bundle to each buyer, and the seller revenue in the main economy and in each
marginal economy. The bid of each buyer is indicated with parentheses. Comments in each round
indicate which allocation is selected to solve the winner determination (WD) problem. The main
economy E(B) is adopted as the initial pivot economy. iBundle for E(B) terminates in round
7, at which point the price vector is also a CE price vector of economies E(B−2) and E(B−3).
Pivot economy E(B−1) is adopted for the final two rounds, at which point iBEA terminates with
a UCE price vector.

6. Summary and open questions

We introduced a class of efficient ascending price combinatorial auctions. The auctions achieve
the VCG outcome for private valuations that respect no externalities and free disposal, but without
requiring any additional restrictions. Truthful bidding is an ex post Nash equilibrium for buyers.
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Table 3
Progress of iBEA for an example

Buyer 1 Buyer 2 Buyer 3 Seller revenue
{1} {2} {1, 2} {1} {2} {1, 2} {1} {2} {1, 2} in main and

Values → 3 0 3 0 6 6 0 2 4 marginal economies

1 (0) 0 (0) 0 (0) (0) 0 0 (0) {0,0,0,0}
Pivot: E(B). WD selects {{1}, {2}, ∅}. Buyer {3} is unsatisfied.

2 (0) 0 (0) 0 (0) (0) 0 0 (1) {1,1,1,0}
Pivot: E(B). WD selects {∅, ∅, {1, 2}}. Buyers {1, 2} are unsatisfied.

3 (1) 0 (1) 0 (1) (1) 0 0 (1) {2,1,1,2}
Pivot: E(B). WD selects {{1}, {2}, ∅}. Buyer {3} is unsatisfied.

4 (1) 0 (1) 0 (1) (1) 0 (0) (2) {2,2,2,2}
Pivot: E(B). WD selects {{1}, {2}, ∅}. Buyer {3} is unsatisfied.

5 (1) 0 (1) 0 (1) (1) 0 (1) (3) {3,3,3,2}
Pivot: E(B). WD selects {∅, ∅, {1, 2}}. Buyers {1, 2} are unsatisfied.

6 (2) 0 (2) 0 (2) (2) (0) (1) (3) {4,3,3,4}
Pivot: E(B). WD selects {{1}, {2}, ∅}. Buyer {3} is unsatisfied.

7 (2) 0 (2) 0 (2) (2) (0) (2) (4) {4,4,4,4}
CEs of economies E(B), E(B−2), and E(B−3) are reached.
Note: Buyer 3 also demands ∅ from this round onwards.
{{1}, {2}, ∅} is an efficient allocation of E(B).
Pivot: E(B−1). WD selects {∅, ∅, {1, 2}}. Buyer {2} is unsatisfied.

8 (2) 0 (2) 0 (3) (3) (0) (2) (4) {5,4,4,5}
Pivot: E(B−1). WD selects {∅, ∅, {1, 2}}. Buyer {2} is unsatisfied.

9 (2) 0 (2) 0 (4) (4) (0) (2) (4) {6,4,4,6}
An UCE price vector is reached.
Final allocation: {{1}, {2}, ∅}; Final payment: (0, 2, 0).

Crucially, we have relaxed the traditional definition of an ascending price auction to allow for
discounts to buyers at the end of the auction. Our relaxation retains the simplicity of a single price
path. The auctions use the concept of universal competitive equilibrium (UCE) prices. We showed
that any ascending Vickrey auction for the combinatorial allocation problem must terminate with
a UCE price vector, and that terminating with a UCE price vector is sufficient to determine the
Vickrey payments.

We provided two specific examples of auctions within the general class. One of them generalizes
the auction in de Vries et al. [11] from the restricted valuation class of buyer-submodularity
(roughly equivalent to substitutes) to general valuations. The other generalizes the iBundle auction
in Parkes and Ungar [26], also from the sub-class of buyer-submodularity to general valuations.
The auctions can also be viewed as a generalization ofAusubel’s clinching [1] auction for marginal
decreasing valuations because we also provide interpretations in which the final discounts of
buyers (and thus the payments) are determined dynamically across rounds. Table 4 summarizes
our contribution to the ascending price Vickrey auctions literature.
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Table 4
Characteristics of ascending price Vickrey auctions for multiple items

Auctions Conditions under Number of Search for Is final price
(Type of items) which the VCG price paths a CE of equal to final

outcome is achieved economy payment?

Demange et al. [13] Unit demand Single Main Yes
(Heterogeneous)

Ausubel [2] Non-increasing Single Main Yes
(Homogeneous) marginal values

de Vries et al. [11] Buyers are submodular Single Main Yes
Ausubel and Milgrom [3]
Parkes and Ungar [26]
(Heterogeneous)

de Vries et al. [11] General valuations Multiple Main Yes
(Heterogeneous) (but on

different
price paths)

Ausubel [1] Gross substitutes Multiple Main and No
(Heterogeneous) marginal

Our contributions
uQCE-invariant Buyers are substitutes Single Main No
auctions for
main economy
(Heterogeneous)

uQCE-invariant General valuations Single Main and No
auctions marginal
(Heterogeneous)

Although the worst-case number of prices in our auctions is exponential in the number of
items, this cost will generally not be incurred in practice. The number of prices that must be
quoted is bounded by the number of bundles which interest the buyers. In special cases, like the
homogeneous items/units case, the number of such bundles can be polynomial (in the number of
units).

An interesting direction for future work is to find a characterization of valuations for which
auctions with linear and non-anonymous prices or non-linear and anonymous prices can achieve
the VCG outcome.

Appendix A. The primal-dual uQCE-invariant auction

In this section, we interpret our primal-dual uQCE-invariant auction as a primal-dual
algorithm.11 We provide no new results in this section, but give an alternate (algorithmic) view
of the primal-dual uQCE-invariant auction defined in Section 4.

To do this, we formulate the problem of finding a UCE price vector as a linear program. Using
primal and dual feasibility with CS conditions CS-1 and CS-2, we formulate the CE of economy

11 Papadimitriou and Steiglitz [22] provide a useful text-book treatment of the family of primal-dual algorithms.
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E(M) for any M ⊆ B as follows (yM
i (S) = 1 denotes the allocation of bundle S to buyer i,

zM(X) = 1 denotes that the seller has selected allocation X, and the superscripts indicate that the
variables corresponding to economy E(M)):

(CE(M, p))

yM
i (S) =

∑
X∈L∗(pM):Xi=S

zM(X) ∀ i ∈ M, ∀ S ∈ Di(p) ∪ {∅}. (5)

∑
S∈Di(p)

yM
i (S) = 1 ∀ i ∈ M+(p). (6)

∑
∅�=S∈Di(p)

yM
i (S)�1 ∀ i ∈ M \ M+(p). (7)

∑
X∈L∗(pM)

zM(X) = 1. (8)

yM
i (S)�0 ∀ i ∈ M, ∀ S ∈ Di(p) ∪ {∅}.

zM(X)�0 ∀ X ∈ L∗(pM).

The first set of constraints in (5) enforce the balance of supply and demand. Constraints (6) and
(7) indicate the demand in the economy, with buyers assigned to bundles in their demand set only.
Constraint (8) indicates the supply, with a seller selecting an allocation that maximizes his payoff
and is compatible with the demands of the buyers. Any allocation in L∗(pM) is such an allocation,
by definition. If the linear program is feasible at price vector p, then pM is a CE price vector of
economy E(M). If the linear program is feasible at price vector p for every M ∈ B, then p is
also a UCE price vector.

In the spirit of a primal-dual algorithm, we can construct a restricted primal problem for
formulation (P(M)). This is already achieved in de Vries et al. [11], who adopt a primal-dual
algorithm for the main economy to design their auction. In our formulation, we combine the
restricted primal problems of the main economy and every marginal economy and maintain a
single price vector (a set of dual variables) for the main and the marginal economies. This yields
a uQCE-invariant auction.

Formally, our restricted primal is introduced by relaxing the CE formulation (CE(M, p)) by
introducing artificial variables (�M ) into constraints (6) for every M ∈ B. Using this, we define
the quasi-CE price vector in an alternative manner using a set of linear inequalities:

Definition 16 (Quasi-CE price). A price vector p is a quasi-CE price vector of economy E(M)

for some M ⊆ B, if there is a feasible solution to (CE(M, p)) with constraints (6) relaxed to:

∑
S∈Di(p)

yM
i (S) + �M

i = 1 ∀ i ∈ M+(p) (QUASI(M, p))

�M
i �0 ∀ i ∈ M+(p).

The effect of the relaxation is to allow the seller to still select a revenue maximizing allocation
from L∗(pM), but to relax constraints (6) so that having buyers who are not allocated a bundle
from their respective demand sets can be allowed. In particular, in a solution for which all artificial
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variables (�M
i ) are zero, p is a CE price vector of economy E(M), and if such feasible solutions

exist for every M ∈ B then p is also a UCE price vector.
The relaxed formulation is useful because it is always feasible as long as L∗(pM) is non-empty

(since values for variables yM, zM, �M can then be chosen to attain feasibility). Now, denote the
feasible region of (QUASI(M, p)) at price vector p as F(M, p). Our restricted primal problem
introduces these artificial variables for economy E(M) for every M ∈ B and tries to minimize
their summed value. Combining the feasible regions of (QUASI(M, p)) in economies E(M) for
every M ∈ B, we can write the following restricted primal for any K ⊆ B+(p):

�(K, p) = max −
∑
M∈B

∑
i∈K∩M+(p)

�M
i . (RP(K, p))

s.t. (yM, zM, �M) ∈ F(M, p) ∀ M ∈ B.

If buyer i has �M
i = 0 for all M ∈ B, we call i a satisfied buyer. Else, i is called an unsatisfied

buyer.
The feasible region of (RP(K, p)) is the union of feasible regions of (QUASI(M, p)) for all

M ∈ B. For any K ∈ B+(p), the value of the objective function indicates the number of buyers
from K that cannot be satisfied simultaneously in the main economy as well as in every marginal
economy. Formulation (RP(K, p)) is feasible if p a uQCE price vector. Observe that the feasible
region of (RP(K, p)) is independent of the choice of K ⊆ B+(p).

Any uQCE-invariant auction will start with a feasible solution to (RP(K, p)), and identify
critical buyers to maintain a uQCE price vector. Observe that if �(K, p) < 0, then for some M ⊆
B, K is a set of undersupplied buyers in economy E(M). This gives us an alternate definition
of universally undersupplied buyers, which is useful to interpret our auction as a primal-dual
algorithm.

Definition 17 (Universally undersupplied buyers). A set of buyers K ⊆ B+(p) is universally
undersupplied at price vector p if p is a uQCE price vector and �(K, p) < 0.

Given a universally undersupplied set of buyers K , it is sufficient that �(K−i , p) = 0 for every
i ∈ K for K to be minimally universally undersupplied. This can be seen from the fact that the
feasible region of (RP(K, p)) is independent of K . Thus, at any price vector p, a feasible solution
of (RP(K−i , p)) is also feasible for RP(K ′, p) for every K ′ ⊆ K−i . Now, consider the optimal
solution of (RP(K−i , p)) at price vector p for which �(K−i , p) = 0. For any K ′ ⊆ K−i , this
solution is also feasible for (RP(K ′, p)) and �(K ′, p) = 0.

Given the restricted primal formulation we can proceed to define our critical buyers. If the
optimal solution to (RP(B+(p), p)) is zero, we have found a UCE price vector and we stop. Else,
we look for the dual of (RP(K, p)) for some universally undersupplied buyers K ⊆ B+(p) to
define a class of critical buyers.

We note that the primal problem for which we are solving the primal-dual algorithm is simply
the efficient allocation problem of the main economy and every marginal economies combined
together. So, the dual of such a primal problem will have a separate price variable (and payoff
variables for the buyers and the seller) for every economy. Thus, the dual of our restricted primal
should give different price adjustment directions for each of these price vectors. But, what we
show is that the same price adjustment (and thus payoff adjustments) is made across all economies.
This is possible because of the starting dual feasible solution we take and the way we do price
adjustment. Thus, and starting from a single price vector for all economies, our price adjustment
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direction allows us to maintain a single price vector for the main and for every marginal economy
throughout the auction.

At any price vector p, if �(B+(p), p) = 0, then the auction (primal-dual algorithm) can
terminate. Otherwise, we find an optimal solution to the dual of (RP(K, p)), for some K ⊆ B+(p)

for which �(K, p) < 0, which is the following formulation:

�(K, p) = min
∑
M∈B

[
�M +

∑
i∈M

�M
i

]
. (DRP(K, p))

s.t.

�M
i + �M

i (S)�0 ∀ M ∈ B, ∀ i ∈ M, ∀ S ∈ Di(p).

�M − �M
i (Xi)�0 ∀ M ∈ B, ∀ X ∈ L∗(pM).

�M
i �0 ∀ M ∈ B, ∀ i ∈ M \ (K ∩ M+(p)).

�M
i � − 1 ∀ M ∈ B, ∀ i ∈ K ∩ M+(p).

�M
i (∅)�0 ∀ M ∈ B, ∀ i ∈ M+(p),

Variable �M will be interpreted as the change in revenue of the seller in economy E(M) in this
round, and �M

i will be interpreted as the change in payoff of buyer i. An optimal solution to this
problem provides the direction in which we adjust prices in the auction:

Lemma 4. If p is a uQCE price vector, then for any universally undersupplied set of buyers
K ⊆ B+(p), there is an optimal solution to (DRP(K, p)) such that �M

i (S) = 1 ∀ M ∈ B, ∀ i ∈
K ∩ M+(p), ∀ S ∈ Di(p) and �M

i (S) = 0 otherwise.

Proof. For any M ∈ B, we say a buyer i ∈ M is satisfied in economy E(M) if �M
i = 0 in the

optimal solution of restricted primal (RP(K, p)). Let Q(pM) denote the set of satisfied buyers
from set K ∩ M+(p) in economy E(M) for every M ∈ B at price vector p. This means that at
optimality of (RP(K, p)) we have,

�(K, p) =
∑
M∈B

[|Q(pM)| − |K ∩ M+(p)|] . (9)

Set �M
i = −1 for all i ∈ K ∩M+(p) and �M

i = 0 otherwise for every M ∈ B. Set �M = |Q(pM)|
for every M ∈ B. This is clearly feasible for (DRP(K, p)) and optimal using (9). �

Lemma 4 shows that the particular set of critical buyers in the primal-dual uQCE-invariant
auction is an optimal solution of the dual of an appropriate restricted primal and thus defines
a primal-dual price adjustment direction. This gives an algorithmic justification for the price
adjustment.

There is still some flexibility in exactly how to adjust prices, because Lemma 4 allows one to
choose any set of universally undersupplied buyers on which to adjust prices. For instance, the
largest universally undersupplied set of buyers is B+(p), but there can be smaller sets.

We choose to adjust the prices on a minimally universally undersupplied set of buyers for reasons
explained earlier in Section 3.5. Thus, a minimally universally undersupplied set of buyers define
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a class of critical buyers. This in turn defines a uQCE-invariant auction using a primal-dual
algorithm which is the primal-dual uQCE-invariant auction.

Appendix B. Some proofs

Proof of Proposition 5. Let p be the price vector in the auction in some round. We will show
that bidding strategy of every buyer is consistent in each round t till this round. By bundle
monotonicity, for every buyer i /∈ B+(p), we have Di(p) = �. Also, by round monotonicity, if a
bundle S /∈ Di(p), then pi(S) = 0. Now, construct the valuation profile v� (using p) as follows.
For every buyer i ∈ B+(p),

v�
i (S) =

{
pi(S) + � ∀ S ∈ Di(p),

pi(S) = 0 otherwise

for some small � > 0. For every buyer i ∈ B \ B+(p), construct valuation, v�
i , as

v�
i (S) = pi(S) ∀ S ∈ Di(p) = �.

Consider a buyer i and any bundle S ∈ �. If S ∈ Di(p), then by bundle monotonicity for
every T ⊇ S, we have T ∈ Di(p). From, the starting price vector and round monotonicity,
pi(T )�pi(S). This implies v�

i (T )�v�
i (S). If S /∈ Di(p), by round monotonicity and starting

price vector, we get pi(S) = 0 and thus v�
i (S) = 0. So, for every T ⊇ S, we have v�

i (T )�v�
i (S).

This shows that v�
i is a general valuation satisfying free disposal.

For every buyer i ∈ B, every bundle S ∈ � and every round t of the auction, define �t
i (S) :=

pi(S) − pt
i (S). Also, observe the following:

1. If S ∈ Di(p
t ), then S ∈ Di(p) (round monotonicity). This means, �t

i (S) = r − t , where r

denotes the number of rounds in the auction so far. So, from the definition of v�
i , the payoff of

buyer i from bundle S is: � + (r − t) if i ∈ B+(p) and r − t if i /∈ B+(p).
2. If S /∈ Di(p

t ), then �t
i (S) < r − t . From the definition of v�

i , the payoff of buyer i from bundle
S is less than r − t .

These two observations show that in every round of the auction so far, v� is consistent with the
demand set profile in that round. �

Proof of Theorem 5. Assume that there is a buyer i which does not follow truthful bidding,
while other buyers follow truthful bidding. Buyer i has no incentive to follow a strategy which
makes the auction run infinitely. So, buyer i is (weakly) better off following a strategy in which the
auction terminates. Let p be the final price vector in the auction. From Proposition 5, consistency
is possible using activity rules RM and BM in every round of the auction.

Since bidding in every round is consistent with some valuation profile, every uQCE-invariant
auction terminates finitely such that if X is the final allocation chosen and p is the final price
vector in the auction, then Xi ∈ Di(p) for every i ∈ B and the revenue of the seller in the main
economy is given by �s(p) = ∑

i∈B pi(Xi).
Now, assume that there is some buyer i which does not follow truthful bidding strategy whereas

buyers in B−i follow truthful bidding strategy. This means, (p−i , �−i (p), �s(p−i )) is a dual
feasible solution of (D(B−i)) and, we can write the following from weak duality:∑

j∈B−i

�j (p) + �s(p−i )�V (B−i ). (10)
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Let Y be an efficient allocation of the main economy and �vcg
i be the Vickrey payoff of buyer i.

Now,

�vcg
i = V (B) − V (B−i )

= vi(Yi) +
∑

j∈B−i

vj (Yj ) − V (B−i )

�vi(Xi) +
∑

j∈B−i

vj (Xj ) − V (B−i ) (From efficiency of Y )

= vi(Xi) − pi(Xi) +
∑

j∈B−i

[vj (Xj ) − pj (Xj )] +
∑
j∈B

pj (Xj ) − V (B−i )

= vi(Xi) − pi(Xi) +
∑

j∈B−i

�j (p) + �s(p) − V (B−i )

�vi(Xi) − pi(Xi) + �s(p) − �s(p−i ) (From (10)).

But, by the payment rule of a uQCE-invariant auction, vi(Xi) − pi(Xi) + �s(p) − �s(p−i ) is
the actual payoff (after discount) of buyer i at the end of such an auction. This means, buyer i is
better off following the truthful bidding strategy. �

References

[1] L.M. Ausubel, An efficient ascending-bid auction for multiple objects, Amer. Econ. Rev. 94 (5) (2004) 1452–1475.
[2] L.M. Ausubel, An efficient dynamic auction for heterogeneous commodities, Amer. Econ. Rev. 2006, forthcoming.
[3] L.M. Ausubel, P.R. Milgrom, Ascending auctions with package bidding, Frontiers Theoretical Econ. 1 (1) (2002)

1–42.
[4] L.M. Ausubel, P.R. Milgrom, Ascending proxy auctions, in: P. Cramton, Y. Shoham, R. Steinberg (Eds.),

Combinatorial Auctions, MIT Press, Cambridge, 2006(Chapter 3) forthcoming.
[5] S. Bikhchandani, S. de Vries, J. Schummer, R.V. Vohra, Linear programming and Vickrey auctions, in: Mathematics

of the Internet: E-Auction and Markets, vol. 127, pp. 75–116, IMA Volumes in Mathematics and its Applications,
2002.

[6] S. Bikhchandani, J. Ostroy, Ascending price Vickrey auctions, Games Econ. Behav. 2002, forthcoming.
[7] S. Bikhchandani, J. Ostroy, The package assignment model, J. Econ. Theory 107 (2) (2002) 377–406.
[8] E. Clarke, Multipart pricing of public goods, Public Choice 8 (1971) 19–33.
[9] O. Compte, P. Jehiel, Auctions and information acquisition: sealed-bid or dynamic formats?, Technical Report,

CERAS and UCL, 2002.
[10] P. Cramton, Ascending auctions, Europ. Econ. Rev. 42 (1998) 745–756.
[11] S. de Vries, J. Schummer, R.V. Vohra, On ascending Vickrey auctions for heterogeneous objects, J. Econ. Theory,

2005, forthcoming.
[12] S. de Vries, R.V. Vohra, Combinatorial auctions: a survey, Informs J. Computing 15 (3) (2003) 284–309.
[13] G. Demange, D. Gale, M. Sotomayor, Multi-item auctions, J. Polit. Economy 94 (4) (1986) 863–872.
[14] J.R. Green, J.J. Laffont, Characterization of satisfactory mechanisms for the revelation of preferences for public

goods, Econometrica 45 (1977) 427–438.
[15] T. Groves, Incentives in teams, Econometrica 41 (1973) 617–631.
[16] F. Gul, E. Stacchetti, The English auction with differentiated commodities, J. Econ. Theory 92 (1) (2000) 66–95.
[17] P. Jehiel, M. Meyer-ter-Vehn, B. Moldovanu, W.R. Zame, Limits of ex-post implementation, Technical Report,

University of Bonn, 2005.
[18] A.S. Kelso, V.P. Crawford, Job matching, coalition formation, and gross substitutes, Econometrica 50 (6) (1982)

1483–1504.
[19] H.B. Leonard, Elicitation of honest preferences for the assignment of individuals to positions, J. Polit. Economy 91

(3) (1983) 461–479.
[20] D. Mishra, Simple primal–dual auctions are not possible, in: Proceedings of Fifth ACM Conference on Electronic

Commerce (EC’04), New York City, NY, 2004. Appeared as a brief announcement.



366 D. Mishra, D.C. Parkes / Journal of Economic Theory 132 (2007) 335–366

[21] N. Nisan, I. Segal, The communication requirements of efficient allocations and supporting prices, J. Econ. Theory
2005. Forthcoming.

[22] C.H. Papadimitriou, K. Steiglitz, Combinatorial optimization, Prentice-Hall, Englewood Cliffs, NJ, 1982.
[23] D.C. Parkes, iBundle:An efficient ascending price bundle auction, in: Proceedings ofACM Conference on Electronic

Commerce (EC-99), Denver, CO, 1999, pp. 148–157.
[24] J. Padget, D.C. Parkes, Price-based information certificates for minimal-revelation combinatorial auctions, in:

J. Padget, D. Parkes, N. Sadeh, O. Shehory, W. Walsh (Eds.), Agent Mediated Electronic Commerce IV: Designing
Mechanisms and Systems (LNAI 2531), Springer, Berlin, 2002, pp. 148–157.

[25] D.C. Parkes, Auction design with costly preference elicitation, Annals Math. AI 44 (2005) 269–302.
[26] D.C. Parkes, L.H. Ungar, Iterative combinatorial auctions: theory and practice, in: Proceedings of the 17th National

Conference on Artificial Intelligence (AAAI-00), 2000, pp. 74–81.
[27] D.C. Parkes, L.H. Ungar, Preventing strategic manipulation in iterative auctions: theory and practice, in: Proceedings

of the 17th National Conference on Artificial Intelligence (AAAI-00), 2000, pp. 74–81.
[28] M. Perry, P.J. Reny, An efficient multi-unit ascending auction, Technical Report, University of Chicago, 2004.
[29] S. Rassenti, V.L. Smith, R.L. Bulfin, A combinatorial auction mechanism for airport time slot allocation, Bell J.

Econ. 12 (2) (1982) 402–417.
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