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Value      $100  $80  $60
Arrival:   11am  11am 12pm
Patience: 2hrs  2hrs 1hr

How should you bid?
“Please bid your value and 
your patience. A decision 
will be made by the end of 
your stated patience.”

Example 1: Last-Minute Tickets 



Value      $100  $80  $60
Arrival:   11am  11am 12pm
Patience: 2hrs  2hrs 1hr

Auction: sell one ticket in
each hour (given demand),
to the highest bidder at 
second-highest bid price. 

If truthful, then:
{ <1, $80>, <2, $60>}
However, bidder 1 could 
a) reduce bid price to $65

{<2, $65>, <1, $60>}
b) delay bid until 12pm

{<2, $0>, <1, $60>}

Dynamic allocation problems
…are everywhere in computer science
• MoteLab (Berkeley)

– distributed sensor network testbed
– researchers compete for the right to sense, aggregate and 

propagate readings
• PlanetLab (Princeton)

– global overlay network on the Internet
– supports network research, long-running services

• Grid computing 
– much of science research is now intensively computational
– globally-distributed computational infrastructure

• Network resource allocation
– e.g. dynamic negotiation for WiFi bandwidth

Many systems are simultaneously both computational and 
economic systems. 

…are can be found in e-commerce, elsewhere 
• Sequential auctions on eBay

– e.g. auctions for LCDs, each bidder wants one
• Expiring goods

– e.g. auctions for last-minute tickets

Basic Model for Online Auctions
• Valuation θi = (ai, di, wi). Discrete time periods.
• Arrival time: ai. Departure time: di .Value, wi
• Allocation schedule x∈X. 
• vi(x)  = wi ,  if xi(t)=1 for some t∈[ai,di]

= 0 ,  otherwise
• Quasi-linear utility: ui(x,price) = vi(x) - price

• Auction: A=< f, p >, 
– allocation rule, f : Θn → X
– payment rule,   p : Θn → Rn

• Truthful auction: reporting value <ai, di, wi> immediately 
upon arrival is a dominant strategy equilibrium.

• Assume: cannot under-report ai.



Prior-Free: Key Variations
• Limited-supply (k≥1) of goods, sell in any period before 

time horizon, T. 
– single-unit demand
– multi-unit demand

• Reusable goods, can sell up to k units in each time 
period. Finite time horizon, T. 
– single-period demand
– multi-period demand

Prior-Free Auction Design

• c-competitive for efficiency if 
E[Val(Aucv)] ≥ 1/c EFF(v), for all v

• c-competitive for revenue if 
E[Rev(Aucv)] ≥ 1/c F (2)(v), for all v

Value      $500  $80  $60
Arrival:   11am  11am 12pm
Patience: 2hrs  2hrs 1hr

v(m) is m-th highest value

EFF:   $580
OPT:   $160

EFF(v) = ∑i·k v(i) “efficiency”

F (2)(v) = max2· l·k { l·v(l) } “omniscient revenue”

(c.f. Goldberg, Hartline et al.01)

(or Vickrey price if 1 item)

Limited-Supply Auction

• Assume values in [L,U]. k-unit supply. Let φ = (U/L).
• Adversarial model: choose values and timing.
• Define a “price schedule”: p(j) = L · φ j/k+1, for jth unit.
• Sell units while bid value ≥ price.

(Lavi & Nisan’00)

φ1/k+1

φ

k

Truthful. 
ln(φ)-competitive w.r.t. efficiency and Vickrey revenue, 
Matching lower-bound, and good average-case 
performance in simulation.

Our model: Fixed, Unknown Distribution

• More realistic adversarial model: Lavi & Nisan allowed 
arbitrary sequencing of arbitrary values

• Instead, we model values as i.i.d. from some unknown 
distribution. 

• Want good performance whatever the distribution.
• Should lead to an auction with better performance in 

practice.

(Hajiaghayi, Kleinberg, P., ACM’EC04)



Aside: The Online Selection Problem

• Remove incentives, and specialize to the case of 
disjoint arrival-departure intervals.
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• Remove incentives, and specialize to the case of 
disjoint arrival-departure intervals.

• Reduces to the secretary problem:
– interview n job applicants in random order, want to max prob

of selecting best applicant (told n)
– told relative ordering w.r.t. applicants already interviewed, 

must hire or pass
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Aside: The Online Selection Problem

7 1,000 325

1 1 421useful
info

• Samples 1…n
• Candidate: a sample that is max across seen so far
• Want to accept a candidate when 

Prob(winner | candidate) ≥ Prob(find winner in 
future with optimal policy)

increases decreases

E.g.,  n=1, s*=1, Pr(succ)=1
n=5, s*=3, Pr(succ)=0.433
n=10, s*=4, Pr(succ)=0.399
n=20, s*=8, Pr(succ)=0.384
n=100, s*=38, Pr(succ)=0.371
n=1000, s*=369, Pr(succ)=0.368 ≈ 1/e

So, unique round in which start accepting.



The Secretary Algorithm

• Theorem (Dynkin, 1962):  The following stopping rule 
picks the maximum element with probability 
approaching 1/e as n→∞.
– Observe the first bn/ec elements.  Set a threshold equal to 

the maximum quality seen so far.
– Stop the next time this threshold is exceeded.

• Asymptotic success probability of 1/e is best possible, 
even if the numerical values of elements are revealed. 
– i.e. optimal competitive ratio in the large n limit 

Straw model for an Auction
• Auction: p(t)=∞, then set p(t≥τ)=maxi·jwi after j=bn/ec

bids received. Sell to first subsequent bid with wi ≥
p(t), then set p(t)=∞.

• Not truthful: Bidders that span transition, and with 
high enough values, should delay arrival.

Truthful Auction:
–At time τ (for n/e arrival) let p≥q be the top two bids yet 
received.
–If any agent bidding p has not yet departed, sell to that 

agent (breaking ties randomly) at price q.
–Else, sell to the next agent whose bid is at least p (breaking 

ties randomly)

Adaptive Limited-Supply Auction
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• At time τ, denoting arrival j=bn/ec, let p≥q be the top 
two bids yet received.

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.
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• At time τ, denoting arrival j=bn/ec, let p≥q be the top 
two bids yet received. 

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.

τ

Analysis:  Truthfulness

• If agent i wins, the price charged to her does not 
depend on her reported valuation.

• Pr(agent i wins) is (weakly) increasing in wi, hence no 
incentive to understate wi.

• Reporting w’i > wi cannot increase the probability that 
agent i wins at a price ≤ wi, hence no incentive to 
overstate w’i.

• Price facing agent i is never influenced by di, so no 
incentive to misstate di

… just need to check effect of arrival time.

Analysis:  Truthfulness

• Claim:  Given two arrival times ai<a’i, it’s always better 
to report ai if possible.

• Let r,s be the (bn/ec-1)-th and bn/ec-th arrival times 
excluding agent i.
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Analysis:  Truthfulness

• Stating true arrival, agent 2 defines transition. 
Offered price $5 on transition.
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• Stating arrival time in (ai,r] changes nothing. Offered 
price $5 on transition.
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Analysis:  Truthfulness

• Stating arrival time in (ai,r] changes nothing. 
• Stating arrival time in (r,s) influences the transition 

time τ but not the pricing.  Still offered price $5.
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Analysis:  Truthfulness

• Stating arrival time in (ai,r] changes nothing. 
• Stating arrival time in (r,s) influences the transition 

time τ but not the pricing.
• Stating arrival time ≥ s influences the transition, but 

price not improved.0 T
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Analysis:  Competitive Ratio

• Claim:  Competitive ratio for efficiency is e+o(1), 
assuming all valuations are distinct.

• Case 1:  Item sells at time t.  Winner is highest bidder 
among first bn/ec.  With probability ~1/e, this is also 
the highest bidder among all n agents.

• Case 2:  Otherwise, the auction picks the same 
outcome as the secretary algorithm, whose success 
probability is ~1/e.

Analysis:  Competitive Ratio
• Claim:  Competitive ratio for revenue (wrt Vickrey) is 

e2+o(1), assuming all valuations are distinct.
• Estimate probability of selling to highest bidder at 

second-highest price.  Use same two cases as before.
• Case 1:  Probability ~1/e2. 

– (prob 1/e that second highest also in first half)

• Case 2:  Probability ~(1/e)(1/e).
– (prob. that highest in first-half is the second-highest overall is 1/e conditioned on 

highest in second-half, prob. that choose highest in case 2 is 1/e)

• 4+o(1)-competitive for revenue (and also efficiency), by 
setting transition time at n/2.
• Lower-bounds of 2-competitive for efficiency, 1.5-
competitive for revenue (in our model).

General approach -- Two phase

• “Learning phase”
– use a sequence of bids to set price for rest of 

auction
Transition:

– be sure that remains truthful for agents on 
transition

• “Accepting phase”
– exploit information, retain truthfulness

Multi-Item Online Auction  (k>1)

• Adopt a variation on the Dual-Price Sampling Optimal 
Threshold (DSOT) auction (Goldberg, Hartline et al’01; 
also Segal’03).

• (Learning) Choose pivotal bidder, j∼Binom(n,½).
• (Transition) Sell up to s=dk/2e items at time τ, to agents 

present and bidding above (s+1)-st bid price so far. 
• (Accepting) After τ, set price to be the revenue-

optimizing fixed price, popt for bids in first half. Sell 
item to bid≥popt while supply.

• Truthfulness: have p(s+1) · popt

• Constant-competitive with F (2) for revenue.
• Constant-competitive for efficiency (and also revenue), 

by setting s=dk/3e, and adopting p(t)=(s+1)-st bid in 
accepting phase. (i.e. a lower price.)



Characterization of Truthful auctions
• Definition. Allocation rule f: Θn → {0,1}n is monotonic if 

for every agent i and every (θ,θ’)∈Θn with [a’i,d’i]⊆[ai,di],
and wi≥w’i, we have fi(θ)≥fi(θ’).

• Definition. The “critical value” price is: 
psi(ai,di,θ-i)= min w’i s.t. fi(<ai,di,w’i>, θ-i)=1

∞ , if no such w’i exists
• Definition. The “critical period” is the first t∈[ai,di] with 

minimal psi(ai,t,θ-i).

Theorem. An online auction is truthful if and only if the 
allocation rule, f, is monotonic, sets payment equal to 
critical value, and assigns item after the critical period. 

(Hajiaghayi, Kleinberg, Mahdian, and P., ACM-EC05)

Via an Agent-independent Price 
Schedule

• Define an agent-independent price schedule, psi(t,θ-i)
for allocation in period t

• Allocate good to agent if and only if psi(t’,θ-i) · wi for 
some t’∈[ai,di], at price psi(ai,di,θ-i)=mint’∈[ai,di] 

psi(t’,θ-i).
• Allocate no earlier than period t’ for which psi(t’,v-i) is 

minimal in [ai,di].

Via an Agent-independent Price 
Schedule

• Define an agent-independent price schedule, psi(t,θ-i)
for allocation in period t

• Allocate good to agent if and only if psi(t’,θ-i) · wi for 
some t’∈[ai,di], at price psi(ai,di,θ-i)=mint’∈[ai,di] 

psi(t’,θ-i).
• Allocate no earlier than period t’ for which psi(t’,v-i) is 

minimal in [ai,di].
• Example: single-unit auction. Let j=bn/ec, and use 

“outside bid” refer to a bid from an agent ≠i.
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Prior-Free: Key Variations
• Limited-supply (k≥1) of goods, sell in any period before 

time horizon, T. 
– single-unit demand
– multi-unit demand

• Reusable goods, can sell up to k units in each time 
period. Finite time horizon, T. 
– single-period demand
– multi-period demand



Formal Model: Re-usable Goods

• One good in each time slot (can extend to k>1).
• Agent value <ai,di,wi>. Value for one time slot in [ai,di].
• No-late departures (i.e. [a’i,d’i]⊆[ai,di])

– (WiFi) suppose can verify presence, and fine an agent that 
reports  d’i>di but leaves at di.

– (Grid) reasonable to hold result until time d’ with some small 
probability.

• Necessary to assume NLD to achieve a bounded 
competitive ratio on efficiency (Lavi & Nisan’05)

(Hajiaghayi, Kleinberg, Mahdian, and P., ACM-EC05)

Theorem. Online auction is truthful if and only if the 
allocation rule, f, is monotonic, sets payment equal to 
critical value. Can assign at any time in interval w/ NLD.  

Example: Grid scheduling

Value      $100  $80  $60
Arrival:   11am  11am 12pm
Patience: 2hrs  2hrs 1hr
Duration: 1hr    1hr 1hr

Allocation rule: In each period, t, allocate the good to the 
highest unassigned bid.
Payment rule: Pay smallest amount could have bid and still 
received good (in some period).

monotone: smaller [a’,d’], smaller w’i cannot help.
reduces to seq. of Vickrey for impatient bidders.

Efficiency: Competitive Analysis

Extends to k>1 case (still 2-competitive).

2-competitive wrt efficiency, (maximum-weighted 
matching in bipartite graph). 

(Tight. But, 1.618 poss. without incentives!)

Revenue Analysis: Consider VCG
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Revenue Analysis: VCG
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Revenue Analysis: VCG
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Revenue: Competitive Analysis
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0
0
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Revenue(VCG) = 1(n-1)+1
Revenue(Auc) = 1
⇒ competitive ratio can be arbitrarily bad!



• Actually, have a general negative result available for 
the revenue-competitiveness of a deterministic online 
auction for this problem.

Can achieve O(log2(φ)) competitive with a randomized 
auction, for φ=(U/L), even with unknown bounds.

• Prior-Free Online Auction Design: 
– Non-reusable Goods, Finite time horizon.

• General characterization for truthful online auctions
• Prior-Free Online Auction Design: 

– Reusable Goods, infinite time horizon.
• Model-based Online Mechanisms
• Future directions.

Model-Based Online Mechanisms
• Agents, and the auctioneer, have a common prior.
• θ iid from distribution g(θ).
• Mechanism makes a sequence of decisions {k1,k2,…}
• Agents θi=[ai,di,vi]. vi(k)≥ 0. 
• Goal: maximize the expected sequential value.

(P. & Singh’03, P., Singh & Yanovsky’04)

Decisions k1,k2,…

Payments p1,p2,…

Mechanism

Policy π

Payments p

Reports

θ1, θ2,…, θt

As a Markov Decision Process
• State: ht=(θ1,…,θt; k1,…,kt-1). Time horizon T.
• Model: Pr(ht+1|ht,kt); R(ht,kt)=∑i[vi(k·t)-vi(k·t-1)]
• Policy: π={π1,…,πT}, πt: Ht→ Kt
• Vπ(ht)=Eπ{R(ht,π(ht))+R(ht+1,π(ht+1))+

…+R(hT,π(hT))}

• Efficient policy, π*, maximizes MDP value in all 
states; value V*(ht).

• Solve via dynamic programming, policy iteration, 
linear programming, etc. 

• “Stalling” == “Action space rich enough that cannot 
improve policy by delaying the arrival of an agent.”

• How to handle self-interest?
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An Online VCG Mechanism

• Receive reports. Implement π*(h’t).
• Payment: pi = v’i(k*) - {V*(hai’)-V*(hai’

-i)} 

• Theorem. Given a correct model, and a policy with 
stalling, the online VCG is Bayes-Nash IC and 
implements the efficient policy.

EU(θi’) = vi(π*(hai’)) + V*(hai’) – v’i(π*(hai’)) - V*(hai’
-i)

expected value to all
other agents given reported

type of agent i

expected value to all other agents plus 
expected true value to agent i

(P.&Singh’03) Remarks.

• BNIC not DSIC. Correctness of π* requires correct 
model f(θ), which requires other agents play 
equilibrium. 

• c.f. offline VCG, where the center can make the value-
maximizing choice (based on reports), whatever the 
reports. 



Remarks.

• BNIC not DSIC. Correctness of π* requires correct 
model f(θ), which requires other agents play 
equilibrium. 

• c.f. offline VCG, where the center can make the value-
maximizing choice (based on reports), whatever the 
reports. 

• ex post individual-rational given “value monotonicity”, 
i.e. addition of an agent has a (weakly) +ve effect on 
total MDP value.

• ex ante no-deficit given “no positive externalities”, i.e. 
addition of an agent has a (weakly) -ve effect on MDP 
value to others. 

T

w
Vss(h)=maxk{R(k)
+ EchildVss(child)}

Policy πss, estimate Vss(h):
|V*(h)-Vss(h)|· ε
|V*(h)-E{Vss(h)}|· ε
in time O((K·w)T), with w=poly(K, 1/ε, Rmax, T), for Rmax bound on   

reward in a state.

^

h0 (Kearns, Mansour and Ng’99)
Algorithmic Remark: Sparse-Sampling:

depth-T sampled tree, each node is state, each 
node’s children obtained by sampling each action 

w times, back-up estimates to root.

Sparse-sampling(ε)

• ε-BNIC: no agent can improve its expected utility by 
more than ε, for any type, as long as other agents are 
bidding truthfully.

Theorem. For any ε, and a correct model, the sparse-
sampling online VCG mechanism is ε-efficient, truthful 
reporting is a 4ε-BNE, and the run-time is independent in 
the size of state space.

Example: Eff, Rev in WiFi problem

5 channels

Revenue and value normalized by the unlimited supply value. 

(P., Singh & Yanovsky’04)
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Future Direction: Introduce 
Learning.

• What if center has  only a distribution on priors, and 
a MLE of the model, denoted f’(θ)?

• Would like to converge to optimal π* over time.
• Main problems:

(A1) retaining incentive-compatibility with respect to time 
despite the adaptiveness of the policy.

(A2) retaining incentive-compatibility despite an approximate 
policy.

• Remark: the online VCG mechanism is not BNIC with 
an approximate model.

• Current work: focus on a “single-minded domain”. In 
that domain, optimal policies are monotonic, 
whatever the model ⇒ can get a positive result.

• General problem of learning + MDPs is open.

Summary
• Many computational systems present dynamic resource 

allocation problems.
• Need to extend MD to handle dynamics.
• Two styles of analysis.
• Prior-free: DSIC mechanisms with online competitive 

results for non-reusable and reusable-good scenarios.
• Model-based: BNIC mechanisms to implement optimal 

MDP policies. 

• Future direction: Allow for learning. 


