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ABSTRACT
This paper studies auctions in a setting where the di�erent
bidders arrive at di�erent times and the auction mechanism
is required to make decisions about each bid as it is received.
Such settings occur in computerized auctions of computa-
tional resources as well as in other settings. We call such
auctions, on-line auctions.
We �rst characterize exactly on-line auctions that are in-

centive compatible, i.e. where rational bidders are always
motivated to bid their true valuation. We then embark
on a competitive worst-case analysis of incentive compati-
ble on-line auctions. We obtain several results, the cleanest
of which is an incentive compatible on-line auction for a
large number of identical items. This auction has an opti-
mal competitive ratio, both in terms of seller's revenue and
in terms of the total social eÆciency obtained.

1. INTRODUCTION
Auctions are a commonly used tool for selling goods in

cases where a true market does not exist. In the typical
case multiple buyers aim to buy some good from a single
seller, and the seller wishes to sell the good for the highest
possible price. Many types of auctions have been considered
in the literature, and an elegant theory has evolved. For an
introduction see e.g. the textbook [16].
In recent years auctions have found new applications in

trade that is performed on computer networks and espe-
cially over the Internet. Such applications include electronic
commerce [2, 14], computational and network resource allo-
cation [19, 20, 13, 11, 18, 24, 7, 26], trade between software
agents [21, 6, 22], and more. With these new applications
new questions arise.
This paper studies auctions in a setting where the di�er-
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ent bidders arrive at di�erent times and the auction mech-
anism is required to make decisions about each bid as it is
received. This is in contrast to the traditional assumption
(in theory and in practice) that the auction organizer must
receive all the bids before determining the allocation. The
traditional assumption implicitly assumes that all partici-
pants (including the auctioneer) are willing to wait for some
amount of time (until all bids are gathered) before perform-
ing any trade. We argue that in many settings, especially
computerized ones, players will not be willing to wait a long
time for the allocation decision.
An example of such a setting is bandwidth allocation on

a communication link. Consider a �xed communication link
in some computer network. In cases where the demand for
communication over this link exceeds the link's bandwidth,
a popular approach for allocating the limited bandwidth is
by auctioning it among all the possible uses [13, 7, 15, 9].
However, in such a setting one would expect the requests
(\bids") for bandwidth to arrive in di�erent times { each
request needing an immediate answer. Similar situations
arise in the allocation of other resources such as CPU time
or cache space.
In our model, k identical items are sold in an auction.

Each bidder has a (privately known) valuation for each quan-
tity of the goods, where the marginal utilities of the bidders
are non-increasing. The bidder learns this valuation at a
certain time and must make a bid at that time. The auc-
tion mechanism must decide, as the bid is received (and
before seeing future bids), how many items to allocate to
this bidder and at what price. We term such an auction
on-line. (We also consider more general variants where the
valuations as well as bids may be time-dependent { all our
results extend to the general variants).
Our main concern in this paper is with the incentive com-

patibility { also called truthfulness or strategy-proofness {
of the auction. An auction is called incentive compatible
if participants are rationally motivated to reveal the truth
about their valuations. Speci�cally, if the truth is a domi-
nating strategy. This is a departure from the �eld of on-line
algorithms (see [4, 8]) which does not address any game-
theoretic issues but only algorithmic ones.
In his seminal paper, Vickrey [25] argued for the impor-

tance of incentive compatibility and �rst analyzed the incen-
tive compatible second price auction. The main motivation
is to free the bidders from strategic considerations. It has
been argued [21, 6, 22, 23, 12] that this is especially impor-
tant in computerized settings.
Our �rst result in this paper is a full characterization of
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incentive compatible on-line auctions: An on-line auction is
called \based on supply curves" if before receiving the i'th
bid, bi(q), it �xes some function (supply curve) pi(q) based
on previous bids, and,

1. The quantity qi sold to bidder i is the quantity q that
maximizes the sum

Pq
j=1(bi(j) � pi(j)) (i.e. the bid-

der's utility).

2. The price paid by agent i is
Pqi

j=1 pi(j).

Theorem 1. An on-line auction is incentive compatible
if and only if it is based on supply curves.

We then employ a worst case analysis of on-line auctions.
This is in the spirit of computer science and in sharp con-
trast to the usual Bayesian (average case) analysis employed
in auction theory (as well as in other economic situations).
The overriding reason that worst case analysis is the almost
universal choice in computer science is that it turns out that
\real world" distributions in computational settings are al-
most always very di�erent from any theoretical distributions
assumed in an average case analysis. In such cases an av-
erage case analysis is worthless while a worst-case analysis
does provide performance guarantees. This is not the place
for a lengthy discussion of the merits of worst case analysis
compared with those of average case analysis. The inter-
ested reader may refer e.g. to the introductory textbook [1],
pp. 9-10. We strongly feel that as auction theory is increas-
ingly applied to computational settings, the importance of
worst case analysis increases.
Speci�cally, we assume in this paper that bidders' valua-

tions all belong to some range [p : : : �p], where p is also the
seller's reservation price (without assuming any probability
distribution). We compare the revenue and the social eÆ-
ciency obtained by an incentive compatible on-line auction
to those obtained by the standard o�-line Vickrey auction,
that knows the entire input sequence in advance. Similarly
to the de�nition used in on-line analysis of algorithms, we
focus on the, so called, competitive ratio: An on-line auction
is called c-competitive with respect to the revenue (relative
to the Vickrey auction) if for every sequence of valuations of
bidders it obtains a revenue that is at least 1=c of the rev-
enue obtained by the Vickrey auction for these valuations.
Similarly we de�ne c-competitive with respect to the social
eÆciency. We note the dissimilarity between the economic
meaning of the term \competitive" and its meaning in com-
puter science, which is the one used here.
The tightest set of results is obtained when the number k

of items is large, so it can be treated as a continuum. For
this case we are able to �nd the optimal on-line incentive
compatible auction. We de�ne the competitive on-line auc-
tion by using the function suggested in [5] to construct the
supply curves. Extending the results of [5] for on-line con-
tinuous one way trading, we prove the following upper and
lower bounds. Let � = �p=p, and let the constant c denote
the solution of the equation c = ln((�� 1)=(c� 1)). It can
be shown that c = �(ln�).

Theorem 2. The Competitive On-Line Auction is c -
competitive with respect to the revenue as well as with re-
spect to the social eÆciency of the o�-line Vickrey auction.
No other on-line auction has a better competitive ratio ei-
ther with respect to the revenue or with respect to the social
eÆciency.

For the case of a smaller value of k we obtain the following
results. For one good the best competitive on-line auction
achieves a competitive ratio of

p
�. For other values of k,

we show a deterministic lower bound of �
1

k+1 and a deter-

ministic upper bound of k � � 1
k+1 . We observe also that if

randomized auctions are allowed then a better competitive
ratio can be obtained. By using the supply curves of the pre-
vious theorem for probabilistic choices, a competitive ratio
of c can be obtained, where c = �(ln�) is as before.
It should be noted that the competitive ratio is obtained

in the worst case; in the average case the ratio is typically
much better. As a demonstration, we also provide a \nor-
mal" Bayesian analysis of our competitive on-line auction
for the divisible good, in the case of uniformly distributed
valuations in the interval [p; �p]. For example, for two bidders
whose valuations are uniformly distributed in [1; 2] this on-
line auction achieves expected revenue of 1:31::: as compared
to 1:33:: for the Vickrey auction.
This paper is organized as follows. Section 2 describes our

model and gives a full characterization of incentive compat-
ible on-line auctions. In section 3 we describe the competi-
tive on-line auction. Section 4 outlines an extended on-line
model, and section 5 gives a distributional analysis of the
competitive auction.

2. ON-LINE AUCTIONS

2.1 The model

The goods: We consider an auction of k identical indivis-
ible goods to a set of players. We distinguish the case of
a very large k that can be treated as a continuum, viewing
this case as auctioning one divisible good with quantity Q.

Players' valuations and utilities: Each player has some
positive bene�t from receiving some quantity of the goods.
This bene�t is known only to the player himself. We denote
the marginal valuation of player i as vi(q). I.e. this is the
(additional) bene�t gained from the q'th good. Thus, his
total valuation for q goods is

Pq
j=1 vi(j). We assume that all

players have downward sloping marginal valuation functions,
i.e. 8i; q : vi(q + 1) � vi(q).

1 When player i receives q
goods and pays for them a total payment of Pi his utility
is Ui(q; Pi) =

Pq
j=1 vi(j)� Pi. We assume that each player

aims to maximize his utility.

The on-line game and players' strategies: The on-line
game has the following structure. Initially, the set of players
is unknown to the auctioneer, and none of the players knows
his valuation. At some point in time, ti, player i learns his
valuation and must declare his bid at that time. We focus on
direct revelation mechanisms, in which the player declares
his marginal valuation function. Thus, the bid is some non-
increasing function bi(q) of the form bi : [1 : : : k] ! R. Of-
course, a player may be motivated to lie, declaring some
bi(q) 6= vi(q), in order to increase his utility. The auctioneer
must answer the bid immediately, before opening the next
bid. In his answer, he determines the quantity to be sold
and the total price to be paid for it. We assume that if a
player does not receive any positive quantity then his total

1This assumption is common in economics, and is assumed
e.g. in Vickrey's original paper. Without it the Vickrey
multi-unit auction is not eÆcient, and in fact �nding an
optimal allocation is NP-complete.
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payment is zero.2 The game ends when the auctioneer sells
all the goods or when the last player announces his bid.

Incentive compatibility: We study truthful implementa-
tions in dominant strategies, which we refer to as incentive
compatible mechanisms. A strategy (bid) bi(q) of player i

is called dominant if for every other bid ~bi(q) and for ev-
ery sequence of past and future bids of the other players,
Ui(qi; Pi) � Ui(~qi; ~Pi), where qi; ~qi are the quantities sold to

player i when declaring bi(q);~bi(q), respectively, and Pi; ~Pi
are the total payments charged for each quantity. In other
words, for every bid sequence of the other players the utility
of player i is maximized by choosing the speci�c declaration
bi(q). A direct revelation mechanism is incentive compati-
ble if for every valuation vi(�), declaring the true valuation
is a dominant strategy. Such mechanisms are also called
strategy-proof. For a more detailed discussion see e.g. [16].

Remark 1: This model explicitly limits the strategy space
of the players, excluding any time considerations, i.e. player
i must declare his bid at time ti. In section 4 we remove
this limitation and show that all our results still hold for an
extended model with time considerations.

Remark 2: It is also possible to consider a partially on-line
model, in which the set of players is known in advance to
the auctioneer (but the valuation sequence is still revealed
on-line). Although this approach weakens the on-line power,
it is more close to regular game theory settings.

2.2 Supply curves for on-line auctions
We now characterize a general form for any incentive com-

patible on-line auction.

De�nition 1. (Supply Curves) An on-line auction is called
\based on supply curves" if before receiving the i'th bid it
�xes a function (supply curve) pi(q) based on previous bids,
and,

1. The quantity qi sold to bidder i is the quantity q that
maximizes the sum

Pq

j=1(bi(j) � pi(j)) (i.e. the bid-

der's utility).

2. The price paid by agent i is
Pqi

j=1 pi(j).

A more simple form of supply curves, which we will use
below, is when each supply curve pi(q) is non-decreasing.
For such a supply curve, the quantity qi becomes the largest
quantity q such that bi(q) � pi(q). For this simple form, the
case of a divisible good is de�ned similarly: the supply curve
pi(q) is any non-decreasing real function, the quantity qi is
determined as before, and the price becomes

R qi
0

pi(q)dq. If
both bi(q); pi(q) are continuous then qi is the unique solution
to bi(q) = pi(q).
For example, �gure 1 illustrates a non-decreasing supply

curve p1(q) and a bid b1(q). According to Def. 1, the quan-
tity received by the player equals q1, and the total price
paid is the area below the supply curve, marked by the hor-
izontal lines. The player's valuation of the quantity q1 is
the area below b1(q), and, thus, the resulting utility of the
player is the area between the marginal valuation and the
supply curve, marked by the vertical lines. This is the entire
surplus, in economic terms. After the sell, the auction con-
tinues to the next player, presenting some new supply curve
p2(q).
2This normalization ensures both participation constraints
and no budget de�cit.
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Figure 1: An example of supply curves based auc-

tion.

Theorem 1. An on-line auction is incentive compatible
if and only if it is based on supply curves.

Proof. We prove the following lemmas:

Lemma 1. An on-line auction that is based on supply curves
is incentive compatible.

Proof. The utility of player i from receiving some quan-
tity q is Ui(q) =

Pq
j=1(vi(j) � pi(j)) (his valuation of the

total quantity minus his total payment). Let bi(q) 6= vi(q)
be some bid and suppose the quantity sold for this bid is
~qi, and for the truthful bid is qi. Then it is the case that
Ui(qi) � Ui(~qi), since this is explicitly veri�ed in the �rst
condition of the supply curves de�nition (when the bid is
truthful then the term maximized there equals Ui(q)). Thus
the claim follows.

Lemma 2. Any incentive compatible on-line auction is
based on supply curves.

Proof. For any incentive compatible on-line auction A,
we argue that the total payment of player i is determined
uniquely by the quantity sold to him (and by previous bids).
Otherwise there are two di�erent bids v(q); ~v(q) such that
the quantity sold when declaring each one of them is the
same but the total price paid is di�erent. Let P be the
total price when declaring v(q) and ~P the total price when

declaring ~v(q), and w.l.o.g suppose P < ~P . Thus a player
with valuation ~v(q) will increase his utility by declaring v(q)
since he will receive the same quantity and will pay a lower
total payment, which is a contradiction since A is incentive
compatible.
Now denote the total payment of player i as Pi(q), and

observe that pi(q) = Pi(q)�Pi(q� 1) (for q > 0) is the sup-
ply curve according to de�nition 1, i.e. the total quantity
and the total price are determined according to the condi-
tions of the de�nition. For the total price, this is imme-
diate since pi(q) was derived from Pi(q) such that Pi(q) =
Pi(0) +

Pq

j=1 pi(q), and Pi(0) = 0 by our assumptions. For
the total quantity, let qi be the quantity that maximizes
Ui(q) =

Pq
j=1 vi(j)� Pi(q) (which is equal to the the term

in the de�nition), and let b(q) be some bid such that A
sells the quantity qi for that bid. Then if A sells a quantity
~qi 6= qi for the truthful bid vi(q), then player i will increase
his utility by declaring b(q), which is a contradiction.
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From the above two lemmas the theorem follows.

An interesting special form of players' valuations is �xed
marginal valuations. In this case, the marginal valuations
are restricted to the form vi(q) = vi for all i; q. This case is
also useful since we use it for the lower bound we give below.
For this case, it is possible to characterize the supply curves
more precisely (this holds for the continuous case as well,
with a similar proof).

Lemma 3. Assume that all marginal valuations are of the
form vi(q) = vi. Then any incentive compatible on-line auc-
tion is based on non-decreasing supply curves.

Proof. Fix some incentive compatible on-line auction A.
According to Theorem 1, A is based on supply curves. Con-
sider the sell to the i'th player. Denote A's total price func-
tion by P (q), and A's allocation rule by q(v), i.e. A sells
a quantity q(v) for a bid v (since the marginal valuation is
�xed, each bid is simply a single value).
We �rst argue that q(v) is non-decreasing. Otherwise,

suppose there are two bids ~v > v such that q(~v) < q(v).
Denote q(v) = q; q(~v) = ~q. Thus, ~v � ~q�P (~q) � ~v � q�P (q),
and therefore P (q) � P (~q) � ~v(q � ~q) > v(q � ~q). Thus
v � ~q�P (~q) > v �q�P (q) and according to the supply curves
de�nition, A must sell a quantity of ~q for a bid value of v,
in contradiction. Now de�ne

p(q) = inf f v j q(v) � q g;
i.e. A sells at least q for any bid v > p(q). Since q(v)
is non-decreasing then p(q) is non-decreasing as well. We
claim that A is based on p(q). In other words, for every
bid v, if A sells a quantity q then P (q) =

Pq

j=1 p(j). To
see this, we argue that for any l � 1 and q � l such that
p(q + 1) > p(q) = : : : = p(q � l+ 1) > p(q � l), it is the case
that P (q)�P (q�l) = l�p(q) (e.g. if p(q+1) > p(q) > p(q�1)
then P (q)�P (q�1) = p(q)). Denote x = (P (q)�P (q�l))=l,
and suppose by contradiction that x 6= p(q). If x < p(q) then
a bidder with marginal valuation ~v such that x; p(q � l) <
~v < p(q) will increase his utility by declaring p(q) instead,
since his utility will change by l(~v � x) > 0 (he will receive
a quantity addition of l, and his additional payment is l �x).
In a similar manner, if x > p(q) then a bidder with marginal
valuation x; p(q + 1) > ~v > p(q) will increase his utility by
declaring p(q � l) instead, since his utility will change by
l(x� ~v) > 0.
Now suppose that A sells a quantity q for a bid v. If p(q) <

p(q + 1) then the claim immediately follows since the sumPq

j=1 p(j) is equal to a telescopic sum that becomes P (q)�
P (0) (e.g. if p(q + 1) > p(q) > p(q � 1) then

Pq
j=1 p(j) =Pq

j=1 P (j) � P (j � 1)). If p(q) = p(q + 1) then it must be

the case that P (q)�P (q� l) = l �p(q) for such an l as before,
by using similar arguments as before and the fact that a bid
v actually receives a quantity q.

Remark: Allowing any (non-increasing) marginal valua-
tion functions may increase signi�cantly the complexity of
presenting the valuation function to the auctioneer. This
problem can be solved by using a modi�ed auction that,
instead of receiving valuation functions, presents the (cur-
rent) supply curve to all (interested) players. In this case
each bid is simply a price-quantity coordinate on the supply
curve. From the same considerations of incentive compati-
bility from lemma 1, declaring the truth (i.e. the maximal

quantity according to Def. 1) is dominant. We note that the
supply curves we give below can be presented easily.

In general, there is no speci�c relation between the di�er-
ent supply curves of an auction. However, a useful structure
of supply curves, which we use in section 3, is when all the
supply curves are derived from some global supply curve, as
follows:

De�nition 2. (A Global Supply Curve) An on-line auc-
tion is called \based on a global supply curve p(q)" if it is

based on supply curves and if pi(q) = p(q+
Pi�1

j=1 qj), where
qj is the quantity sold to the j'th bidder.

In other words, the i'th supply curve is a left shift of the
(i�1)'st supply curve by qi�1. Thus, the i'th bidder receives
the quantity according to the �rst supply curve p1(q) minus
the quantity that was sold previously.

3. COMPETITIVE ANALYSIS
In this section we describe on-line auctions with worst-

case performance guarantees, i.e. the on-line performance
for every valuation sequence is not too far from the o�-line
performance for the same sequence. We �rst de�ne our per-
formance measure (revenue and social eÆciency) and the ex-
act meaning of a performance guarantee (competitiveness).
For the worst-case analysis, we assume that all marginal

valuations are taken from some known interval [p; �p], without
assuming any distribution on them. We assume that p > 0,
and that it is also the reservation price of the auctioneer.

De�nition 3. (Revenue and Social EÆciency) The rev-
enue of an auction A for a valuation sequence �, denoted
as RA(�), is the resulting utility of the auctioneer, i.e. the
total payment he received plus his valuation of the quantity
he did not sell. More speci�cally, let qi be the quantity sold
to the i'th player in � and Pi be the total price paid by the
i'th player, then:

RA(�) =
X
i

Pi + p(k �
X
i

qi):

The social eÆciency of an auction A for a valuation se-
quence �, denoted as EA(�), is the sum of the resulting
utilities of all players, including the auctioneer. This is also
equal to the sum of all the players' valuations of the quantity
they received (including the auctioneer). I.e:

EA(�) =
X
i

qiX
j=1

vi(j) + p(k �
X
i

qi):

We compare the revenue and the social eÆciency obtained
by on-line auctions to those obtained by the o�-line Vickrey
auction. The use of the Vickrey auction as the benchmark
is not only due to its popularity but also due to the fact
that this is the only auction with dominant strategies. Such
a non-Bayesian equilibrium is required for the worst-case
analysis we desire. In any case, the Vickrey auction is al-
ways optimal in terms of the social eÆciency. While the
revenue is not necessarily optimal in a Bayesian setting, the
revenue equivalence theorem [17] states that other auctions
with equivalent outcomes extract the same revenue.

De�nition 4. (Competitiveness) An on-line auction A is
c-competitive with respect to the revenue if for every valu-
ation sequence �, RA(�) � Rvic(�)=c.
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Similarly, A is c-competitive with respect to the social eÆ-
ciency if for every valuation sequence �, EA(�) � Evic(�)=c.

3.1 A divisible good
We �rst focus on the case of a divisible good. We assume

w.l.o.g that Q = 1. We describe a global supply curve that
is �(log(�p=p))-competitive with respect to both the revenue
and the social eÆciency. For this purpose we use results
of [5] for on-line continuous one way trading.
Let c be the unique solution to the equation:

c = ln
(�p=p)� 1

c� 1
: (1)

It can be shown that c = �(ln(�p=p)). For example, if
(�p=p) = 2 then c = 1:28, and if (�p=p) = 8 then c = 1:97.

De�nition 5. (The Competitive On-Line Auction) We
de�ne the Competitive Supply Curve by:

p(q) = p(1 + (c� 1)ecq): (2)

The Competitive On-Line Auction has the Competitive
Supply Curve as its global supply curve.

Let q(p) = p�1(q) (the inverse function of p(q)) and let

r(p) =
R q(p)
0

p(x)dx.3 It is not hard to verify that q(p) is
the total quantity sold by the Competitive On-Line Auction
when the last valuation intersects the last supply curve at
price p, and that r(p) is the total payment of the auction for
such a sequence.

Lemma 4 (El-Yaniv, Fiat, Karp, and Turpin [5]).
The functions q(p); r(p) preserve the following conditions:

1. 8p � c � p : q(p) = 0; r(p) = 0

2. 8p > c � p : r(p) + p � (1� q(p)) = p=c.

3. q(�p) = 1.

where c is as de�ned in Eq. 1.

The paper [5] also states the minimality of the constant c in
the following sense (this lemma is implicit in [5]):

Lemma 5 (El-Yaniv, Fiat, Karp, and Turpin [5]).
For any constant ~c < c, there is no function ~q(p) such that

8p 2 [p; �p]; ~r(p) + p � (1� ~q(p)) � p=~c

where ~r(p) =
R ~q(p)
0

~p(x)dx and ~p(q) = ~q�1(p) is the inverse
function of ~q(p).

Theorem 2. The Competitive On-Line Auction is c -
competitive with respect to the revenue and with respect to
the social eÆciency.

Proof. We prove the following lemmas:

Lemma 6. For any sequence of valuations �, Rcola(�) �
Rvic(�)=c, where \cola" is the Competitive On-Line Auction
and \vic" is the Vickrey auction.

3The paper [5] uses r(p) =
R p
0
xq 0(x)dx. It can be veri�ed

that both terms are equal.

Proof. Fix some valuation sequence �. For a player i let
qi be the quantity he received, and denote pi = pi(qi). Let
m be the last player that received a positive quantity qm.
For all i and q > qi, bi(q) < pi. It also exists that for all
i; pi � pi+1 since p(q) is non-decreasing. Thus, each player i
values any quantity addition �q to that he already received
by no more than pm ��q. The price that the Vickrey auction
determines for the quantity q�i it allocates to player i is the
highest valuation of some combination of other players for a
quantity addition �q = q�i divided among them. There is at
least one player i such that q�i � qi since the Vickrey auction
allocates the entire quantity. Thus bi(q

�

i ) � bi(qi) � pm.
Since the Vickrey auction is eÆcient it follows that for all j
and q > q�j , bj(q) � pm (otherwise, if for some j this does
not hold, then it is possible to increase the Vickrey eÆciency
by shifting some quantity from i to j). Thus, every player
values any quantity addition �q by no more than pm ��q in
the Vickrey auction as well, and therefore Rvic(�) �Pi(pm�
q�i ) � pm. According to condition 2 of Lemma 4, the on-line
revenue is pm=c, and the lemma follows.

Since the Vickrey auction obtains an optimal social eÆ-
ciency, we need to prove the following:

Lemma 7. For any sequence of valuations �, Ecola(�) �
Eopt(�)=c, where Eopt(�) is the optimal social eÆciency for
�.

Proof. Fix some valuation sequence � and denote qi; pi,
and m as in the previous lemma. Consider a new sequence
�� as follows:

b�i (q) =

�
pi q � qi
bi(q) otherwise;

I.e. player i has �xed marginal utility up to q = qi and then
as before. The on-line allocation for this sequence does not
change since b�i (q) intersects the supply curve at p(qi). Since
bi(q) � pi � pm for all i, it follows that Eopt(�

�) � pm. It
also exists that Ecola(�

�) � Rcola(�
�) = pm=c (the equal-

ity is due to condition 2 of Lemma 4). Thus, Ecola(�
�) �

Eopt(�
�)=c.

Now consider moving from � to �� in m steps. In each
step i, if bi(q) > b�i (q) at some points, then bi(q) is decreased
to b�i (q). Let �i be � after i such modi�cations. The on-
line auction allocates to i the entire quantity whose value
decreased, and thus Ecola(�

i) � Ecola(�
i+1) � Eopt(�

i) �
Eopt(�

i+1), i.e. the on-line eÆciency decrease is greater than
the o�-line decrease since it is the maximal possible. From
this it follows thatEcola(�)�Ecola(�

�) � Eopt(�)�Eopt(�
�),

and we get:
Ecola(�) � (Eopt(�)�Eopt(�

�))=c+Ecola(�
�) �

(Eopt(�)�Eopt(�
�))=c+Eopt(�

�)=c = Eopt(�)=c.

From the above two lemmas the theorem follows.

A natural question to ask is whether the on-line revenue
is competitive with respect to some higher revenue crite-
ria. As it turns out, it can be shown that for the special
case of �xed marginal valuations, the on-line revenue is c-
competitive with respect to the optimal eÆciency (i.e. with
respect to the o�-line auction that extracts the total sur-
plus). However, for general valuations, the on-line revenue is
signi�cantly lower than the optimal eÆciency in cases where
the Vickrey revenue is signi�cantly lower than the optimal
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eÆciency. For example, consider the following scenario of
two players. Let p� be some price and q� be the quantity
such that p� = p(q�)). The �rst player has a �xed marginal
valuation of �p up to q�, and the second player has a �xed
marginal valuation of p�. The optimal eÆciency for this sce-
nario is q� � �p+ (1� q�) � p�. In the on-line auction, player
1 will receive a quantity of q�, since this is the maximal
quantity for which his valuation is higher then the supply
curve. Player 2 will receive nothing, since the second sup-
ply curve is higher then p� (as the auction is based on a
global supply curve). Therefore, the on-line revenue is at
most q� � p� + (1� q�) � p. Thus, for example, when setting

p� =
p
p � �p then the optimal eÆciency to on-line revenue

ratio is larger than
q
�p=p. It is interesting to observe that, if

the arrival order of the players is reversed, then the on-line
revenue increases signi�cantly to �p=c (although the Vickrey
revenue remains the same).
We now show that the competitive ratio of the Competi-

tive On-Line Auction is the best we can expect:

Theorem 3. Every incentive compatible on-line auction
has a competitive ratio of at least c with respect to either the
revenue or the social eÆciency, where c is the solution to
Eq. 1.

Proof. We prove the claim for the special case of �xed
marginal valuations (in other words, even if the adversary
is restricted to use only �xed marginal valuations the claim
holds). For this case we can assume w.l.o.g (according to
lemma 3) that A is based on non-decreasing supply curves.
We also assume w.l.o.g that p = 1, and denote �p = �. Let

fn be the n'th root of �, i.e. fn
n = �, and cn = c=(fn

2).
The following lemma assumes only the more restricted

partially on-line model, in which the number of players, n,
is known in advance. For this case, it lower bounds the
competitive ratio of any on-line auction by cn, thus also
implying that knowing the number n in advance may help
signi�cantly only for small values of n.

Lemma 8. No on-line auction with n bidders achieves ef-
�ciency that is better than cn competitive with respect to the
revenue of the Vickrey auction.

Proof. Assume we have a better than cn competitive
auction, we will build a function q(p) satisfying the condition
of lemma 5 with a constant ~c < c, a contradiction.
Consider the behaviour of the on-line auction on the se-

quence of bids of the n bidders: p1 = fn; p2 = fn
2; :::; pn =

�. Let qi be the quantity allocated to bidder i. For all
p in the range 1 � p � �, de�ne q(p) as

Pi

j=1 qj , where

i is such that pi�1 � p < pi (for completeness, denote
p0 = 1; pn+1 = 1). The function r(p) (as de�ned in

lemma 5) is now r(p) =
Pi

j=1 qjpj for the same i. 4

Now, for each i, consider the sequence of bids where the
�rst i bids are p1:::pi, but the other n� i bids are simply 1.
The revenue of the Vickrey auction in this case is pi�1 =
pi=fn. The eÆciency of the on-line auction is given by

4Since q(p) is not a one to one function there is no inverse
function p�1(q), but it is easy to verify that the function
p(q) = pi for i such that qi�1 < q � qi is the appropriate
function to use for the de�nition of r(p).

r(pi)+(1�q(pi)). Since we assumed better than cn competi-
tiveness, we have r(pi)+(1�q(pi)) > pi=(cnfn) = pifn=c. It
follows that for every p, if we let i be such that pi�1 � p < pi,
then we have r(p)+(1�q(p)) = r(pi)+(1�q(pi)) > pifn=c �
(p=fn)fn=c = p=c. This is exactly the condition of lemma 5,
completing the contradiction.

From this lemma it follows that for every on-line auction A
with n players there is a valuations sequence � such that
RA(�) � EA(�) � Rvic(�)=cn � Evic(�)=cn. Therefore
A is no less than cn-competitive with respect to both the
revenue and the eÆciency. Since cn approaches c as n grows
to in�nity, the theorem follows.

3.2 A randomized auction for one indivisible
good

We now discuss the discrete case. First we show that,
by using randomization, it is possible to obtain an expected
revenue and social eÆciency that are c-competitive (i.e. as
before). For this purpose we extend the analysis of the ran-
domized on-line search algorithm of [3].
We note that the function q(p) = p�1(q) (i.e. the inverse

function of the Competitive Supply Curve p(q) of Eq. 2)
may be viewed as a cumulative distribution function in the
interval [p; �p]. We also note that for the case of one indivis-
ible good, a global supply curve is simply a �xed price for
the good.

De�nition 6. The Randomized On-Line Auction (for one
good): Before receiving any bids, the auction �rst chooses
some �xed price p� randomly by using the cumulative dis-
tribution q(p). The auction then sells the good to the �rst
player with valuation of at least p�, with price p�.

It may be veri�ed that this auction is incentive compatible
in the following strong sense: For any result of the random-
ized choice, a player will maximize his utility by declaring
his true valuation. We note that it is possible to consider a
weaker notion of incentive compatibility, in which a player
will maximize his expected utility (with respect to the dis-
tribution of the randomized choice) by declaring his true
valuation. In this case it is necessary to assume that the
players are oblivious to the result of the random function.
This auction is c-competitive with respect to its expected

revenue and social eÆciency. Thus, in some cases the on-
line revenue and eÆciency will not be within a factor of
1=c of those obtained by the Vickrey auction. But, for any
particular valuation sequence, the expected on-line revenue
and eÆciency is within a factor of 1=c of those obtained
by the Vickrey auction. To see why this is true, assume
that the Vickrey auction allocated the good to a player with
valuation p, and observe that the on-line expected revenue
and eÆciency are both

R p
o
xq 0(x)dx + p(1 � q(p)), which

equals p=c by condition 2 of Lemma 4.

3.3 A deterministic auction for k indivisible
goods

We next examine the deterministic case. First consider
the case of k = 1. It follows from theorem 1 that for this
case the on-line auction must �x some reservation price pi
for the i'th player, i.e. the good is sold to the i'th player for
price pi if vi(1) > pi. This is similar to the search algorithm
of [3], where it is shown that a reservation price of

p
�p � p isp

�-competitive. It is not hard to verify that this is optimal.
The general case for any k � 1 may be handled similarly:
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De�nition 7. (The Discrete On-Line Auction) The Dis-
crete On-Line Auction is based on the following global sup-
ply curve:

p(j) = p � � j
k+1 ; for j = 1; : : : ; k: (3)

The following theorems state the competitiveness of this
auction, and give a lower bound for this case. We give the
proofs in the appendix.

Theorem 4. The Discrete On-Line Auction is k � � 1
k+1 -

competitive with respect to the revenue and to the social eÆ-
ciency. When k � 2 � ln� then the Discrete On-Line Auction
is also 2�e�(ln(�)+1)-competitive with respect to the revenue
and to the social eÆciency.

Theorem 5. Any incentive compatible on-line auction of

k goods has a competitive ratio of at least m = maxf� 1
k+1 ; cg

with respect to the revenue and to the eÆciency, where c is
as de�ned in Eq. 1.

Remark: When considering a partially on-line model, in
which the number of players, n, is known in advance, this
lower bound weakens, becoming dependent in n. For ex-
ample, consider the following auction of one good to two

players: The price for the �rst bidder is p � � 2
3 , while the

price for the second bidder is p �� 1
3 . It is easy to verify that

this is �
1
3 -competitive with respect to the revenue. As can

be seen from the lower bound proof, as long as n < k + 2
then a similar improvement (with respect to the revenue) is
possible.

4. MODEL EXTENSIONS
We now discuss some natural extensions to our on-line

model, incorporating the following time considerations:

1. Delayed bidding: Player i learns his valuation at time
ti, and his strategy space allows placing his bid at any
time t � ti.

2. Split bidding: Player i's strategy space allows placing
several bids at any time ti1 ; : : : ; til � ti.

3. The Players' valuations may be time-dependent (in a
non-increasing way). Speci�cally, player i's valuation
is given by vi(q; t), where vi(�) is non-increasing both
in q and in t. vi(q; t) is player i's marginal valuation
of the q'th good at time t.

A truthful bid is still considered as bidding the true valua-
tion exactly once, at time ti.
We note that even under any of these extensions, when

the supply curves are non-decreasing over time there is no
possible gain for a player from delaying his bid. Clearly,
a non-decreasing global supply curve holds this property.
Thus we conclude:

Theorem 6. Any On-Line Auction that is based on a
non-decreasing global supply curve is incentive compatible
even in any of these extensions.

Thus all our auctions remain truthful. Their competi-
tiveness also remains, since the o�-line Vickrey allocation is
not a�ected by the on-line assumptions. The lower bounds
we have shown still obviously remain true. In fact it turns
out that they even generalize to partially on-line auctions
(where the number of players is known in advance).

5. REVENUE ANALYSIS FOR THE UNIFORM
DISTRIBUTION

We compare the expected revenue of the Competitive On-
Line Auction to the expected revenue of the Vickrey o�-
line auction for a divisible good in the special case of �xed
marginal utilities uniformly distributed in [p; �p]. This is a
simple example that demonstrates that the on-line revenue
is similar to the Vickrey revenue in some cases.
Table 1 compares the revenue of the on-line auction to the

revenue of the Vickrey auction for several values of n and �p,
where p = 1. The computation details are given in the ap-
pendix. From the table, we see that for small values of n and
�p the on-line revenue is close to the Vickrey revenue. When
n increases, the Vickrey to on-line revenue ratio approaches
c, the competitive ratio.

On-Line revenue Vickrey revenue

�p = 1:5; n = 2 1.15 1.17
�p = 3; n = 2 1.60 1.67
�p = 10; n = 2 3.33 4.00
�p = 2; n = 2 1.31 1.33
�p = 2; n = 3 1.37 1.50
�p = 2; n = 100 1.56 1.98

Table 1: On-line and Vickrey revenue in the average

case.
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APPENDIX

A. THE PROOF OF THEOREM 4

Theorem 4. The Discrete On-Line Auction is k � � 1
k+1 -

competitive with respect to the revenue and to the social eÆ-
ciency. When k � 2 � ln� then the Discrete On-Line Auction
is also 2�e�(ln(�)+1)-competitive with respect to the revenue
and to the social eÆciency.

Proof. Fix some scenario and suppose that the on-line
auction sold q goods. We �rst prove the claim with respect
to the revenue. Since the on-line auction sold q goods, the
valuation of one additional good of any player is at most

p(q + 1) = p � � q+1
k+1 . Therefore the Vickrey auction may

charge a unit price of at most p(q + 1), thus the Vickrey to
on-line revenue ratio is at most:

k � p(q + 1)Pq
j=1 p(j) + (k � q) � p =

k � � q+1
k+1Pq

j=1 �
j

k+1 + (k � q)

� k � � k+1
k+1Pk

j=1 �
j

k+1

where the inequality follows from the fact that for any q; 0 �
q � k � 1,

k � � q+1
k+1Pq

j=1 �
j

k+1 + (k � q)
� k � � q+2

k+1Pq+1
j=1 �

j
k+1 + (k � q � 1)

(since k�q � 1+ k�q�1

�
1

k+1

). The �rst part of the claim follows

since k��
k+1
k+1

P
k
j=1

�
j

k+1

� k��
k+1
k+1

�
k

k+1

= k � � 1
k+1 . For the second part

of the claim, let l� = k+1
ln�

� 1. If ln� < 1 then 2 � e � (ln(�)+
1) > e > � and the claim is trivial since any auction is
�-competitive. Otherwise ln� � 1, and 1 � l� � k since
k � 2 � ln�. We claim that:

kX
j=1

�
j

k+1 � l� � � k+1�l�

k+1 :

Clearly this is true for any integer l. Let the right hand
function be f(l). It receives its maximum for l�+1 and it is
increasing in [l�; l�+1]. Thus for some integer x 2 [l�; l�+1]

it holds that
Pk

j=1 �
j

k+1 � f(x) � f(l�). Thus:

k � �Pk

j=1 �
j

k+1

� k � �
l� � � k+1�l�

k+1

=
k

l�
� � l�

k+1 =

k � ln�
k + 1� ln�

� � 1
ln�

�
1

k+1 � 2 � e � ln�

where the last inequality follows from the fact that k �
2 � ln�; and �

1
ln� = e.

This proves the claim for the revenue. Now consider the
eÆciency case. Given a valuation sequence � = (bi(q)), con-
sider a new sequence �� = (b�i (q)) built in a similar manner
to that of lemma 7, i.e.player i has �xed marginal utility
up to q = qi and then as before. By similar arguments to
those of lemma 7, the o�-line to on-line eÆciency ratio of
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the new sequence is an upper bound to the ratio of the origi-
nal sequence (since the o�-line eÆciency decrease is no more
than the on-line decrease). Additionally, the on-line alloca-
tion for the two scenarios is identical. Let

P
i qi = q � k.

Since b�i (q) � p(q + 1) then Eopt(�
�) � k � p(q + 1). Clearly

Eon(�
�) � Ron(�

�) �Pq
j=1 p(j), where \on" is the Discrete

On-Line Auction. Thus:

Eopt(�
�)

Eon(��)
� k � p(q + 1)Pq

j=1 p(j)
� 2 � e � ln�

where the last inequality was shown above for the revenue
claim.

B. THE PROOF OF THEOREM 5

Theorem 5. Any incentive compatible on-line auction of

k goods has a competitive ratio of at least m = maxf� 1
k+1 ; cg

with respect to the revenue and to the eÆciency, where c is
as de�ned in Eq. 1.

Proof. We prove the claim for the special case of �xed
marginal valuations and assume, according to lemma 3, that
A is based on non-decreasing supply curves. We prove each
lower bound separately:

Lemma 9. Any incentive compatible on-line auction of k

goods has a competitive ratio of at least �
1

k+1 with respect to
the revenue and to the eÆciency.

Proof. Fix some incentive compatible on-line auction A.
Consider the behaviour of A for the sequence of players:

�
1

k+1 ; �
1

k+1 ; �
2

k+1 ; �
2

k+1 ; : : : ; �; � (i.e. 2(k+1) players). Let

q be the �rst i such that both players with valuation �
i

k+1

does not receive any positive quantity (there is such q since
there are k goods and k+1 pairs of players). Denote by � the
above sequence with only the �rst 2(q+1) players. Vickrey's

revenue is k � � q
k+1 , while A's eÆciency is at most k � � q�1

k+1 .

Thus RA(�) � EA(�) � Rvic(�)=(�
1

k+1 ) = Evic(�)=(�
1

k+1 ),
and the claim follows.

Lemma 10. Any incentive compatible on-line auction has
a competitive ratio of at least c with respect to the revenue
and to the eÆciency.

Proof. The claim follows from the fact that for the spe-
cial case of �xed marginal utilities the result of the Vickrey
auction for the indivisible case is the same as for the divisi-
ble case (i.e. a single player receives all the good(s) and pays
the second price). Thus, if there was an on-line auction for
k indivisible goods with a competitive ratio ~c < c it can be
used for the divisible case (i.e. allocating quantity multi-
ples of 1=k), achieving the same competitive ratio ~c. This is
in contradiction to Theorem 3, since the lower bound there
holds for the special case of �xed marginal utilities.

C. THE EXPECTED REVENUE ANALYSIS
We consider the special case of �xed marginal utilities

uniformly distributed in [a; b] (for a > 0). Let f(x) =
1

b�a
; F (x) = x�a

b�a
be the distribution function and the cumu-

lative distribution function, respectively, and assume that
the players' utilities are independent. For this case, the rev-
enue of the on-line auction is determined by the maximal
marginal utility. Its distribution function for n players is
gn(x) = nf(x)(F (x))n�1. Let c = c(b=a) be the appropriate
competitive ratio. Then,Z

gn(x)
x

c
dx =

n

c(b� a)n

Z
(x� a)n�1xdx =

n

c(b� a)n
(
(x� a)n+1

n + 1
+ a

(x� a)n

n
)

E(Ron) =

Z ca

a

gn(x)adx+

Z b

ca

gn(x)
x

c
dx =

Z b

a

gn(x)
x

c
dx+

Z ca

a

gn(x)(a� x

c
)dx =

n

n+ 1

b

c
+

1

n+ 1

a

c
+ �

The � addition is relatively small, e.g. for a = 1; b = 2; n =
2 it is lower than 0:006.
The distribution function for the second maximal price is

hn(x) = 2f(x)(
n

n�2 )(F (x))
n�2(1� F (x)) =

n(n� 1)(F (x))n�2(1� F (x))Z
hn(x)xdx =

n(n � 1)

(b� a)n�1
(

Z
(x� a)n�2xdx�

1

b� a

Z
(x� a)n�1xdx)

which is solved in a similar manner to the previous inte-
gral, thus the expected revenue of the Vickrey auction (see
also [10], page 57) is:

E(Rvic) =

Z b

a

hn(x)xdx =
n� 1

n+ 1
b+

2

n+ 1
a
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