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Abstract

We study auctioning multiple units of the same good to potential buyers with single unit demand (i.e. every buyer
wants only one unit of the good). Depending on the objective of the seller, different selling mechanisms are desirable.
The Vickrey auction with a truthful reserve price is optimal when the objective is efficiency - allocating the units to
the parties who values them the most. The Myerson auction is optimal when the objective is the seller’'s expected
utility. These two objectives are generally in conflict, and cannot be maximized with one mechanism. In many real-
world settings—such as privatization and competing electronic marketplaces—it is not clear that the objective should
be either efficiency or seller's expected utility. Typically, one of these objectives should weigh more than the other,
but both are important. We account for both objectives by designing ade&svministicdominant strategy auction
mechanism that maximizes expected social welfare subject to a minimum constraint on the seller's expected utility.
This way the seller can maximize social welfare subject to doing well enough for himself.

The results in this paper are derived under the asymmetric independent private values model, which assumes that
the distributions of buyers’ valuations are common knowledge. We also describe a prior-free mechanism, which does
not assume that the distributions are known. When the number of buyers tends to infinity and the number of units on
sale is at least two, this auction approaches expected efficiency and expected seller’s utility of the auction, designed
with distributions known upfront.

1 Introduction

Electronic commerce has spawned the use of increasingly sophisticated auction mechanisms. There are several pos-
sible reasons for this. First, in many ecommerce settings the bidders are automated agents that are programmed to
act rationally even in complex situations. Also human users of ecommerce systems are typically quite savvy and
able to recognize attractive properties of sophisticated mechanisms. This motivates the analysis of unintuitive auction
mechanisms, which are capable of meeting complicated design objectives.

One example is the Vickrey auction [Vi61]. In this auction wighunits of the same good on salg, highest
bidders win, but only pay the price of the firghsuccessfudid. The Vickrey auction maximizes econonafficiency
aka.social welfare(assuming the reserve price is set to equal the seller’s valuation for a unit of good being sold), that
is, the units end in the hands of the party who values it the most.

Another example is the Myerson auction [My81], which maximizesseder's expected utilityexpectedevenue
in case the seller does not value the objécffhe unintuitive aspect of the Myerson auction is that it sometimes
allocates the goods to bidders other thanghbkighest bidders.

1The formal characterization of the seller's optimal multi-unit mechanism was given by E.Maskin and J.Riley in [MR89]. However in the
single-unit demand case, which is considered in this paper, the seller’s optimal multi-unit mechanism can be derived similarly to the seller’s optimal
single-unit mechanism from [My81]. Therefore we will refer to the seller's-optimal mechanism as Myerson auction.



Expected social welfare and the seller’'s expected utility cannot be maximized with the same auction mechanism
in general because these objectives conflict. Furthermore, in many real-world settings it is not clear that the objective
should be either of the two.

For example, most privatization auctions are motivated by the belief that private companies can make more efficient
use of an asset than the government can. It seems thus reasonable to allocate the asset to the party who can make the
most effective use of it, that is, to use efficiency as the auction objective. At the same time, the government would like
to raise as much money from the sale as possible (maximize the seller’s expected utility) because the asset is owned
by the tax payers who prefer to pay for government expenditures out of the auction revenue rather than taxes.

As another example, consider electronic auction houses that compete with each other. To attract sellers, an auction
house would use an auction mechanism that maximizes the seller’'s expected utility. On the other hand, this would
not be desirable from the perspective of attracting buyers. Clearly, an auction house needs both buyers and sellers to
operate. Therefore, including some element of social welfare measurement in the objective may be desirable.

We account for both objectives by designing a new deterministic auction mechanism that maximizes expected
social welfare subject to a minimum constraint on the seller’s expected utility. This way the seller can maximize
social welfare subject to subject to doing well enough for himself. We show that this auction mechanism belongs to
a family of mechanisms, maximizing a linear combination of the seller’s expected utility and expected social welfare,
controlled by one free paramete? We then present an algorithm for determining the optimal value for this parameter
and constructing an auction with desired characteristics. This approach is different from the traditional mechanism
design - the mechanism is not completely specified upfront - rather we compute the particular mechanism for every
instance of the problem (that is, given the constraint on the revenue and the distributions of buyers’ valuations). In a
way this is similar in spirit to automated mechanism design [CS02].

We also present a family of much simpler randomized mechanismsiidatr some assumptignghich we state
later in the paper achieve the same expected revenue and efficiency. However, in Section 4 we argue, that random-
ization is inappropriate for the settings, which motivate the present work. This discourages the use of the randomized
mechanisms even in the cases, when they yield similar expected revenue and social welfare.

Although most of the results in this paper are derived under the independent private values model, which assumes
that the distributions of valuations (types) of buyers are common knowledge, it is possible to relax this assumption. In
Section 5 we describe a prior-free mechanism, which utilizes the idea of sampling from [BV03]. When the number
of buyers tends to infinity this mechanism approaches expected efficiency and expected seller’s utility of the auction,
designed with distributions known upfront. This way we meet the principle, known as Robert Wilson ddctrine.

2 Framework and notation

We focus on settings with one seller, multiple buyers, and multiple units of the same good on sale. For convenience

buyers are indexed with numbers frdnto n and the set of all buyers is denoted Ny= {1...n}. Index0 always

refers to the seller. We analyze the case of the single unit demand: each buyer wants to buy just one unit ofthe good.
The seller’'s valuation for each item ig. The number of items on sale is denoteddgy We also make the

following usual assumptions about valuations, known asrtiependent private values (IPV) model

1. The valuation of buyeri, v;, is a realization of the random variabl; with the cumulative distributiorf;
and the densityf; : [a;,b;] — [R. Each density functiorf; is continuous and positive da;, b;], and zero
elsewhere.

2. All densitiesf; are common knowledge.

3. All random variablesX; are independent of each other.

2Note that wedo notassume in advance that the tradeoff is attained with a linear combination of seller’s expected utility and expected social
welfare - instead the linearity of the tradeoff is proved explicitly

3Robert Wilson doctrine of mechanism design states that the mechanism should be independent of the prior distribution of the bidder’s valuations

4The case when buyers want to buy more then one good can be handled by the same model as long as buyers’ demand functions are constant
(i.e. a buyer’s valuation for each additional unit of the good is the same as her valuation for the first unit).

5We relax this assumption in Section 5.



We use the following notatiori/ denotes the set of all possible combinations of valuations of buyers:
V = Xienla;,bi] and  V_; = Xjernaylag, byl

We also need a special notation for vectors of valuations:

v o= (’Ul,...,vn)
V_4 = (1117...,1)1‘_1,’[}1‘4_17...’[}”)
(U—ia wi) = (Ulv ey Ui—1, Wiy Vg1 - - - Un)

The joint distribution of the valuations is denoted piv). By the independence assumption we have

f)=1]#w) and fi() =]]f@)
j=1

J#i

Utilities of buyers are assumed to be quasi linear: The utility of buyés u; = p; - v; — t;, wherep; is the
probability that she gets an item, is her valuation, and; is the amount that she has to pay. The utility of the seller
iSug = (qo — iy Pi)Vo + Y iy ti (the first term in the expected number of items kept by the seller).

We try to design anechanisnin order to meet some objective, described later, when each buyer plays the game so
as to maximize his own expected utility. By thevelation principlewe can now, without loss in the objective, restrict
our attention to mechanisms where each bugghfully bids for a unit of good on sale in a sealed-bid format.

Definition 2.1 (sealed-bid mechanismach buyer: submits a bid; for a unit of the good on sale. Upon obtaining

the bids, the seller computes thkocationand thepaymentof each buyer. The allocation is the probability vector
p(b) = (p1(b1),-..pn(by)), wherep;(b;) is the probability that buyer: gets a unit of good, when biddirlg. These
probabilities do not have to sum t@: the seller may keep some units. The payments are specified by the vector
t(b) = (t1(b1),...,tn(bn)), wheret;(b;) is the payment of buyer. Theallocation rulep(b) and thepayment rule(b)

are common knowledge.

The bid of buyeri depends on his valuatian for a unit of good on sale. If each buyer is motivated to submit a bid
that equals that buyers valuation, the mechanismdentive compatibleAs is standard in the literature on optimal
auction design, throughout this paper we focuBalyes-Naslincentive compatibility, that is, each buyer expects to
get highest utility by bidding truthfully rather than insincerely—given that the other buyers bid truthfully. However,
the mechanisms, which we derive in this paper turn to be(alspost) incentive compatible

When all participant are truthful, the expected utility of buyiezan be expressed as follows:

Ui(p,t,v;)) = E,_, [pi(v)vi - ti(v)} = / (pi(v)vi = ti(v)) f-i(v_i)dv_; (2.1)
Vi
When a buyer chooses to bid differently from his true type and given that other bidders bid vectghisr utility
is
Pi(v_i, wi)vy — ti(v_s,w;)
Now, the buyers’ incentive compatibility constraints can be stated formally:

Definition 2.2 (incentive compatibility (1C")
Ui(p, t, ’Ui) > Ey_i [pi(v_i, wi)vi - ti(v_i, wi)]Vvi, w; € [CLz‘, bz], Vie N

The expression on the right side of the inequality is the expected utility of biddinghen the true valuation is;.
Another important property of auction mechanisms is individual rationality. An auction mechanesaiste
individually rational if each buyer is no worse off participating than not—on an expected utility basis:

Definition 2.3 (individual rationality ( I R))

Ui(p,t,lli) >0 Wo; € [a,;,bv], Vie N



Same as with incentive compatibility constraint, the optimal mechanism turns to be (ex post) individually rational.

Different (individually rational, incentive compatible) auctions are usually evaluated either according to the ex-
pected utility of the seller oefficiency(akasocial welfarein this setting where parties have quasi linear utility func-
tions):

Definition 2.4 Theexpected utility of the sellas

Uo(p,t) = Ey[(q0 — Zpi(v)) v + Zti(v)} = /‘;((QO - Zpi(v)) “vg + Zfi(v))f(v)d’v (2.2)

In the important special case where the seller’s valuation for a unit of the good on sale is zero, then the seller’'s expected
utility is the seller’'s expected revenue.

Definition 2.5 Given the allocation rule(v), theexpected social welfatis

SW(p) = E, [va)-w(qo—Zpi(u))-vo] = / (Zpi(u)-w(qo—Zpi(v))-vo)f@)dv (2.3)
i=1 i=1 V \i=1 i=1

When the objective of the auctioneer is efficiency (i.e., allocating the items to the parties who values them the
most), the optimal mechanism is given by the Vickrey auction [Vi61]. The Myerson auction is optimal when the
objective is the seller’'s expected utility (see [My81] for a single-unit case and [MR89] for a multi-unit case). These two
objectives are generally in conflict, and cannot be maximized with one mechanism. In many real-world settings—such
as privatization and competing electronic marketplaces—it is not clear that the objective should be either efficiency or
expected utility of the seller.

One way to account for importance of both objectives is to set up a constrained optimization problem: optimize
one of the objectives, subject to a constraint on the other. In this paper we derive a new auction mechanism that
maximizes expected social welfasabject to a minimum constraint on the seller's expected utifg now give the
formal statement of this auction design problem:

Problem 2.1 MaximizeSW (p) subject to the following constraints:

1. Constraint on the seller’s expected utility:
Uo(pst) > Ro (2.4)

2. The usual probability normalization{/V) constraints:

1>pi(v) >0, VieN, YoeV 2.5)
S pi(v) < qo .
3. Incentive compatibility {C') constraints:
Ui(p,t,v;) = Ey_, [pi(v—i, wi)v; — t;(v_, w;)]
Yv;, w; € [ai,bi], Vie N (26)
4. Individual rationality (I R) constraints:
Ui(p7 t, Ui) Z 0 V’Ui S [ai, bz], Vi € N (27)

We call a solution (mechanism) to this problerwelfare maximizingR,-seller’s expected utility (WMR,) auc-
tion. Constraints/C, IR and PN are referred to ageasibility constraint§My81].

The main difference between this problem and Myerson’s seller’s expected utility maximization is the choice of the
objective function. In Problem 2.1 the objective is efficiency and the seller’'s expected utility appears as an additional
constraint, while in [My81] and [MR89] the objective is the seller’s expected utility.

The problem is easier in the symmetric case where the valuations of different buyers come from the same proba-
bility distribution (f; = f;,Vi,j € N). In that setting, both social welfare and seller’s expected utility are maximized
by second-price auctions with reserve priédhe two auctions differ by the value of the reserve price: in the welfare

6The second-price auction with a reserve price is defined by the following allocation and payment rules:



maximizing auction the reserve price equals the seller’s valuation for a unit of good. In the auction that maximizes
seller's expected utility, the reserve price is generally greater than that. However, the set of buyers, receiving items
in the seller’s utility maximizing auction is a subset of the set of buyers, receiving items in the welfare maximizing
auction.

In the asymmetric case where the densifieare not the same, the mechanism that maximizes welfare and the one
that maximizes seller's expected utility differ fundamentally. Myerson showed that the latter sometimes allocates the
items on sale to bidders other than the highest bidders (we discuss Myerson’s auction in Section 3.2). With respect
to our problem, the Myerson auction introduces the following complication: mechanisms optimizing seller’'s expected
utility and those optimizing welfare might yield different allocations.

3 Designing the optimal mechanism

It can be shown that due to the particular form of the functioS&15(p) andUy(p, t) the problem has a solution with
one free parameter, whose optimal value can be easily found numerically.
Before deriving the mechanism in detail, we present the high-level ideas of the derivation, in order:

1. We show that the optimal payment rulés the same as in the Myerson auction. We also demonstrate that the
problem of designing the optimal mechani$m¢) can be reduced to an optimization problenpionly. The
optimal allocation rule is computed by maximizis@V (p) subject to the constraint

Us(p) > Ro (3.1)

wherep(t) are valid probability distributions such that the mechanignt) is incentive compatible and indi-
vidually rational. Herd/y(p) is a linear functional that depends only on the allocation pgi¢, and not on the
payment rule. (The expression is given in Sec. 3.1.)

2. Constraint 3.1 is either inactive (i.e. the unconstrained global maximum satisfies it) or is satisfied with equality
at the maximund.

(a) If Constraint 3.1 is inactive, the optimal auction is the standard Vickrey auction with the reserve price set
to equal the seller’s valuation for a unit of the good on sale.

(b) If Constraint 3.1 is active, we do the following:

i. We solve the problem using Lagrangian relaxation. The optimal allocatiompfelév) is found as
the maximum of

L(p,A) = SW(p) + A+ (Up(p) — Ro) (3.2)

with respect tap, A) on the convex set of feasible allocation rufg®). In Sec. 3.2 we argue that
this indeed yields a solution to the original optimization problem. We derive the allocatiopule
that, for given\, maximizesL(p, \).
ii. This way the problem reduces to finding a valugo thatp* maximizes the objectivé W (p) subject
to Constraint 3.1. Since Constraint 3.1 is active, the maximum can be found by solving the following
integral equation: R
Uo(p*) = Ro
We prove thaf]o(pk) is non-decreasing and continuous)Xn This allows us to find the optimal
with a simple numerical algorithm, as we explain in Section 3.3.

The following subsections present the derivation of the optimal mechanism in detalil.

- Each of theyy highest bidders gets one unit of the good, provided that his bid exceeds the reserve price.
- Every bidder getting a unit of good, pays the maximum of the first unsuccessful bid and the reserve price. The other bidders pay 0.

Since we only consider feasible auctions, the bid of the buyer is equal to her private valuation for the good. The reserve price is a threshold value,
such that all the bids below it are ignored.

"The feasibility constraint® N, IC, IR and Constraint 3.1 are linear jn so the feasible region is convex. Since the objecsiVE (p) is a
linear functional, the maximum is attained on the boundary of the region, and if a constraint is active, it must be satisfied with equality in extremum.
While this is analogous to linear programming, the problem is more complex because the optimization is over functions rather than variables.



3.1 New formulation of the optimization problem

In this subsection we reduce the problem of designing the optimal mechémigjrto an optimization problem ip
only. The derivation relies on the following lemma from [My81] and [MR89], which we state without proof.

Lemma 3.1 (Myerson and Maskin, Riley) The expected utility of the seller in any feasible multi-unit auction is given
by

1-— FZ(Uz)
fi(vi)

[MR89] proves a more general result about multi-unit auctions with general (not necessarily unit) demand. Re-
stricting the buyers’ demand functions to single-unit demand yields Lemma 3.1. The special case of the above lemma
(with one item on sale) is stated as Lemma 3 in [My81].

Lemma 3.1 and the revenue equivalence theorem( see [My81] and [KP98] for generalized version) imply that the
expected utility of the seller in a feasible Wiy auction is given by

)Pi(v)] +4qo - vo — Z Ui(p,t,a;) (3.3)

=1

Uo(p, t) = ZEU |:(Ul — Vo —

Uo(pr') = ZEv |:('Ui — v — W)pi(v) + qovo (3.4)
i=1 LA

wherep?! is a solution to Problem 2.1. The payment of buyen a feasible WM#, auction is given by

ti(v) = pi(v)v; — / i pi(v_i, w;)ds; (3.5)

i

We call Uy (p) the pseudo-utilityof the seller. Trivially,Us(p) and Uy (p, t) are not equal for arbitrary and p.
However, by revenue equivalence R
Uo(p™") = Uo(p™" 1)

Note that the expression for the seller’s utility in the constrained optimum that is given by (3.4) does notinvolve
We now can restate the original optimization problem in terms of the allocatiomp riéy.

Problem 3.1 MaximizeSW (p) subject to

1. Pseudo-utility (PU) constraint

Fofp) = 3 (=0 = )] v 2 Ry 36)

2. Monotonicity condition - the expected probability of buyiegetting an item -

Ev_ipi(vi,v—i):/ pi(v) fiv—i)dv—; (3.7)

V_i
is non-decreasing im;.
3. Probability normalization constraints (PN).

Again, correctness of this approach can be justified by revenue equivalence theorem.

We now solve the auction design problem using a form of Lagrangian relaxation. We find a solution to Problem 3.1
by computing the saddle point of the following functional:

L(p,\) = SW(p) + A« (Us(p) — Ro) (3.8)

in (p, \), wherep is restricted to the convex set of valid feasible allocation rules.



This approach of moving just one of the constraints into the objective is not the standard way of using Lagrangian
relaxation, but is nevertheless valid for the following reason. The full Lagrangian corresponding to Problem 3.1 (and
containing the terms corresponding to the feasibility constraints and the PU constraint (3.6)) is exactly the same as
the Lagrangian corresponding to maximizing the objective (3.8) subject to the feasibility constraints only. And by the
Kuhn-Tucker Theorem, the saddle point of the Lagrangian is a solution to Problem 3.1.

Problem 3.1 can be solved with the following algorithm:

1. For all ), find the allocation rule? (v) that maximizes (3.8).
2. Find the optimal\.2

The next two subsections explain the implementation of the two steps of this algorithm, respectively.

3.2 Finding the optimal allocation rule p*

We now present the mechanism for maximizifjgy, A) with respect tgp, for given A. We first transforml into a
more convenient form:

i) = Ev[szv)-vi+(qo—zpz-(v>)-vo]+A(ZEU[<W—@0—Hi(“”)pi(v) T
=1 i=1 )

qovo — Ro> /v Z ((C?(U) -1+ A)%)Pi(”)) f(v)dv + (14 X)govo — ARo (3.9)

We call the quantities} virtual valuations
Definition 3.1 For buyer ¢ with valuationv; drawn from distributionF;, thevirtual valuationv; is

1—Fi(v)
A A AL
Cv)=c(vi) =1+ Nvi = A ——————=
(v) = c}(v) = (1 + ) o)

We now deviate from the main flow of this subsection and briefly compare our mechanism to that of Myerson,
who introduced the use of virtual valuations in his analysis of expected revenue maximizing auctions. One of the
differences between his auction and ours is in the form of virtual valuations. In the Myerson auction, a buyer’s virtual
valuatione; (v;) is the difference between the buyer’s real valuatipand the hazard rate:

C

ci(vi) = v; ) (3.10)
The Myerson auction, operating on those virtual valuatigfis;) rather than on real bids, is biased in favor of dis-
advantaged buyers [Kr02, p.73], thus creating an artificial competition between “weak” and “strong” bSyets a
mechanism allows the auctioneer to set a high sell price for a strong buyer while motivating him to stay truthful even
if he is sure that his valuation exceeds any possible valuation of any other buyer. This approach provides the auc-
tioneer with higher expected revenue. In our case, the virtual valuations depend on an additional pararieter
controls the tradeoff between expected social welfare and seller’s expected utility. For ease of comparison, our virtual
valuationsc} (v;) can be written as

A 1— F;(v;)
A AN
() =0+ v; — . 3.11
2o =) (0= Ty ) (311)
We now return to the derivation of the optimal allocation rule. Despite the differences in virtual valuations and
functionals being optimized, for any given the optimal allocation rule* (v) can be derived similarly to the one

in [My81] and [MR89], without substantial changes in the argument.

8When\ = 0, the PU constraint (3.6) is inactive and the optimum is attained at the Vickrey auction with no reserve price.
9The terms “weak” and “strong” refer to buyers’ valuatidistributions Distributions of “strong” buyers are concentrated around higher values.



In order to describe the optimal allocation rule we need a few more definitionsé} (&t be the closeshon-
decreasingcontinuous approximation far; (v;). Formally,

&Mvy) = diGNq), whereq = F;(v;) (3.12)
q
G?(q) is the lower convex hull of the functioH; : [0, 1] — IR, defined as

HAq) = / A E () dr (3.13)

That is,G?(q) is the highest convex function df, 1],1° such that
G} q) < H)g)

Redefined this way, virtual valuations are "ironed” over certain portions of the domain. The ironing procedure
transforms the virtual valuations into non-decreasing functions, which is necessary to preserve incentive compatibility
(see [My81] for the discussion).

Theorem 3.1 For any ), ﬁ(p, A) is maximized when the allocation rule is given by

1, if & (v;) is amongg highest virtual valuations
pr(v) = andé (v;) > (1 + Ao (3.19)
0, otherwise

Ties are broken by randomizing.

The proof follows that in [MR89] or [My81] (except that it is for different virtual valuations).

Theorem 3.1 proves that for all, the optimal mechanism is integral, that is, the probability of a buyer getting
an item is always 0/1 (except for the case of ties). The following provides some intuition behind the proof: integral
allocation mechanisms can be thought of as “corners” of the feasible region, given by constraints. Since the objective
is a linear functional and all the constraints are also linegr @analogy with the linear programming problem suggests
that the optimum should be in one of those “corners”. It should be noted, that although the feasibility constraints (2.6,
2.7) are on expected utility of the buyer, Mechanism 3.14 is (ex post) incentive compatible and individually rational.
The latter can be verified by substituting the payment rule (3.5) in the expression of buyer’s utility.

The payment rule (3.5) means that the winning buyer pays the minimum valuation, required to win the item.
Therefore Mechanism 3.14 can be viewed as a form of Vickrey auction, run on virtual, rather than real valuations.
When\ = 0, Mechanism (3.14) yields the standard Vickrey auction.

3.3 Finding the optimal value for Lagrange multiplier A

Computing the optimal mechanism requires choosiig,aso that the allocation rulg*-»* maximizes expected social
welfare over all allocation rules*, which satisfy the PU constraint (3.6). (There is no need to account for feasibility
constraints, since af* satisfy them.) As we argued in the beginning Section 3, the optimal allocation rule satisfies
(3.6) with equality and\,,: is the solution to the integral equation

Uo(Aopt) = Ro (3.15)
wherel, is defined as i )
Uo(Aopt) = Uo(p)

Although 00()\) can only be evaluated numerically, the following theorem stateslfhas nicely behaved. The
importance of this fact is that it makes Equation (3.15) easy to solve numerically (we present an algorithm for doing
so in the next subsection).

Theorem 3.2 Uy () is continuous and non-decreasingin

The proof of the theorem essentially relies on the fact that Mechanism 3.14 is (ex post) incentive compatible (the full
proof is in the Appendix).

105ee [My81] and [R096, p.36] for details.



3.4 Algorithm for computing the optimal allocation rule

The optimal allocation rule can be computed with the following algorithm, where the opdgpalis the root of
Uo(N) — Ry. Itis easy to find becaud#, is continuous and increasing.

Algorithm 1 (Computing the optimal allocation rule)

1. Check whether the Vickrey auction with reserve price equal to the seller’s valuation satisfies the PU constraint
(3.6). Ifit does, output it as a solution. Otherwise, go to 2.

2. Set\,i, to zero and),,,, to some positive number, such thﬁ‘twi, given by Mechanism (3.14), does not
satisfy the PU constraint. The PU constraint is checked by evaluéjiig,,...) numerically.

3. Repeat the following step unfil,,,.. — A\,.:,, CONVerges to zero:
Seth e = % Construct the allocation rule*~<= and check the PU constraint. If it is satisfied, set
Amin = Anew, Otherwise seh,,.c = A\new-

4. Set the allocation rule tp*or, where),,, is given by Step 3. Set the payment rudecording to 3.5:
ti(v) = pjwpt (U)Ui — / p;-\OPt (1}_1‘, w,)dsl

U, is ann-dimensional integral over the allocation probabilities but nevertheless it can be evaluated numerically.
It can be estimated by samplingand computing the Monte-Carlo sum, which converges to the true value of the
integral. Sampling is easy because the valuatiomsare drawn independentlyy can be obtained by sampling
individual valuationsy; from the distributionsf;.**

4 Randomized mechanisms

When virtual valuations of the buyerg given by (3.11) are non-decreasing and no ironing is neétiitere exist
simple randomized mechanisms where the Vickrey rules are used atu the Myerson rules w.d. — ¢ that yield
the same expected social welfare and seller’'s expected revenue as our mechanism.

Rather than computing the optimalusing the algorithm above and running Mechanism (3.14), the seller can use
the distributionsf; to evaluate the expected revenue of the Myerson auction and the Vickrey auction in advance, and
use these revenue values to analytically determivghen no ironing is applied this indeed yields the same expected
revenue and social welfare as Mechanism 3.14.

However, randomization is often undesirable. In many settings an auction is only run once. For instance, each
privatization auction usually has different participants and/or a different object (company) for sale. Similarly, in
Internet auctions, the set of buyers generally differs for every auction, as may the object for sale. Now, say that in a
given setting, the auction designer is unsatisfied with the seller’'s expected utility in the Vickrey auction, and with the
expected social welfare of the Myerson auction. Still, the designer can be satisfied with the seller’'s expected utility
and expected social welfare in our deterministic mechanism. So, the deterministic mechanism is satisfactory, but the
randomized mechanism would run an unsatisfactory auction for sure. (For randomization to really make sense, the
designer would have to be able to repeat the random drawing multiple times, i.e., to repeat the same auction in the
same setting.)

5 Prior-free mechanisms

The results of this paper are derived under the independent private values model, which assumes that the distributions
of valuations (types) are common knowledge. However, in many practical application this assumption does not hold
and the seller has no information about these distributions (for instance when the good on sale is new to the market).

11)f one can solve for the inverse @, it is possible to sample directly frorfy. Otherwise a technique such as importance sampling [GC95, p.
305] should be used.
12this is called aegular case in economics literature



This raises the question of the possibility of prior-free mechanisms with desired properties, which is also motivated
by theRobert Wilson doctrineln the special case of symmetric valuations (the valuations of all buyers come from the
same distributior¥’) and with more than one unit of the good on sale (> 1) it is possible to design a mechanism
which doesiotuse any prior knowledge about distributions, but still approaches the characteristics ¢ \VslvGtion,
derived in this paper, when the number of buyers is large.

Such a prior-free mechanism can be constructed, applying the idea of sampling, developed in [BVO03]: since the
valuations of buyers are independent draws from the samkaowndistribution £, they can be used to estimatg
using the following technique:
|j € N,v; < t|

n—1

Then the estimatek,, can be used in place of the true distributiBrin Mechanism (3.14) (the derivative &f, f can
also be estimated from the sample, as discussed in [BV03]). The one issue remaining is incentive compatibility: when
the reported valuation of buyéris used to estimaté&’ and f there exist an incentive to lie (since throughand f,
buyeri gets a chance to manipulate the estimates of the virtual valuations for herself and the buyers, she is competing
with. A solution to this problem is to apply the idea of dual-sampling auction from [FGHKO02]:

F.(t) =

1. Split the set of buyers randomly into two groups of sfzéif » is odd, place the remaining buyer into the first
group).

2. Assign half of the units on saléy units) to groupl and the other half to group
3. Use the valuations of the buyers from groufp estimateF’ and f for the buyers from group and vice versa.
4. Independently run the auctions among the buyers from gtand group.

Note that this way, buyers from different groups do not compete against each other and the report of any buyer does not
affect the estimates df andf used in her group. This property obviously makes the auction incentive-compatible. By
the argument, using the law of large numbers, the expected efficiency of this mechanism approaches that of feasible
WM- R, auction and expected revenue approadigehenn (the number of buyers) goes to infinity (the proof closely
follows that in Theorem from [BV03]).2

The same idea can be trivially extended for the non-symmetric case (buyers’ valuations are draws from different
distributions), when there is sufficient number of buyers coming from each distribution.

6 Conclusions

We demonstrated that the auction, maximizing expected efficiency subject to a constraint on the seller's expected
utility belongs to the family of dominant strategy mechanisms, parameterized with one free parameter and presented
an algorithm for optimally choosing the value of the parameter. By running this auction the seller can expect to do
well enough for himself, and maximize social welfare subject to that.

No matter how the tradeoff between efficiency and seller’s utility is struck, the optimal auction has essentially
the same form. Furthermore, except for the case of ties in virtual valuations the optimal auction does not rely on
randomization, that is, given distinct bids the allocation probabilities are 0/1 (however, the winning bidder is not
always the highest bidder).

It is important that the presented mechanism does not use randomization over different auction mechanisms (i.e.
when the result is achieved by running different auctions with positive probability). The latter is inappropriate for the
auction design problems, which motivate our work.

We derived our results under the asymmetric independent private values model. For the special case of symmetric
distributions we also presented the approximation mechanism whichndbese any prior knowledge about distri-
butions. This mechanism approaches expected efficiency and expected seller’s utility of the auction, designed with
distributions known upfront, when the number of buyers, coming from every distribution tends to infinity.

13t is well known that in symmetric setting with fixed number of goods and the number of bidders going to infinity, the Vickrey auction
approaches the optimal revenue (for instance, [MT0O] prove this statement for general combinatorial auctions). However the statement does not
hold when the number of goods on sale is also increasing. This is exactly the case when the approximation technique of [BV03] is helpful.
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Appendix

Proof of Theorem 3.2. Monotonicity oon()\) = Uo(p*) can be proved as follows: Take arbitraxy < X,. Then,

by definition ofp*1, p*z
{L(p)‘l, A1) > SW(p*2) + Ay - Up(p™?) 6.1)

L(p*2, Aa) > SW(p*) + Ao - Up(p™)

DenoteAp = p*2 — p* andAX = Ay — ;. SinceSW, U, andL are linear functionals, (6.1) implies

Therefore R R R
L(Ap, \2) — L(Ap, A1) = (Aa — A\1)Uo(Ap) >0
and
Us(Ap) = Uo(p*?) — Uy (p™) > 0
Thus,Uy(\) = Uy(p*) is non-decreasing ii.

We now prove the continuityplf]o()\). The idea of the proof uses the (ex-post) incentive compatibility of the
Mechanism 3.14 and shows thali§()) is not continuous, the mechanism cannot be ex post incentive compatible.
Uy is given by

n

0o = Y- ( [ (e — w0010 +a0-

i=1

wherec; are the Myerson virtual valuations, defined in (3.10). For arbitAary\,, we have

1To(M) — To(A2)| < Comar /V I @) = ) @) <2 / f(v)dv (6.2)

Vagag

11



where
Crmaz = ieNyrvI:EG%ﬁhbi] i (vi) — vol
and
Vi, = {veV] pM(v) #p(v)}

is the set of valuation vectors where allocatigns(v) andp*z (v) differ.
We now show thaVy, », = O(A\). By (3.11), for alli anduv;,
[0 (v3) = 072 (v3)] = |3 (V) AN < [emaz AA|

i

Also, using the definition of; it is easy to show that for allandv;

6?1 ('Uz) - |Cmaa:A)\‘ S
&2 (v;) = |CmazAN < &

Therefore,
631 (0) = 62(0)] < |Cmaz AN (6.3)

Mechanisms, using the payment rule (3.5) and with allocation rule, such thaf(all;, s) are non-decreasing in
s are ex-postincentive compatible (it can be verified by substituting the payment rule (3.5) into the definition of
buyer’s utility). Therefore, Mechanisms (3.14) are ex-post incentive-compatible. We show now that ex-post incentive
compatibility together with (6.3) impliek), », = O(A\) and therefore continuity df.

We first demonstrate that utility of buyer-

ui(p*,t,v) = pr(v) v — ¢

is continuous in parameterfor all A and for alluv. Assume the contrary: there exists\; ande,,, such that for all
0 > 0, there exist somea,, satisfying

|/\2 — )\1| <6
|ui(p)‘l7t,v) - ui(p)‘Q,t,v)| > €x

We now show that such a mechanism is not ex-post incentive compatible. W.l.0.g. assume that the utility af buyer

under the allocatiop*? is higher than under the allocatign® (if this is not the case, interchange and\s).
Non-continuity ofu; means that arbitrary small changesryield substantial (at least,,) increase in utility

of buyeri. Mechanism (3.14) allocates the items to buyers with highest virtual valuations and by( 6.3) the virtual

valuations ofall buyers change by at molgt,,...A\|. Sinceé;(v;) s non-decreasing i, there exists a typé;, such

that when types of other buyers are givervhy, buyeri benefits from overbidding (i.e. mechanism is not ex-post IC).
More formally, by (6.3)¢}" (v;) — &2 (v;)| < |cmaa AN for all j. Therefore, ife} (v;) were at MOSE - |cynqaq AN

higher, buyeri would get the same probability of winning an item as under allocaifen Sinceéjl(vi) is a non-
decreasing function af;, consider two cases:

1. &M (v;) isincreasing at; (i.e. & (v;) = ¢} (v;)). The derivative o is well-defined, positive and continuous

in v; (i.e. it is positive in some neighborhood of). Therefore it is possible to chooge\ = |A2 — \q]
small enough, so that there exist such tha) < t; — v; < 7' - A\, for some constant! andé) (t;) >
(i) + 2 [Cmaz AN].

If the true type of buyet is v;, then reporting; yields an increase in utility of at least, (due to the increase of
the probability of winning), while the payment of the bidder increases by at mgist A (this can be verified
by substitutingv; andv; into the payment rule (3.5)). Thereforeff) is sufficiently small, biddef benefits
from overbidding.

2. 6?1 (v;) is constant ab; (i.e. v; is on the flat (ironed) portion of the virtual valuation). Taketo be the highest
type, such that" (#;) = &' (v;) (i.e. ©; is at the end of the flat portion @f"). It is easy to show tha; has
the same probability of winning an item asand the same utility. Applying then the same argument as in the

case of increasing™' (v;) allows to show that; benefits from overbidding.
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The argument yields a contradiction: (Mechanism (3.14) is not ex-post incentive compatible), which is due to our

assumption about non-continuity @f. When the payment rule is set according to (3.5) the utility of buyisrgiven
by

v;

ui(pht, (v—i»w))z/ pi(v_i, w;)ds;

as

Therefore, since; is continuous i\, and by (3.14)p; takes values only K0, %, ﬁ, ..., 1} and is non-decreasing
in v; for all  we must have

{vi € [ai,bi]| P} (Vi v5) # D2 (v_iyv3)} = O(AN), Vi, v,

It follows, that
Vae ={v e V] pM(v) #p™(v)} = O(AN)

Therefore, by 6.2[,()\) is continuous im\.0
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