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Abstract

We study auctioning multiple units of the same good to potential buyers with single unit demand (i.e. every buyer
wants only one unit of the good). Depending on the objective of the seller, different selling mechanisms are desirable.
The Vickrey auction with a truthful reserve price is optimal when the objective is efficiency - allocating the units to
the parties who values them the most. The Myerson auction is optimal when the objective is the seller’s expected
utility. These two objectives are generally in conflict, and cannot be maximized with one mechanism. In many real-
world settings—such as privatization and competing electronic marketplaces—it is not clear that the objective should
be either efficiency or seller’s expected utility. Typically, one of these objectives should weigh more than the other,
but both are important. We account for both objectives by designing a newdeterministicdominant strategy auction
mechanism that maximizes expected social welfare subject to a minimum constraint on the seller’s expected utility.
This way the seller can maximize social welfare subject to doing well enough for himself.

The results in this paper are derived under the asymmetric independent private values model, which assumes that
the distributions of buyers’ valuations are common knowledge. We also describe a prior-free mechanism, which does
not assume that the distributions are known. When the number of buyers tends to infinity and the number of units on
sale is at least two, this auction approaches expected efficiency and expected seller’s utility of the auction, designed
with distributions known upfront.

1 Introduction

Electronic commerce has spawned the use of increasingly sophisticated auction mechanisms. There are several pos-
sible reasons for this. First, in many ecommerce settings the bidders are automated agents that are programmed to
act rationally even in complex situations. Also human users of ecommerce systems are typically quite savvy and
able to recognize attractive properties of sophisticated mechanisms. This motivates the analysis of unintuitive auction
mechanisms, which are capable of meeting complicated design objectives.

One example is the Vickrey auction [Vi61]. In this auction withq0 units of the same good on sale,q0 highest
bidders win, but only pay the price of the firstunsuccessfulbid. The Vickrey auction maximizes economicefficiency,
aka.social welfare(assuming the reserve price is set to equal the seller’s valuation for a unit of good being sold), that
is, the units end in the hands of the party who values it the most.

Another example is the Myerson auction [My81], which maximizes theseller’s expected utility(expectedrevenue
in case the seller does not value the object).1 The unintuitive aspect of the Myerson auction is that it sometimes
allocates the goods to bidders other than theq0 highest bidders.

1The formal characterization of the seller’s optimal multi-unit mechanism was given by E.Maskin and J.Riley in [MR89]. However in the
single-unit demand case, which is considered in this paper, the seller’s optimal multi-unit mechanism can be derived similarly to the seller’s optimal
single-unit mechanism from [My81]. Therefore we will refer to the seller’s-optimal mechanism as Myerson auction.
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Expected social welfare and the seller’s expected utility cannot be maximized with the same auction mechanism
in general because these objectives conflict. Furthermore, in many real-world settings it is not clear that the objective
should be either of the two.

For example, most privatization auctions are motivated by the belief that private companies can make more efficient
use of an asset than the government can. It seems thus reasonable to allocate the asset to the party who can make the
most effective use of it, that is, to use efficiency as the auction objective. At the same time, the government would like
to raise as much money from the sale as possible (maximize the seller’s expected utility) because the asset is owned
by the tax payers who prefer to pay for government expenditures out of the auction revenue rather than taxes.

As another example, consider electronic auction houses that compete with each other. To attract sellers, an auction
house would use an auction mechanism that maximizes the seller’s expected utility. On the other hand, this would
not be desirable from the perspective of attracting buyers. Clearly, an auction house needs both buyers and sellers to
operate. Therefore, including some element of social welfare measurement in the objective may be desirable.

We account for both objectives by designing a new deterministic auction mechanism that maximizes expected
social welfare subject to a minimum constraint on the seller’s expected utility. This way the seller can maximize
social welfare subject to subject to doing well enough for himself. We show that this auction mechanism belongs to
a family of mechanisms, maximizing a linear combination of the seller’s expected utility and expected social welfare,
controlled by one free parameterλ.2 We then present an algorithm for determining the optimal value for this parameter
and constructing an auction with desired characteristics. This approach is different from the traditional mechanism
design - the mechanism is not completely specified upfront - rather we compute the particular mechanism for every
instance of the problem (that is, given the constraint on the revenue and the distributions of buyers’ valuations). In a
way this is similar in spirit to automated mechanism design [CS02].

We also present a family of much simpler randomized mechanisms thatunder some assumptions, which we state
later in the paper achieve the same expected revenue and efficiency. However, in Section 4 we argue, that random-
ization is inappropriate for the settings, which motivate the present work. This discourages the use of the randomized
mechanisms even in the cases, when they yield similar expected revenue and social welfare.

Although most of the results in this paper are derived under the independent private values model, which assumes
that the distributions of valuations (types) of buyers are common knowledge, it is possible to relax this assumption. In
Section 5 we describe a prior-free mechanism, which utilizes the idea of sampling from [BV03]. When the number
of buyers tends to infinity this mechanism approaches expected efficiency and expected seller’s utility of the auction,
designed with distributions known upfront. This way we meet the principle, known as Robert Wilson doctrine.3

2 Framework and notation

We focus on settings with one seller, multiple buyers, and multiple units of the same good on sale. For convenience
buyers are indexed with numbers from1 to n and the set of all buyers is denoted byN = {1 . . . n}. Index0 always
refers to the seller. We analyze the case of the single unit demand: each buyer wants to buy just one unit of the good.4

The seller’s valuation for each item isv0. The number of items on sale is denoted byq0. We also make the
following usual assumptions about valuations, known as theindependent private values (IPV) model:

1. The valuation of buyeri, vi, is a realization of the random variableXi with the cumulative distributionFi

and the densityfi : [ai, bi] → IR. Each density functionfi is continuous and positive on[ai, bi], and zero
elsewhere.

2. All densitiesfi are common knowledge.5

3. All random variablesXi are independent of each other.

2Note that wedo notassume in advance that the tradeoff is attained with a linear combination of seller’s expected utility and expected social
welfare - instead the linearity of the tradeoff is proved explicitly

3Robert Wilson doctrine of mechanism design states that the mechanism should be independent of the prior distribution of the bidder’s valuations
4The case when buyers want to buy more then one good can be handled by the same model as long as buyers’ demand functions are constant

(i.e. a buyer’s valuation for each additional unit of the good is the same as her valuation for the first unit).
5We relax this assumption in Section 5.
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We use the following notation.V denotes the set of all possible combinations of valuations of buyers:

V = ×i∈N [ai, bi] and V−i = ×j∈{N\i}[aj , bj ]

We also need a special notation for vectors of valuations:

v = (v1, . . . , vn)
v−i = (v1, . . . , vi−1, vi+1, . . . vn)

(v−i, wi) = (v1, . . . , vi−1, wi, vi+1, . . . vn)

The joint distribution of the valuations is denoted byf(v). By the independence assumption we have

f(v) =
n∏

j=1

fj(vj) and f−i(v) =
n∏

j 6=i

fj(vj)

Utilities of buyers are assumed to be quasi linear: The utility of buyeri is ui = pi · vi − ti, wherepi is the
probability that she gets an item,vi is her valuation, andti is the amount that she has to pay. The utility of the seller
is u0 = (q0 −

∑n
i=1 pi)v0 +

∑n
i=1 ti (the first term in the expected number of items kept by the seller).

We try to design amechanismin order to meet some objective, described later, when each buyer plays the game so
as to maximize his own expected utility. By therevelation principlewe can now, without loss in the objective, restrict
our attention to mechanisms where each buyertruthfully bids for a unit of good on sale in a sealed-bid format.

Definition 2.1 (sealed-bid mechanism)Each buyeri submits a bidbi for a unit of the good on sale. Upon obtaining
the bids, the seller computes theallocationand thepaymentof each buyer. The allocation is the probability vector
p(b) = (p1(b1), . . . pn(bn)), wherepi(bi) is the probability that buyeri gets a unit of good, when biddingbi. These
probabilities do not have to sum toq0: the seller may keep some units. The payments are specified by the vector
t(b) = (t1(b1), . . . , tn(bn)), whereti(bi) is the payment of buyeri. Theallocation rulep(b) and thepayment rulet(b)
are common knowledge.

The bid of buyeri depends on his valuationvi for a unit of good on sale. If each buyer is motivated to submit a bid
that equals that buyers valuation, the mechanism isincentive compatible. As is standard in the literature on optimal
auction design, throughout this paper we focus onBayes-Nashincentive compatibility, that is, each buyer expects to
get highest utility by bidding truthfully rather than insincerely—given that the other buyers bid truthfully. However,
the mechanisms, which we derive in this paper turn to be also(ex post) incentive compatible.

When all participant are truthful, the expected utility of buyeri can be expressed as follows:

Ui(p, t, vi) = Ev−i

[
pi(v)vi − ti(v)

]
=

∫

V−i

(pi(v)vi − ti(v))f−i(v−i)dv−i (2.1)

When a buyer chooses to bid differently from his true type and given that other bidders bid vector isv−i, her utility
is

pi(v−i, wi)vi − ti(v−i, wi)

Now, the buyers’ incentive compatibility constraints can be stated formally:

Definition 2.2 (incentive compatibility (IC))

Ui(p, t, vi) ≥ Ev−i

[
pi(v−i, wi)vi − ti(v−i, wi)

]∀vi, wi ∈ [ai, bi], ∀i ∈ N

The expression on the right side of the inequality is the expected utility of biddingwi when the true valuation isvi.
Another important property of auction mechanisms is individual rationality. An auction mechanism isex ante

individually rational if each buyer is no worse off participating than not—on an expected utility basis:

Definition 2.3 (individual rationality ( IR))

Ui(p, t, vi) ≥ 0 ∀vi ∈ [ai, bi], ∀i ∈ N
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Same as with incentive compatibility constraint, the optimal mechanism turns to be (ex post) individually rational.
Different (individually rational, incentive compatible) auctions are usually evaluated either according to the ex-

pected utility of the seller orefficiency(akasocial welfarein this setting where parties have quasi linear utility func-
tions):

Definition 2.4 Theexpected utility of the selleris

U0(p, t) = Ev

[
(q0 −

n∑

i=1

pi(v)) · v0 +
n∑

i=1

ti(v)
]

=
∫

V

(
(q0 −

n∑

i=1

pi(v)) · v0 +
n∑

i=1

ti(v)
)
f(v)dv (2.2)

In the important special case where the seller’s valuation for a unit of the good on sale is zero, then the seller’s expected
utility is the seller’s expected revenue.

Definition 2.5 Given the allocation rulep(v), theexpected social welfareis

SW (p) = Ev

[ n∑

i=1

pi(v) · vi+
(
q0 −

n∑

i=1

pi(v)
) · v0

]
=

∫

V

( n∑

i=1

pi(v) · vi+
(
q0 −

n∑

i=1

pi(v)
) · v0

)
f(v)dv (2.3)

When the objective of the auctioneer is efficiency (i.e., allocating the items to the parties who values them the
most), the optimal mechanism is given by the Vickrey auction [Vi61]. The Myerson auction is optimal when the
objective is the seller’s expected utility (see [My81] for a single-unit case and [MR89] for a multi-unit case). These two
objectives are generally in conflict, and cannot be maximized with one mechanism. In many real-world settings—such
as privatization and competing electronic marketplaces—it is not clear that the objective should be either efficiency or
expected utility of the seller.

One way to account for importance of both objectives is to set up a constrained optimization problem: optimize
one of the objectives, subject to a constraint on the other. In this paper we derive a new auction mechanism that
maximizes expected social welfaresubject to a minimum constraint on the seller’s expected utility. We now give the
formal statement of this auction design problem:

Problem 2.1 MaximizeSW (p) subject to the following constraints:

1. Constraint on the seller’s expected utility:
U0(p, t) ≥ R0 (2.4)

2. The usual probability normalization (PN ) constraints:
{

1 ≥ pi(v) ≥ 0, ∀i ∈ N, ∀v ∈ V∑n
i=1 pi(v) ≤ q0

(2.5)

3. Incentive compatibility (IC) constraints:

Ui(p, t, vi) ≥ Ev−i

[
pi(v−i, wi)vi − ti(v−i, wi)

]

∀vi, wi ∈ [ai, bi], ∀i ∈ N (2.6)

4. Individual rationality (IR) constraints:

Ui(p, t, vi) ≥ 0 ∀vi ∈ [ai, bi], ∀i ∈ N (2.7)

We call a solution (mechanism) to this problem awelfare maximizingR0-seller’s expected utility (WM-R0) auc-
tion. ConstraintsIC, IR andPN are referred to asfeasibility constraints[My81].

The main difference between this problem and Myerson’s seller’s expected utility maximization is the choice of the
objective function. In Problem 2.1 the objective is efficiency and the seller’s expected utility appears as an additional
constraint, while in [My81] and [MR89] the objective is the seller’s expected utility.

The problem is easier in the symmetric case where the valuations of different buyers come from the same proba-
bility distribution (fi = fj , ∀i, j ∈ N ). In that setting, both social welfare and seller’s expected utility are maximized
by second-price auctions with reserve prices.6 The two auctions differ by the value of the reserve price: in the welfare

6The second-price auction with a reserve price is defined by the following allocation and payment rules:
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maximizing auction the reserve price equals the seller’s valuation for a unit of good. In the auction that maximizes
seller’s expected utility, the reserve price is generally greater than that. However, the set of buyers, receiving items
in the seller’s utility maximizing auction is a subset of the set of buyers, receiving items in the welfare maximizing
auction.

In the asymmetric case where the densitiesfi are not the same, the mechanism that maximizes welfare and the one
that maximizes seller’s expected utility differ fundamentally. Myerson showed that the latter sometimes allocates the
items on sale to bidders other than the highest bidders (we discuss Myerson’s auction in Section 3.2). With respect
to our problem, the Myerson auction introduces the following complication: mechanisms optimizing seller’s expected
utility and those optimizing welfare might yield different allocations.

3 Designing the optimal mechanism

It can be shown that due to the particular form of the functionalsSW (p) andU0(p, t) the problem has a solution with
one free parameter, whose optimal value can be easily found numerically.

Before deriving the mechanism in detail, we present the high-level ideas of the derivation, in order:

1. We show that the optimal payment rulet is the same as in the Myerson auction. We also demonstrate that the
problem of designing the optimal mechanism(p, t) can be reduced to an optimization problem inp only. The
optimal allocation rule is computed by maximizingSW (p) subject to the constraint

Û0(p) ≥ R0 (3.1)

wherep(t) are valid probability distributions such that the mechanism(p, t) is incentive compatible and indi-
vidually rational. HerêU0(p) is a linear functional that depends only on the allocation rulep(t), and not on the
payment rulet. (The expression is given in Sec. 3.1.)

2. Constraint 3.1 is either inactive (i.e. the unconstrained global maximum satisfies it) or is satisfied with equality
at the maximum.7

(a) If Constraint 3.1 is inactive, the optimal auction is the standard Vickrey auction with the reserve price set
to equal the seller’s valuation for a unit of the good on sale.

(b) If Constraint 3.1 is active, we do the following:

i. We solve the problem using Lagrangian relaxation. The optimal allocation rulepopt(v) is found as
the maximum of

L̂(p, λ) = SW (p) + λ · (Û0(p)−R0) (3.2)

with respect to(p, λ) on the convex set of feasible allocation rulesp(v). In Sec. 3.2 we argue that
this indeed yields a solution to the original optimization problem. We derive the allocation rulepλ(v)
that, for givenλ, maximizesL̂(p, λ).

ii. This way the problem reduces to finding a valueλ so thatpλ maximizes the objectiveSW (p) subject
to Constraint 3.1. Since Constraint 3.1 is active, the maximum can be found by solving the following
integral equation:

Û0(pλ) = R0

We prove thatÛ0(pλ) is non-decreasing and continuous inλ. This allows us to find the optimalλ
with a simple numerical algorithm, as we explain in Section 3.3.

The following subsections present the derivation of the optimal mechanism in detail.

- Each of theq0 highest bidders gets one unit of the good, provided that his bid exceeds the reserve price.

- Every bidder getting a unit of good, pays the maximum of the first unsuccessful bid and the reserve price. The other bidders pay 0.

Since we only consider feasible auctions, the bid of the buyer is equal to her private valuation for the good. The reserve price is a threshold value,
such that all the bids below it are ignored.

7The feasibility constraintsPN , IC, IR and Constraint 3.1 are linear inp, so the feasible region is convex. Since the objectiveSW (p) is a
linear functional, the maximum is attained on the boundary of the region, and if a constraint is active, it must be satisfied with equality in extremum.
While this is analogous to linear programming, the problem is more complex because the optimization is over functions rather than variables.
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3.1 New formulation of the optimization problem

In this subsection we reduce the problem of designing the optimal mechanism(p, t) to an optimization problem inp
only. The derivation relies on the following lemma from [My81] and [MR89], which we state without proof.

Lemma 3.1 (Myerson and Maskin, Riley)The expected utility of the seller in any feasible multi-unit auction is given
by

U0(p, t) =
n∑

i=1

Ev

[
(vi − v0 − 1− Fi(vi)

fi(vi)
)pi(v)

]
+ q0 · v0 −

n∑

i=1

Ui(p, t, ai) (3.3)

[MR89] proves a more general result about multi-unit auctions with general (not necessarily unit) demand. Re-
stricting the buyers’ demand functions to single-unit demand yields Lemma 3.1. The special case of the above lemma
(with one item on sale) is stated as Lemma 3 in [My81].

Lemma 3.1 and the revenue equivalence theorem( see [My81] and [KP98] for generalized version) imply that the
expected utility of the seller in a feasible WM-R0 auction is given by

Û0(popt) =
n∑

i=1

Ev

[
(vi − v0 − 1− Fi(vi)

fi(vi)
)pi(v)

]
+ q0v0 (3.4)

wherepopt is a solution to Problem 2.1. The payment of buyeri in a feasible WM-R0 auction is given by

ti(v) = pi(v)vi −
∫ vi

ai

pi(v−i, wi)dsi (3.5)

We call Û0(p) the pseudo-utilityof the seller. Trivially,Û0(p) andU0(p, t) are not equal for arbitraryt andp.
However, by revenue equivalence

Û0(popt) = U0(popt, t)

Note that the expression for the seller’s utility in the constrained optimum that is given by (3.4) does not involvet.
We now can restate the original optimization problem in terms of the allocation rulep only.

Problem 3.1 MaximizeSW (p) subject to

1. Pseudo-utility (PU) constraint

Û0(p) =
n∑

i=1

Ev

[
(vi − v0 − 1− Fi(vi)

fi(vi)
)pi(v)

]
+ q0v0 ≥ R0 (3.6)

2. Monotonicity condition - the expected probability of buyeri getting an item -

Ev−ipi(vi, v−i) =
∫

V−i

pi(v)fi(v−i)dv−i (3.7)

is non-decreasing invi.

3. Probability normalization constraints (PN).

Again, correctness of this approach can be justified by revenue equivalence theorem.

We now solve the auction design problem using a form of Lagrangian relaxation. We find a solution to Problem 3.1
by computing the saddle point of the following functional:

L̂(p, λ) = SW (p) + λ · (Û0(p)−R0) (3.8)

in (p, λ), wherep is restricted to the convex set of valid feasible allocation rules.
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This approach of moving just one of the constraints into the objective is not the standard way of using Lagrangian
relaxation, but is nevertheless valid for the following reason. The full Lagrangian corresponding to Problem 3.1 (and
containing the terms corresponding to the feasibility constraints and the PU constraint (3.6)) is exactly the same as
the Lagrangian corresponding to maximizing the objective (3.8) subject to the feasibility constraints only. And by the
Kuhn-Tucker Theorem, the saddle point of the Lagrangian is a solution to Problem 3.1.

Problem 3.1 can be solved with the following algorithm:

1. For allλ, find the allocation rulepλ(v) that maximizes (3.8).

2. Find the optimalλ.8

The next two subsections explain the implementation of the two steps of this algorithm, respectively.

3.2 Finding the optimal allocation rule pλ

We now present the mechanism for maximizingL̂(p, λ) with respect top, for givenλ. We first transformL̂ into a
more convenient form:

L̂(p, λ) = Ev

[ n∑

i=1

pi(v) · vi+
(
q0 −

n∑

i=1

pi(v)
) · v0

]
+ λ

( n∑

i=1

Ev

[
(vi − v0 − 1− Fi(vi)

fi(vi)
)pi(v)

]
+

q0v0 −R0

)
=

∫

V

n∑

i=1

((
cλ
i (v)− (1 + λ)v0

)
pi(v)

)
f(v)dv + (1 + λ)q0v0 − λR0 (3.9)

We call the quantitiescλ
i virtual valuations.

Definition 3.1 For buyer i with valuationvi drawn from distributionFi, thevirtual valuationvi is

cλ
i (v) = cλ

i (vi) = (1 + λ)vi − λ · 1− Fi(vi)
fi(vi)

We now deviate from the main flow of this subsection and briefly compare our mechanism to that of Myerson,
who introduced the use of virtual valuations in his analysis of expected revenue maximizing auctions. One of the
differences between his auction and ours is in the form of virtual valuations. In the Myerson auction, a buyer’s virtual
valuationci(vi) is the difference between the buyer’s real valuationvi and the hazard rate:

ci(vi) = vi − 1− Fi(vi)
fi(vi)

(3.10)

The Myerson auction, operating on those virtual valuationsci(vi) rather than on real bids, is biased in favor of dis-
advantaged buyers [Kr02, p.73], thus creating an artificial competition between “weak” and “strong” buyers.9 Such a
mechanism allows the auctioneer to set a high sell price for a strong buyer while motivating him to stay truthful even
if he is sure that his valuation exceeds any possible valuation of any other buyer. This approach provides the auc-
tioneer with higher expected revenue. In our case, the virtual valuations depend on an additional parameterλ which
controls the tradeoff between expected social welfare and seller’s expected utility. For ease of comparison, our virtual
valuationscλ

i (vi) can be written as

cλ
i (vi) = (1 + λ)

(
vi − λ

1 + λ
· 1− Fi(vi)

fi(vi)

)
(3.11)

We now return to the derivation of the optimal allocation rule. Despite the differences in virtual valuations and
functionals being optimized, for any givenλ, the optimal allocation rulepλ(v) can be derived similarly to the one
in [My81] and [MR89], without substantial changes in the argument.

8Whenλ = 0, the PU constraint (3.6) is inactive and the optimum is attained at the Vickrey auction with no reserve price.
9The terms “weak” and “strong” refer to buyers’ valuationdistributions. Distributions of “strong” buyers are concentrated around higher values.
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In order to describe the optimal allocation rule we need a few more definitions. Letĉλ
i (vi) be the closestnon-

decreasingcontinuous approximation forvi(vi). Formally,

ĉλ
i (vi) =

d

dq
Gλ

i (q), whereq = Fi(vi) (3.12)

Gλ
i (q) is the lower convex hull of the functionHi : [0, 1] → IR, defined as

Hλ
i (q) =

∫ q

0

cλ
i (F−1

i (r))dr (3.13)

That is,Gλ
i (q) is the highest convex function on[0, 1],10 such that

Gλ
i (q) ≤ Hλ

i (q)

Redefined this way, virtual valuations are ”ironed” over certain portions of the domain. The ironing procedure
transforms the virtual valuations into non-decreasing functions, which is necessary to preserve incentive compatibility
(see [My81] for the discussion).

Theorem 3.1 For anyλ, L̂(p, λ) is maximized when the allocation rule is given by

pλ
i (v) =





1, if ĉλ
i (vi) is amongq0 highest virtual valuations

and ĉλ
i (vi) > (1 + λ)v0

0, otherwise.

(3.14)

Ties are broken by randomizing.

The proof follows that in [MR89] or [My81] (except that it is for different virtual valuations).
Theorem 3.1 proves that for allλ, the optimal mechanism is integral, that is, the probability of a buyer getting

an item is always 0/1 (except for the case of ties). The following provides some intuition behind the proof: integral
allocation mechanisms can be thought of as “corners” of the feasible region, given by constraints. Since the objective
is a linear functional and all the constraints are also linear inp, analogy with the linear programming problem suggests
that the optimum should be in one of those “corners”. It should be noted, that although the feasibility constraints (2.6,
2.7) are on expected utility of the buyer, Mechanism 3.14 is (ex post) incentive compatible and individually rational.
The latter can be verified by substituting the payment rule (3.5) in the expression of buyer’s utility.

The payment rule (3.5) means that the winning buyer pays the minimum valuation, required to win the item.
Therefore Mechanism 3.14 can be viewed as a form of Vickrey auction, run on virtual, rather than real valuations.
Whenλ = 0, Mechanism (3.14) yields the standard Vickrey auction.

3.3 Finding the optimal value for Lagrange multiplier λ

Computing the optimal mechanism requires choosing aλopt so that the allocation rulepλopt maximizes expected social
welfare over all allocation rulespλ, which satisfy the PU constraint (3.6). (There is no need to account for feasibility
constraints, since allpλ satisfy them.) As we argued in the beginning Section 3, the optimal allocation rule satisfies
(3.6) with equality andλopt is the solution to the integral equation

Ũ0(λopt) = R0 (3.15)

whereŨ0 is defined as
Ũ0(λopt) = Û0(p̂λopt)

Although Ũ0(λ) can only be evaluated numerically, the following theorem states thatŨ0 is nicely behaved. The
importance of this fact is that it makes Equation (3.15) easy to solve numerically (we present an algorithm for doing
so in the next subsection).

Theorem 3.2 Ũ0(λ) is continuous and non-decreasing inλ.

The proof of the theorem essentially relies on the fact that Mechanism 3.14 is (ex post) incentive compatible (the full
proof is in the Appendix).

10See [My81] and [Ro96, p.36] for details.
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3.4 Algorithm for computing the optimal allocation rule

The optimal allocation rule can be computed with the following algorithm, where the optimalλopt is the root of
Ũ0(λ)−R0. It is easy to find becausẽU0 is continuous and increasing.

Algorithm 1 (Computing the optimal allocation rule)

1. Check whether the Vickrey auction with reserve price equal to the seller’s valuation satisfies the PU constraint
(3.6). If it does, output it as a solution. Otherwise, go to 2.

2. Setλmin to zero andλmax to some positive number, such thatpλmax , given by Mechanism (3.14), does not
satisfy the PU constraint. The PU constraint is checked by evaluatingŨ0(λmax) numerically.

3. Repeat the following step untilλmax − λmin converges to zero:
Setλnew = λmin+λmax

2 . Construct the allocation rulepλnew and check the PU constraint. If it is satisfied, set
λmin = λnew, otherwise setλmax = λnew.

4. Set the allocation rule topλopt , whereλopt is given by Step 3. Set the payment rulet according to 3.5:

ti(v) = p
λopt

i (v)vi −
∫ vi

ai

p
λopt

i (v−i, wi)dsi

Ũ0 is ann-dimensional integral over the allocation probabilitiespλ, but nevertheless it can be evaluated numerically.
It can be estimated by samplingv and computing the Monte-Carlo sum, which converges to the true value of the
integral. Samplingv is easy because the valuationsvi are drawn independently:v can be obtained by sampling
individual valuationsvi from the distributionsfi.11

4 Randomized mechanisms

When virtual valuations of the buyerscλ
i given by (3.11) are non-decreasing and no ironing is needed,12 there exist

simple randomized mechanisms where the Vickrey rules are used w.p.t and the Myerson rules w.p.1 − t that yield
the same expected social welfare and seller’s expected revenue as our mechanism.

Rather than computing the optimalλ using the algorithm above and running Mechanism (3.14), the seller can use
the distributionsfi to evaluate the expected revenue of the Myerson auction and the Vickrey auction in advance, and
use these revenue values to analytically determinet. When no ironing is applied this indeed yields the same expected
revenue and social welfare as Mechanism 3.14.

However, randomization is often undesirable. In many settings an auction is only run once. For instance, each
privatization auction usually has different participants and/or a different object (company) for sale. Similarly, in
Internet auctions, the set of buyers generally differs for every auction, as may the object for sale. Now, say that in a
given setting, the auction designer is unsatisfied with the seller’s expected utility in the Vickrey auction, and with the
expected social welfare of the Myerson auction. Still, the designer can be satisfied with the seller’s expected utility
and expected social welfare in our deterministic mechanism. So, the deterministic mechanism is satisfactory, but the
randomized mechanism would run an unsatisfactory auction for sure. (For randomization to really make sense, the
designer would have to be able to repeat the random drawing multiple times, i.e., to repeat the same auction in the
same setting.)

5 Prior-free mechanisms

The results of this paper are derived under the independent private values model, which assumes that the distributions
of valuations (types) are common knowledge. However, in many practical application this assumption does not hold
and the seller has no information about these distributions (for instance when the good on sale is new to the market).

11If one can solve for the inverse ofFi, it is possible to sample directly fromfi. Otherwise a technique such as importance sampling [GC95, p.
305] should be used.

12this is called aregularcase in economics literature
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This raises the question of the possibility of prior-free mechanisms with desired properties, which is also motivated
by theRobert Wilson doctrine. In the special case of symmetric valuations (the valuations of all buyers come from the
same distributionF ) and with more than one unit of the good on sale (i.e.q0 > 1) it is possible to design a mechanism
which doesnotuse any prior knowledge about distributions, but still approaches the characteristics of WM-R0 auction,
derived in this paper, when the number of buyers is large.

Such a prior-free mechanism can be constructed, applying the idea of sampling, developed in [BV03]: since the
valuations of buyers are independent draws from the sameunknowndistributionF , they can be used to estimateF ,
using the following technique:

Fn(t) =
|j ∈ N, vj < t|

n− 1
Then the estimatesFn can be used in place of the true distributionF in Mechanism (3.14) (the derivative ofF , f can
also be estimated from the sample, as discussed in [BV03]). The one issue remaining is incentive compatibility: when
the reported valuation of buyeri is used to estimateF andf there exist an incentive to lie (since throughF andf ,
buyeri gets a chance to manipulate the estimates of the virtual valuations for herself and the buyers, she is competing
with. A solution to this problem is to apply the idea of dual-sampling auction from [FGHK02]:

1. Split the set of buyers randomly into two groups of sizen
2 (if n is odd, place the remaining buyer into the first

group).

2. Assign half of the units on sale (q0
2 units) to group1 and the other half to group2.

3. Use the valuations of the buyers from group1 to estimateF andf for the buyers from group2 and vice versa.

4. Independently run the auctions among the buyers from group1 and group2.

Note that this way, buyers from different groups do not compete against each other and the report of any buyer does not
affect the estimates ofF andf used in her group. This property obviously makes the auction incentive-compatible. By
the argument, using the law of large numbers, the expected efficiency of this mechanism approaches that of feasible
WM-R0 auction and expected revenue approachesR0 whenn (the number of buyers) goes to infinity (the proof closely
follows that in Theorem4 from [BV03]).13

The same idea can be trivially extended for the non-symmetric case (buyers’ valuations are draws from different
distributions), when there is sufficient number of buyers coming from each distribution.

6 Conclusions

We demonstrated that the auction, maximizing expected efficiency subject to a constraint on the seller’s expected
utility belongs to the family of dominant strategy mechanisms, parameterized with one free parameter and presented
an algorithm for optimally choosing the value of the parameter. By running this auction the seller can expect to do
well enough for himself, and maximize social welfare subject to that.

No matter how the tradeoff between efficiency and seller’s utility is struck, the optimal auction has essentially
the same form. Furthermore, except for the case of ties in virtual valuations the optimal auction does not rely on
randomization, that is, given distinct bids the allocation probabilities are 0/1 (however, the winning bidder is not
always the highest bidder).

It is important that the presented mechanism does not use randomization over different auction mechanisms (i.e.
when the result is achieved by running different auctions with positive probability). The latter is inappropriate for the
auction design problems, which motivate our work.

We derived our results under the asymmetric independent private values model. For the special case of symmetric
distributions we also presented the approximation mechanism which doesnot use any prior knowledge about distri-
butions. This mechanism approaches expected efficiency and expected seller’s utility of the auction, designed with
distributions known upfront, when the number of buyers, coming from every distribution tends to infinity.

13It is well known that in symmetric setting with fixed number of goods and the number of bidders going to infinity, the Vickrey auction
approaches the optimal revenue (for instance, [MT00] prove this statement for general combinatorial auctions). However the statement does not
hold when the number of goods on sale is also increasing. This is exactly the case when the approximation technique of [BV03] is helpful.
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Appendix

Proof of Theorem 3.2.Monotonicity of Ũ0(λ) = Û0(pλ) can be proved as follows: Take arbitraryλ1 < λ2. Then,
by definition ofpλ1 , pλ2 {

L̂(pλ1 , λ1) ≥ SW (pλ2) + λ1 · Û0(pλ2)
L̂(pλ2 , λ2) ≥ SW (pλ1) + λ2 · Û0(pλ1)

(6.1)

Denote∆p = pλ2 − pλ1 and∆λ = λ2 − λ1. SinceSW , Û0 andL̂ are linear functionals, (6.1) implies
{

L̂(−∆p, λ1) = −L̂(∆p, λ1) ≥ 0
L̂(∆p, λ2) ≥ 0

Therefore
L̂(∆p, λ2)− L̂(∆p, λ1) = (λ2 − λ1)Û0(∆p) ≥ 0

and
Û0(∆p) = Û0(pλ2)− Û0(pλ1) ≥ 0

Thus,Ũ0(λ) = Û0(pλ) is non-decreasing inλ.

We now prove the continuity of̃U0(λ). The idea of the proof uses the (ex-post) incentive compatibility of the
Mechanism 3.14 and shows that ifŨ0(λ) is not continuous, the mechanism cannot be ex post incentive compatible.

Ũ0 is given by

Ũ0(λ) =
n∑

i=1

(∫

V

(
ci(vi)− v0)pλ

i (v)f(v)dv

)
+ q0 · v0

whereci are the Myerson virtual valuations, defined in (3.10). For arbitraryλ1, λ2, we have

|Ũ0(λ1)− Ũ0(λ2)| ≤ cmax

∫

V

n∑

i=1

|pλ1
i (v)− pλ2

i (v)|f(v)dv ≤ 2 · cmax ·
∫

Vλ1,λ2

f(v)dv (6.2)
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where
cmax = max

i∈N,vi∈[ai,bi]
|ci(vi)− v0|

and
Vλ1,λ2 = {v ∈ V | pλ1(v) 6= pλ2(v)}

is the set of valuation vectors where allocationspλ1(v) andpλ2(v) differ.
We now show thatVλ1,λ2 = O(∆λ). By (3.11), for alli andvi,

|vλ1
i (vi)− vλ2

i (vi)| = |ci(vi)∆λ| ≤ |cmax∆λ|
Also, using the definition of̂ci it is easy to show that for alli andvi

{
ĉλ1
i (vi)− |cmax∆λ| ≤ ĉλ2

i (vi)
ĉλ2
i (vi)− |cmax∆λ| ≤ ĉλ1

i (vi)

Therefore,
|ĉλ1

i (v)− ĉλ2
i (v)| ≤ |cmax∆λ| (6.3)

Mechanisms, using the payment rule (3.5) and with allocation rule, such that allpi(v−i, s) are non-decreasing in
s are ex-postincentive compatible (it can be verified by substituting the payment rule (3.5) into the definition of
buyer’s utility). Therefore, Mechanisms (3.14) are ex-post incentive-compatible. We show now that ex-post incentive
compatibility together with (6.3) impliesVλ1,λ2 = O(∆λ) and therefore continuity of̃U0.

We first demonstrate that utility of buyeri -

ui(pλ, t, v) = pλ
i (v) · vi − ti

is continuous in parameterλ for all λ and for allv. Assume the contrary: there existsv, λ1 andελ1 , such that for all
δ > 0, there exist someλ2, satisfying

{
|λ2 − λ1| < δ

|ui(pλ1 , t, v)− ui(pλ2 , t, v)| > ελ1

We now show that such a mechanism is not ex-post incentive compatible. W.l.o.g. assume that the utility of buyeri
under the allocationpλ2 is higher than under the allocationpλ1 (if this is not the case, interchangeλ1 andλ2).

Non-continuity ofui means that arbitrary small changes inλ yield substantial (at leastελ1 ) increase in utility
of buyer i. Mechanism (3.14) allocates the items to buyers with highest virtual valuations and by( 6.3) the virtual
valuations ofall buyers change by at most|cmax∆λ|. Sinceĉi(vi) s non-decreasing invi, there exists a typêvi, such
that when types of other buyers are given byv−i, buyeri benefits from overbidding (i.e. mechanism is not ex-post IC).

More formally, by (6.3)|ĉλ1
j (vj)− ĉλ2

j (vj)| ≤ |cmax∆λ| for all j. Therefore, if̂cλ1
i (vi) were at most2 · |cmax∆λ|

higher, buyeri would get the same probability of winning an item as under allocationpλ2 . Sinceĉλ1
i (vi) is a non-

decreasing function ofvi, consider two cases:

1. ĉλ1
i (vi) is increasing atvi (i.e. ĉλ1

i (vi) = cλ1
i (vi)). The derivative of̂cλ1

i is well-defined, positive and continuous
in vi (i.e. it is positive in some neighborhood ofvi). Therefore it is possible to choose∆λ = |λ2 − λ1|
small enough, so that there existt

′
i, such that0 < t

′
i − vi < τλ1

vi
· ∆λ, for some constantτλ1

vi
and ĉλ1

i (t
′
i) >

cλ1
i (vi) + 2 · |cmax∆λ|.

If the true type of buyeri is vi, then reportingt
′
i yields an increase in utility of at leastελ1 (due to the increase of

the probability of winning), while the payment of the bidder increases by at most2τλ1
vi
·∆λ (this can be verified

by substitutingvi and v̂i into the payment rule (3.5)). Therefore if∆λ is sufficiently small, bidderi benefits
from overbidding.

2. ĉλ1
i (vi) is constant atvi (i.e. vi is on the flat (ironed) portion of the virtual valuation). Takev̂i to be the highest

type, such that̂cλ1
i (v̂i) = ĉλ1

i (vi) (i.e. v̂i is at the end of the flat portion of̂cλ1
i ). It is easy to show that̂vi has

the same probability of winning an item asvi and the same utility. Applying then the same argument as in the
case of increasinĝcλ1

i (vi) allows to show that̂vi benefits from overbidding.
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The argument yields a contradiction: (Mechanism (3.14) is not ex-post incentive compatible), which is due to our
assumption about non-continuity ofui. When the payment rule is set according to (3.5) the utility of buyeri is given
by

ui(pλ, t, (v−i, vi)) =
∫ vi

ai

pi(v−i, wi)dsi

Therefore, sinceui is continuous inλ, and by (3.14)pi takes values only in{0, 1
n , 1

n−1 , . . . , 1} and is non-decreasing
in vi for all i we must have

{vi ∈ [ai, bi]| pλ1
i (v−i, vi) 6= pλ2

i (v−i, vi)} = O(∆λ), ∀i, v−i

It follows, that
Vλ1,λ2 = {v ∈ V | pλ1(v) 6= pλ2(v)} = O(∆λ)

Therefore, by 6.2,̃U0(λ) is continuous inλ.2
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