
1

ICE: Iterative Combinatorial Exchanges

Benjamin Lubin

In Collaboration with
David Parkes and Adam Juda

Early work Giro Cavallo, Jeff Shneidman,

Hassan Sultan, CS286r Spring 2004

Overview

• Introduction

• ICE
– Bidding Language

– Winner Determination

– Payments

• Iteration
– Activity Rules

– Pricing

• Experimentation
– Implementation

– Instances

– Results

• Conclusion

Motivating Domains

• Landing Slots (FAA)

– “Sell 8am slot and buy 4pm slot”

– “Swap 2 LaGuardia slots for 3 at Newark”

– Note: Ground assets also important

• Bandwidth (FCC)

– “Buy one band, but only if I can get all the
licenses for a complete region”

• Computational Resources (PlanetLab)

– “Sell use of 32 nodes on Thursday and buy
use of 24 nodes on Friday.”

Combinatorial Auctions

• One Seller, many buyers (or reverse)

• Expressive/Concise bidding languages
– Non-linear valuations on bundles

– XOR, OR, OR*, LGB, etc

• Winner determination
– NP-hard (maximal weighted packing), but

polynomial for subclasses

– Branch-and-bound, branch-and-cut obtain
guarantees on solution quality.

– Approximation: LP-based, local search etc.

• Payments
– First Price, VCG, Core

Combinatorial Exchanges

• Extension of Combinatorial Auctions
– Multiple competitive buyers, sellers (or mixed)

• Expressive bids:
– (sell [A,B] -$8) xor (sell[C,D] -$20)

– (buy A) and (sell B) $5 [swap]

• Winner Determination is a combinatorial
optimization problem
– capture logical constraints in bids

– maximize “gains from trade”

• Payments: at final allocation what do you pay?
– VCG fails Budget Balance � Use Threshold Payments

– Not strategyproof but mitigates incentives to
manipulate

– Core Constraints?

Exchange Example 1

buy AB

buy A

sell A

sell B

swap A for B

exchange

+35

+15

-10

-5

+5

2

buy AB

buy A

sell A

sell B

swap A for B

+35

+15

-10

-5

+5

+5

exchange

Exchange Example 2

buy AB

buy A

sell A

sell B

swap A for B

+35

+15

-10

-5

+5

+15

exchange

Exchange Example 3

buy AB

buy A

sell A

sell B

swap A for B

+35

+15

-10

-5

+5

+20

exchange

Exchange Example 4

buy AB

buy A

sell A

sell B

swap A for B

+35

+15

-10

-5

+5

+20

exchange

Exchange Example 5

Payments ?

Overview

• Introduction �

• ICE
– Bidding Language

– Winner Determination

– Payments

• Iteration
– Activity Rules

– Pricing

• Experimentation
– Implementation

– Instances

– Results

• Conclusion

Related Work

• Concise Combinatorial Languages
–OR* (Nisan ’00)

–LGB (Boutilier & Hoos ’01)

• Iterative Combinatorial Auctions
–Linear (Gul & Stacchetti ’00, Hoffman

’01, Kwasnica et al. ‘05)

–Non-Linear (Parkes & Ungar ’00)

• Clock Proxy (Ausubel & Milgrom
‘04)

3

Exchange Properties

• First incremental and fully expressive two
sided combinatorial exchange.

• “Hybrid” Design
– Incremental direct revelation of upper and lower

bounds on trade values via expressive language.

– “Last and Final” stage where the exchange clears
and (Threshold) payments are determined.

– Shares stylistic features with other “hybrid” designs
such as clock-proxy for CAs (Ausubel et al.)

• Theoretical interest: efficiency results with
linear prices used for preference elicitation

ICE Control Flow

Tree-Based Bidding
Language

• Defines change in value for a trade; entirely
symmetric for buyers and sellers
– e.g., “sell AB, value -$100”; “buy A, value +$20”
– bids: claim on increase in value from receiving an

item
– asks: claim on decrease in value from giving-up an

item
– mixed buy/sell in TBBL can have + or – values

• Generalizes XOR, OR, XOR/OR (Sandholm’99,

Nisan’00).
• Conciseness incomparable with OR* (Fujishima et

al’99, Nisan00), LGB (Boutilier & Hoos’02), although both
captured with simple extensions (see Cavallo et

al.’05)

[3,3]

+9am +10am

+$1000

+11am

“and”

Example 1: “and”

[1,1]

+9am +10am +11am

“xor”

Example 2: “xor”

+$200 +$180 +$150

[3,3]

+9am +10am +11am

“and”

Example 3: “xor of and”

+$200
[3,3]

+9pm +10pm +11pm

“and”

+$150

[1,1]
“xor”

4

[2,3]

+9am +10am +11am

“choose 2 or 3”

Example 4: “choose”

+$200 +$180 +$150+$220

+8am

+$120

+12pm

• IC[x,y]: accept an allocation in which at least

x and at most y of children are “satisfied”
– IC[all,all] �AND

– IC[1,all] �OR

– IC[1,1] �XOR

[2,2]

+9am -11am

“swap”

Example 5: “swap”

-$50

[1,1]

-9am -10am -11am

“xor”

Example 6: “contingent
sale”

-$200
[1,3]

+9pm +10pm +11pm

“or”

+$300

[2,2]
“and”

+$200 +$150

How to Solve
Winner Determination?

• Goods: {1,…,m}. Agents: {1,…,n}

• Trades: λ∈Zm×n

• Initial allocation: x0 ∈Zm×n

• Final allocation: x=x0+ λ
• (change in) value: vi(λi)

• Winner determination:

max ∑i vi(λi)
s.t. λij+x0

ij≥0, ∀i ∀j
∑i λij =0, ∀j
λij ∈ Z

λ ∈ feas(x0)

Possible formulation

• Construct “flat” representation of each agent’s
bids

• i.e., given tree T then for all λi∈Λi=Feas(x0)i,

eval(T,λi) and consider vi(λ
1
) xor vi(λ2) xor …

• max{z(λ)} ∑i ∑λi∈Λi
zi(λi)vi(λi)

s.t. ∑λi∈Λi
zi(λi)λij+x0

ij ≥ 0, ∀i, ∀j

∑i ∑λi∈Λi
zi(λi)λij = 0, ∀j

zi(λi)∈{0,1}, ∀i,∀λi∈Λi

• Solve using branch-cut-and-bound (e.g. CPLEX)

• Problems?

A Better Formulation

Agent problem. Given λi

maxsati{β} ∑β∈T vi(β) sati(β)

s.t. ∑β∈Leaf(i) qij(β) sati(β)≤λij ∀j (3)

ICx,i(β)sati(β) ≤ ∑β’ ∈child(β)sati(β’)

≤ ICy,i(β)sati(β), ∀β∉Leaf(i) (4)

Denote this VALi(λi)

vars = |T|

constraints = m+|T|

☺

• Joint problem. Find λ=(λ1,…,λn)

• maxλ ∑i VALi(λi)

s.t. λij+x0
ij ≤0, ∀i, ∀j (1)

∑i λij≤0, ∀j (2)

λij∈Z, ∀i, ∀j

vars = m x n

#constraints = m x n + n

• Roll into a single program

maxλ,sat ∑i ∑β∈Ti
vi(β)sati(β)

s.t. (1), (2), {(3)1,…,(3)n},
{(4)1,…,(4)n}

vars = (m x n) + (n x |T|)

#constraints = m x n + n +
n(m+|T|)

☺

5

buy AB

buy A

sell A

sell B

swap A for B

+35

+15

-10

-5

+5

+20

exchange

Payments Redux

Payments ?

Formulate this problem as one of dividing surplus, s.t.
each agent’s payment is value vi(λi) - ∆i and ∑i ∆i = V*

• VCG Payments:
– VCG discount: ∆vcg,i= V* - V-i

– Agent 1 pays -10–(20-15)=-15

– Agent 2 pays -5–(20-5)=-20

– Agent 3 pays 35–(20-15)=30

– Deficit: 30-20-15 = -5

• Threshold Payments:
– Payments vi(λ*)-∆i Choose discounts ∆i to:

min {max ∆vcg,i-∆i }

s.t. ∑i ∆i <= V* and ∆i <= ∆vcg,i

– ∆1= 3.33 ∆2=13.33 ∆3=3.33

– Agent 1 pays –13.33

– Agent 2 pays –18.33

– Agent 3 pays 31.67

– ex post regret = ∆vcg,i-∆i = 1.67

Payments: VCG & Threshold

V
C

G
 d

is
co

un
t

[PKE ’01]

buy AB

buy A

sell A

sell B

swap A for B

+35

+15

-10

-5

+5

+20

exchange

Threshold Payments
Example

31.67

-18.33

-13.33

Surplus=0

Overview

• Introduction �

• ICE �
– Bidding Language �

– Winner Determination �

– Payments �

• Iteration
– Activity Rules

– Pricing

• Experimentation
– Implementation

– Instances

– Results

• Conclusion

Why Iterative?

• Agents find it difficult to determine their
preferences
– Want to allow approximate information

about the complete valuation function

• Iteration allows for price feedback to
focus agents on the right part of their
value space

From CE to ICE

• A TBBL bid is now annotated with lower
and upper bounds on value

• Key idea: clear based on “optimistic”
values in early rounds, … “pessimistic
values” in later rounds

– provides early price discovery

• Bidders tighten bounds across rounds

• Linear prices drive activity, elicitation

6

TBBL Bounds Example MRPAR Activity Rule

• Show one trade
is weakly better
then all others

• And show that
this trade is
either the
provisional
trade or strictly
better then it

• Exchange can
verify with 3
MIPs

RPAR 1

• πL(+B) = 30 - 10 = 20 ¸ πU(+A) = 25 - 10 = 15

• Enough information

[1,1]

($10,$25)

p(B)=$10p(A)=$10

+B+A
($30,$40)

RPAR 2

[1,1]

+B+A

($10,$100)

($5,$10) ($20,$30)

• πL(+B) = 30 - 5 = 25 < πU(+A) = 110 - 5 = 105

• Not enough information ??

p(B)=$5p(A)=$5

RPAR 3

[1,1]

+B+A

($10,$100)

($5,$10) ($20,$30)

• πL(+B)=20+v-5

• πU(+A)=10+v-5

• For all v, πL(+B) > πU(+A)

p(B)=$5p(A)=$5

value v

ε -DIAR Activity Rule

• Reduce the
linear pricing
error to
within ε, or

show that
you can’t

• Exchange
can verify

with 2 MIPs

7

• Guaranteed progress in a given round

• Can lower bound EFF(λ)

– via linear prices (when sufficiently accurate)

– otherwise directly via bounds on TBBL trees

• Thus despite linear prices:

– Theorem. For straightforward bidders MRPAR and ε-DIAR
cause the exchange to terminate with a trade that is
within a target efficiency error ∆* as ε→0

MRPAR+DIAR Activity
Rule Properties Bounding Efficiency

• ‘maximal improvement’ valuation
enables us to bound efficiency

Pricing

• Linear prices minimize distance:
– To competitive equilibrium (ACC)

– To provisional final payments (FAIR)

– Between items (BAL)

ACC: AB is between $12 and $16
FAIR: AB=$14
BAL: A=$7, B=$7

Computing Prices

• Lexicographic within each stage
� Most expensive step
– Constraint Generation

– Heuristics to speed search

Constraint Generation

• Accuracy for example:

WD:

maxλ,sat ∑i ∑β∈Ti
vi(β)sati(β)

s.t. (1), (2), {(3)1,…,(3)n},

{(4)1,…,(4)n}

RWD: (for each agent)

maxsat ∑β∈T vi(β)sati(β)-

∑β∈leaf(T) πgood(β)qβsati(β)

s.t. (1), (2), {(3)1,…,(3)n},

{(4)1,…,(4)n}

Check:
vα(λ’)-p(λ’)≤vα(λα)-p(λα)+δacc

Overview

• Introduction �

• ICE �
– Bidding Language

– Winner Determination

– Payments

• Iteration �
– Activity Rules �

– Pricing �

• Experimentation
– Implementation

– Instances

– Results

• Conclusion

8

Agent 1Agent 1

Agent nAgent n

Proxy 1Proxy 1

Proxy nProxy n

Exchange DriverExchange Driver

Activity Activity

RulesRules

WDWD PricingPricing

………………

Architecture

Model 1Model 1

Model nModel n

Closing RuleClosing Rule

BridgeBridge

Implementation

• Thousands of distinct but related MIPs
– Massive multi-threading/parallelization

– Modular and hierarchical MIP “code generator”

– Concise & parallel CPLEX/LPSolve wrapper

• Numerical precision a big practical issue

Generator

• Create d copies of each good type

• Assign these to the agents

• Recursively Build a tree for agents
– 1st phase: exponential growth

– 2nd phase: triangle distribution of width
over depth

– Internal nodes: Draw Y between 1 and
|children|, X between 1 and Y

– Leaf nodes: assign buy or sell and then
choose a good accordingly

– Draw value for each node from a internal,
buy, or sell distribution respectively

Generator Phase
Example

1

2

0

4

5

3

6

0 1 63 42 7

Depth

W
id

th

Agent and Good
Scalability

• Polynomial in agents

• Phase transition behavior in good types

Tree Size Scalability

• Polynomial in size of tree

9

Activity Rules
Efficiency Bound

• MRPAR: ‘main rocket’
DIAR: ‘course correction’

• Efficiency bound effective

Information Revelation

• Bounds retain ‘slack’

Price Quality

• Prices converge quickly

• Low regret (best trade at intermediate
prices compared to final prices)

Pricing Error

• Linear prices have low error

Results Summary

• Fast: 100 goods in 20 types, 8 bidders
each with ~112 TBBL nodes, converges to
efficient trade in ~7 rounds

• Elicitation efficient: Around 62% “value
uncertainty” retained in final bid-trees.

• Informative: The best trade for a bidder
at intermediate prices within 11% of the
profit it would get from its best trade at
final prices.

• Scalable: 8.5 minutes on 3.2GHz, dual-
processor, dual-core, 8GB memory
(including agent simulation)

Conclusion

• ICE showcases a “hybrid” design in which linear prices
guide elicitation but exchange clears based on
expressive bids.

• Linear prices can be generated for expressive languages
(e.g. TBBL) and coupled to any (e.g. Threshold)
payment rule

• Threshold payment scheme is “maximally” truthful
when participants guaranteed non-negative profit at
reported values and the budget is balanced.

• Experiments show that ICE converges quickly, and that
it is efficient, informative and scalable

10

Fin

• For more information:
– http://www.eecs.harvard.edu/~blubin/ice

– blubin {at} eecs {dot} harvard {dot} edu

