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ABSTRACT

Sponsored search involves running an auction among adver-
tisers who bid in order to have their ad shown next to search
results for specific keywords. Currently, the most popu-
lar auction for sponsored search is the “Generalized Second
Price” (GSP) auction in which advertisers are assigned to
slots in the decreasing order of their score, which is defined
as the product of their bid and click-through rate. In the
past few years, there has been significant research on the
game-theoretic issues that arise in an advertiser’s interac-
tion with the mechanism as well as possible redesigns of the
mechanism, but this ranking order has remained standard.

From a search engine’s perspective, the fundamental ques-
tion is: what is the best assignment of advertisers to slots?
Here“best”could mean“maximizing user satisfaction,”“most
efficient,”“revenue-maximizing,”“simplest to interact with,”
or a combination of these. To answer this question we need
to understand the behavior of a search engine user when she
sees the displayed ads, since that defines the commodity the
advertisers are bidding on, and its value. Most prior work
has assumed that the probability of a user clicking on an ad
is independent of the other ads shown on the page.

We propose a simple Markovian user model that does not
make this assumption. We then present an algorithm to
determine the most efficient assignment under this model,
which turns out to be different than that of GSP. A truth-
ful auction then follows from an application of the Vickrey-
Clarke-Groves (VCG) mechanism. Further, we show that
our assignment has many of the desirable properties of GSP
that makes bidding intuitive. At the technical core of our
result are a number of insights about the structure of the
optimal assignment.

1. Introduction

Targeted advertisements on search queries is an increas-
ingly important advertising medium, attracting large num-
bers of advertisers and users. When a user poses a query, the
search engine returns search results together with advertise-
ments that are placed into positions, usually arranged lin-
early down the page, top to bottom. On most major search
engines, the assignment of ads to positions is determined by

an auction among all advertisers who placed a bid on a key-
word that matches the query. The user might click on one or
more of the ads, in which case (in the pay-per-click model)
the advertiser receiving the click pays the search engine a
price determined by the auction.

In the past few years, the sponsored search model has been
highly successful commercially, and the research community
is attempting to understand the underlying dynamics, ex-
plain the behavior of the market and to improve the auction
algorithms. The most common auction being run today is
the Generalized Second Price (GSP) auction: Each bidder
i submits a bid bi stating the maximum amount they are
willing to pay for a click, and the bidders are placed in de-
scending order of bipi, where pi is what is called the click-
through-rate of advertiser i; i.e., the probability that a user
will click on the ad, given that the user looks at it. Much of
previous research on sponsored search auctions has fixed this
sort order, and focused on understanding the implications
of different pricing schemes, assuming strategic behavior on
the part of the advertisers. We now know something about
GSP’s equilibrium properties [12, 29, 4], alternative pricing
that will make it truthful [4], and to some extent, impact on
the revenue in principle [12] and via simulations [28].

However, by fixing this sort order, prior work exogenizes an
important third party in sponsored search; i.e., the search
engine user. Unfortunately, there is very little guidance on
this in the literature, even though the user’s behavior is the
essential ingredient that defines the commodity the adver-
tisers are bidding on, and its value. We suggest a different
framework for principled understanding of sponsored search
auctions:

• Define a suitable probabilistic model for search engine
user behavior upon being presented the ads.

• Once this model is fixed, ask the traditional mecha-
nism design questions of how do assign the ads to slots,
and how to price them.

• Analyze the given mechanism from the perspective of
the bidders (e.g., strategies) and the search engine
(e.g., user satisfaction, efficiency and revenue).



There are certain well-accepted observations about the user’s
interaction with the sponsored search ads that should inform
the model: (i) The higher the ad is on the page, the more
clicks it gets. (ii) The “better” the ad is, the more clicks
it gets, where the “goodness” of an ad is related to the in-
herent quality of the ad, and how well it matches the user’s
query. These properties govern not only how the auction
is run but also how advertisers think about their bidding
strategy (they prefer to appear higher and get more clicks).
Thus it is important for an auction to have what we call in-
tuitive bidding: a higher bid translates to a higher position
and more clicks.

In this paper, we propose a natural Markov model for user
clicks, taking the above observations into account and de-
sign an algorithm to determine an optimal assignment of ads
to positions in terms of economic efficiency. Together with
VCG pricing, this gives a truthful auction. We further show
that the optimal assignment under this model has certain
monotonicity properties that allow for intuitive bidding. In
what follows, we will describe our technical contributions in
more detail.

Modeling the Search Engine User. Most previous work
on sponsored search has (implicitly) modeled the user using
two types of parameters: ad-specific click-through rates pi

and position-specific visibility factors αj . There are some
intuitive user behavior models that express overall click-
through probabilities in terms of these parameters. One pos-
sibility is “for each position j independently, the user looks
at the ad i in that position with probability αj then clicks
on the ad with probability pi.” Alternatively: “The user
picks a single position according to the distribution implied
by the αj ’s, and then clicks on the ad i in that position
with probability pi.” Under both these models, it follows
that the probability of an ad i in position j receiving a click
is equal to piαj , which is the so-called separability assump-
tion [4]. From separability it follows that GSP ordering of
ads will be suitable, because GSP ordering maximizes the
total advertiser value on the page.

In both these models there is no reason a priori that the
position factors αj should be decreasing; this is simply im-
posed because it makes sense, and it is verifiable empirically.
Also, both suggested models assume that the probability of
an ad getting clicked is independent of other ads that appear
with it on the page, an assumption made without much jus-
tification. It is hard to imagine that seeing an ad, perhaps
followed by a click, has no effect on the subsequent behavior
of the user.

In designing a user model, we would like to have the mono-
tonicity of the positions arise naturally. Also, each ad should
have parameters dictating their effect on the user both in
terms of clicking on that ad, as well as looking at other ads.
We propose a model based on a user who starts to scan the
list of ads from the top, and makes decisions (about whether
to click, continue scanning, or give up altogether) based on
what he sees. More specifically, we model the user as the
following Markov process: “Begin scanning the ads from the
top down. When position j is reached, click on the ad i with
probability pi. Continue scanning with probability qi.” In

this model, if we try to write the click probability of an ad i
in position j as piαj , we get that αj = Πi′∈Aqi′ , where A is
the set of ads placed above1 position j. Thus the “position
factor” in the click probability decreases with position, and
does so naturally from the model. Also note that we do not
have separability anymore, since αj depends on which ads
are above position j. Consequently, it can be shown that
GSP assignment of ads is no longer the most efficient.

Auction with Markovian users. Given this new user model,
we can now ask what the best assignment is of ads to slots.
We will study the most efficient assignment; i.e., the one that
maximizes total advertiser value derived from user clicks. It
turns out that the structure of this assignment is different
than that of GSP, and indeed is more sophisticated than any
simple ranking. The presence of the qi’s requires a delicate
tradeoff between the click probability of an ad and its effect
on the slots below it. In this paper, we identify certain struc-
tural properties of the optimal assignment and use them to
find such an optimal assignment efficiently, not only in poly-
nomial time, but in near-linear time. Given this algorithm,
a natural candidate for pricing is VCG [30, 10, 16], which is
clearly truthful in this setting.

Intuitive Bidding. One of the reasons why GSP is success-
ful is perhaps because bidding strategy is intuitive: Un-
der GSP ranking, if an advertiser bids more, they get to
a higher position, and consequently, if they bid more, their
click probability increases. Now that we have defined a more
sophisticated assignment function, even though VCG pric-
ing is truthful, the auction still may not have these intuitive
properties. Our main technical result is to show that in
our model, if a mechanism uses the most efficient assign-
ment, indeed position and click probabilities are monotonic
in an ad’s bid (with all other bids fixed), thus preserving
this important property. Monotonicity of click probability
follows from the general result of Archer and Tardos [5] on
single-parameter mechanisms—for completeness we provide
a proof from first principles. In contrast, position mono-
tonicity turns out to be rather involved to prove, requiring
some delicate combinatorial arguments, and insights into the
optimal substructure of bidder assignments.

In summary, we approach sponsored search auctions as a
three party process by modeling the behavior of users first
and then designing suitable mechanisms to affect the game
theory between the advertiser and the search engine. Our
work sheds some light on the intricate connection between
the user models and the mechanisms; for example, the sort
order of GSP that is currently popular (sort by bipi) is
not optimal under the Markov user model we propose here.
More powerful models will be of great interest, such as mak-
ing the continuation probability qi a function of position as
well, endogenizing the actions of the user as they navigate
on the landing page, etc. We leave it open to design truthful
auctions under such extended models.
1Throughout the paper, we will often refer to a position or
an ad being “higher” or “above” another position or ad; this
means that it is earlier on the list, and is looked at first by
the user.



1.1 Related Work. Sponsored search has been an ac-
tive area of research in the last several years after the early
papers explored the foundational models [12, 4, 29, 21]. In
general, the motivation for the work that followed is that
sponsored search in practice is much more complex than as
described by the first models. Some papers have taken on
the effect of advertiser budgets [8, 25, 2], as well as analyz-
ing bidder strategy and dynamics [7, 27, 9, 13, 32, 31, 22].
There have also been several papers offering extensions to
GSP, or entirely new models and mechanisms [3, 20, 23, 14,
26, 24, 1].

Only very recently are alternate user models that break the
separability assumption starting to receive some attention.
Ghosh and Mahdian [15] study a very general model and
show hardness results for the allocation (winner determina-
tion) problem; they also give algorithms for several special
cases, but none of those imply the algorithms discussed in
this work. Craswell et al. [11] give an empirical study of
several user click models. The “cascade” model, which was
found to fit the data the best, is a special case of the model
we study here (with pi = 1− qi and the events being mutu-
ally exclusive). Gunawardana and Meek [17] performed an
empirical study of ad aggregators with the goal of detect-
ing the affect of an ad on the other ads on the page. Their
findings were consistent with our model; i.e., the presence
of an ad can have a significant affect on the ads below it.
Athey and Ellison [6] present a model where users have an
inherent need, and click until that need is filled (or there is
little chance of it getting filled). They analyze user behav-
ior, advertiser bidding strategies and Bayesian equilibria in
their model.

Independently of our work, Mahdian and Kempe [18] study
the same model we do here. They also provide an O(n log n+
nk) dynamic program for allocation; however at that point
they generalize to the case of position-dependent continua-
tion probabilities and provide an approximation algorithm
for this case, whereas we go on to study deeper structural
and incentive properties in the original model.

1.2 Outline. In Section 2 we define our model formally.
In Section 3, we establish several properties of optimal as-
signments in this model, including our main technical result
that position and click probability will be monotone in bid
and match our intuition. We give our algorithm for finding
an optimal assignment in Section 4 which gives the truthful
auction via VCG pricing, and conclude in Section 5.

2. Markov User Click Model

We consider a sponsored search auction with n bidders B =
{1, . . . , n} and k positions. We will also refer to “ad i,”
meaning the advertisement submitted by bidder i. Each
bidder i ∈ B has two parameters, pi and qi. The click-
through-rate pi is the probability that a user will click on ad
i, given that they look at it. The continuation probability
qi is the probability that a user will look at the next ad in
a list, given that they look at ad i.

Each bidder submits a bid bi to the auction, representing
the amount that they value a click. The quantity pibi then
represents the value of an “impression,” i.e., how much they

value a user looking at their ad. This is commonly referred
to as their “ecpm.”2 Throughout, we will use the notation
ei = pibi for convenience.

Given an assignment (x1, . . . , xk) of bidders to the k po-
sitions, the user looks at the first ad x1, clicks on it with
probability px1 , and then continues looking with probability
qx1 .

3 This is repeated with the second bidder, etc., until the
last ad is reached, or some continuation test has failed. Thus
the overall expected value of the assignment to the bidders
is

ex1 + qx1(ex2 + qx2(ex3 + qx3(. . . qxn′−1
(exn)))).

The goal of the auctioneer is to compute an assignment of
ads to positions that maximizes the overall expected value.
Given this assignment, prices can be computed using VCG [30,
10, 16]: for each assigned bidder we compute the change in
others’ value if that bidder were to disappear. This assures
truthful reporting of bids under a profit-maximizing utility
function.

3. Properties of Optimal Assignments

We will start analyzing some basic properties of the opti-
mal assignment. Our insights will allow us to give our main
results regarding monotonicity of position and click proba-
bility, as well as an efficient algorithm for finding this as-
signment.

3.1 Adjusted ECPM. It turns out that the quantity
ei/(1− qi), which we will refer to as the “adjusted ecpm (a-
ecpm),” plays a central role in this model. Intuitively, this
quantity is the impression value adjusted by the negative ef-
fect this bid has on the ads below it. We use ai = ei/(1−qi)
for convenience. The following theorem4 tells us how to as-
sign a set of k selected ads to the k positions:

Theorem 1. In the most efficient assignment, the ads
that are placed are sorted in decreasing order of adjusted
ecpm ai = ei/(1− qi).

Proof. Suppose not. Then in the ranking there are two
consecutive ads i and i′ in positions j and j + 1 where

ei

1− qi
<

ei′

1− qi′
. (1)

The contribution of positions j . . . n to the efficiency of the
ranking (given that position j is reached) is

ei + qi(ei′ + qi′ ê)

2The acronym ecpm stands for“expected cost per thousand”
impressions, where M is the roman numeral for one thou-
sand. We will drop the factor of one thousand and refer to
pibi as the “ecpm.”
3The click event and the continuation event could in princi-
ple have some correlation, and all our results will still hold.
However since we only consider expected value, we never use
this correlation explicitly in our analysis.
4Interestingly, this theorem essentially follows from a classi-
cal result on optimizing database queries [19].



where ê is the efficiency of positions j + 2 . . . k given that
position j + 2 is reached. If i and i′ are switched, then the
contribution would change to

ei′ + qi′(ei + qiê),

and nothing else would change. So since the former is the
most efficient assignment, we have

ei + qi(ei′ + qi′ ê) > ei′ + qi′(ei + qiê)

and so

ei(1− qi′) ≥ ei′(1− qi).

This contradicts (1).

While this theorem tells us how to sort the ads selected, it
does not tell us which k ads to select. One is tempted to say
that choosing the top k ads by a-ecpm would do the trick;
however the following example proves otherwise:

Example 1. Suppose we have three bidders and two slots,
and the bidders have the following parameters:

Bidder ei qi ai = ei/(1− qi)
1 $1 .75 4
2 $2 .2 2.5
3 $0.85 .8 4.25

Let’s consider some possible assignments and their efficiency.
If we use simple ranking by ecpm ei, we get the assignment
(2, 1), which has efficiency $2 + .2($1) = $2.20. If we use
simple ranking by a-ecpm ai we get the assignment (3, 1) with
efficiency $0.85 + .8($1) = $1.65. It turns out that the opti-
mal assignment is (1, 2) with efficiency $1+ .75($2) = $2.50.
The assigned bidders are ordered by a-ecpm in the assign-
ment, but are not the top 2 bidders by a-ecpm.

Now suppose we have the same set of bidders, but now we
have three slots. The optimal assignment in this case is
(3, 1, 2); note how bidder 3 goes from being unassigned to
being assigned the first position.

3.2 Notation for Assignments. Theorem 1 implies that
the optimal assignment can be described by the set of as-
signed bidders, since this set will always be sorted by a-ecpm.
For a set X of bidders, let e(X) be the efficiency of an assign-
ment that places only the set X, regardless of the number of
bidders in X; i.e., if X = {1, 2, 3, . . . , n′} and wlog is sorted
by a-ecpm, then

e(X) = e1 + q1(e2 + q2(e3 + q3(. . . qn′−1(en′)))).

Similarly, let q(X) be the overall continuation probability
of the set X of ads: q(X) = Πi′∈Xqi′ . If X = ∅ we have
e(X) = 0 and q(X) = 1.

Throughout the paper, we will also make use of the nota-
tion (A, x, B, C, y, . . . ) for a particular assignment, where
uppercase letters denote sets of bidders and lowercase let-
ters denote single bidders. This denotes a solution where the

order of the bidders is as given, and where the order within
a set is by a-ecpm (breaking ties using a lexicographic order
on bidders). So in this example, the solution would put all
the bidders of A first in a-ecpm order, followed by bidder
x, followed by the bidders of B in a-ecpm order, etc. Note
that this notation could express suboptimal solutions (for
the particular set of bidders) if the elements are not in order
of ecpm. We use e(·) and q(·) to denote the efficiency and
continuation probability of such solutions.

3.3 Bidder Dominance. In classical sponsored search
with simple ranking, a bidder j can dominate another bid-
der i by having higher ecpm; i.e., bidder j will always appear
whenever i does, and in a higher position. Example 1 above
shows that having a higher ecpm (or a-ecpm) does not allow
a bidder to dominate another bidder in our new model. How-
ever, we show in this section that if she has higher ecpm and
a-ecpm, then this does suffice. This is not only interesting
in its own right, it is essential for proving deeper structural
properties in later sections.

Theorem 2. For all bidders i in an optimal assignment,
if some bidder j is not in the assignment, and aj ≥ ai and
ej ≥ ei, then we may substitute j for i, and the assignment
is no worse.

Proof. Consider some bidder i that appears in an op-
timal assignment, and some j that does not appear in the
assignment, such that ej ≥ ei and aj ≥ ai. Let (X, i, Y ) be
the optimal assignment, where X is the sequence of bidders
above i and Y is the sequence below i. The efficiency of
the assignment (X, i, Y ) is e(X) + q(X)(ei + qie(Y )). The
efficiency of the assignment (X, j, Y ) is e(X) + q(X)(ej +
qje(Y )). Suppose qj ≥ qi; then clearly (X, j, Y ) is as effi-
cient as (X, i, Y ) since ej ≥ ei, and the theorem is proven.
Thus we assume that qi > qj for the remainder of the proof.
Note that aj ≥ ai is equivalent to:

ej − ei ≥ ei(qi − qj)

1− qi
(2)

Now consider the assignment (X, Y ), with efficiency e(X)+
q(X)e(Y ). Since (X, i, Y ) is optimal, we get

e(X) + q(X)e(Y ) ≤ e(X) + q(X)(ei + qie(Y )),

i.e., e(Y ) ≤ ei/(1− qi). Combining this with (2), and using
the fact that qi > qj , we get ej − ei ≥ e(Y )(qi − qj) which
can be rewritten as

ej + qje(Y ) ≥ ei + qie(Y ).

This implies that the solution (X, j, Y ) is as efficient as
(X, i, Y ).

3.4 Subset Substructure in Optimal Assignments.
In this section we give a theorem that shows some subset
structure between optimal assignments to different numbers
of slots. This theorem is used to prove position monotonic-
ity, and is an essential ingredient of our algorithm. Let
OPT(C, j) denote the set of all optimal solutions for filling
j positions with bidders from the set C.



Theorem 3. Let j ∈ {1, . . . , k} be some number of posi-
tions, and let C be an arbitrary set of bidders. Then, for
all S ∈ OPT(C, j − 1), there is some S′ ∈ OPT(C, j) where
S′ ⊃ S.

Proof. We proceed by induction on j, the base case j =
1 being simple. Let S be some solution in OPT(C, j−1), and
let S′ be the solution in OPT(C, j) with the most bidders
in common with S. We will refer to an ad being “above”
another ad if it has higher a-ecpm. Let x be the highest
bidder in S′.

If x does not appear in S, then we claim that the solution
(x, S) must be in OPT(C, j): Once x is chosen for S′, taking
any set in OPT(C \x, j− 1) for the remaining positions will
result in an optimal solution; the set S is such a set, since by
assumption it does not include x, and is in OPT(C, j − 1).
But if (x, S) ∈ OPT(C, j) the theorem is proven, so we may
assume x ∈ S.

Let A be the set of ads in S above x, and so we can write
S = (A, x, Q) and S′ = (x, Q′). We claim Q′ ⊃ Q. To see
this, consider the set L of all ads that have lower a-ecpm
than x. By the optimality of S, we have Q ∈ OPT(L, j′)
for j′ = j − |A| − 1 < j. By induction there is a Q′′ ∈
OPT(L, j − 1) where Q′′ ⊃ Q. Thus we must have Q′ ⊃ Q
since S′ is the solution with the most bidders in common
with S. Decompose Q′ as Q′ = (B + X, D, z, E) where

• z is the lowest ad in S′ that does not appear in S,

• E is the set of ads below z in S′ (this can be empty),

• D is the maximal set of ads immediately above z in S′

that also appear in S (this can be empty),

• X are the remaining ads in S′ that do not appear in
S,

• B are the remaining ads (besides x) that appear in
both S and S′.

Let B′ = B ∪ x. Note that by the definitions above we may
write S = (A, B′, D, E). We have e(S) = e(A, B′, D, E) ≥
e(B′+X, D, E) since S ∈ OPT(C, j−1) and |(B′+X, D, E)| =
j − 1. Decomposing this a bit gives

e(A, B′, D) + q(A)q(B′)q(D)e(E)

≥ e(B′ + X) + q(B′)q(X)e(D, E). (3)

We also note that

e(S′) = e(B′ + X, D, z, E)

= e(B′ + X) + q(B′)q(X)e(D, z, E). (4)

Let S′′ = (A, B′, D, z, E). The remainder of the proof will
show that e(S′′) ≥ e(S′), which implies the theorem since
|S′′| = j, S′′ ⊃ S and S′ ∈ OPT(C, j). We can rewrite

e(S′′) as follows:

e(S′′) = e(A, B′, D) + q(A)q(B′)q(D)e(z, E)

≥ e(B′ + X) + q(B′)q(X)e(D, E)

+ q(A)q(B′)q(D)(e(z, E)− e(E)) (5)

= e(S′)− q(B′)q(X)(e(D, E)− e(D, z, E))

+ q(A)q(B′)q(D)(e(z, E)− e(E)) (6)

In the above, (5) follows from (3), and (6) follows from (4).
Rearranging, and using

e(D, E)− e(D, z, E) = q(D)(e(E)− e(z, E)),

we get

e(S′′)− e(S′)=q(B′)q(D)(q(A)− q(X))(e(z, E)− e(E)).

We know that e(z, E) ≥ e(E) since otherwise e(B′+X, D, E) >
e(B′ + X, D, z, E) = e(S′), and this cannot be since S′ ∈
OPT(C, j). We claim that q(A) ≥ q(X), which would imply
e(S′′) ≥ e(S′) and thus complete the proof. This is trivially
true if A = X = ∅. Since |A| = |X| by the definitions above,
we can assume both A and X are non-empty. consider some
y ∈ A and y′ ∈ X. We have y /∈ S′ by the definition of A.
Since S′ is the solution in OPT(C, j) with the most bidders
in common with S′, we must not be able to substitute y for
y′ in S, and thus by Lemma 2 we must have that ey′ > ey

or ay′ > ay. But by the definitions of A and X, we have
ay ≥ ax ≥ ay′ . Therefore ey′ > ey. The previous two in-
equalities imply qy > qy′ . Since y and y′ were arbitrary and
|A| = |X|, this gives q(A) > q(X).

3.5 Monotonicity of Position and Click Probabil-
ity. In this section we give our main theorem regarding the
structure of the optimal assignments in the Markovian click
model: that position and click probability are monotonic in
a bidder’s bid, with all other bids fixed. This is a funda-
mental property that makes the bidder’s interaction with
the system intuitive, and allows the bidder to adjust her bid
intelligently without global knowledge of the other bids.

Theorem 4. As a bidder increases her bid (keeping all
other bids fixed):

(a) the probability of her receiving a click in the optimal
solution does not decrease, and

(b) her position in the optimal solution does not go down.

Proof. As bidder x increases her bid bx with all other
bids fixed, the value of a particular solution S = (A, x, B)
increases linearly as q(A)px · bx + [e(A) + q(A)qxe(B)]. (So-
lutions not involving x stay constant.)

Let S1, . . . , Sk denote the sequence of optimal solutions that
occurs as bx increases from 0. Solution S1 is the best solution
not involving x, and Sk is the best solution that puts x in
the first position. By the fact that each solution increases
linearly by the term q(A)px ·bx, which is the probability that
x receives a click in that solution, it must be the case that
for a new solution to become optimal it gives x a higher click



probability than in the previous solution; i.e., for all i ≥ 0,
Si+1 gives x a higher click probability than Si. This proves
the first part of the theorem.5

Now suppose the second part of the theorem is false. Then,
there must be some consecutive solutions Si and Si+1 where
x has a higher position in Si than in Si+1. Let b be the
bid that makes both Si and Si+1 optimal, which must exist
since they are consecutive in the list of optimal solutions,
and fix b for the remainder of the proof. Decompose the two
solutions as Si+1 = (A, x, E) and Si = (F, x, G) where |A| >
|F | by assumption, and q(A) > q(F ) by the argument that
proved the first part of the theorem. Since both solutions are
optimal, they are both sorted by a-ecpm, with ties broken
lexicographically.

We claim that A∩G = ∅. If this were not the case then some
bidder y would appear in both A and G, but since both Si

and Si+1 are sorted by ecpm, and y appears on different
sides of x, this must mean that y has the same a-ecpm as
x. But, this violates our assumption on how the algorithm
breaks ties among different orderings of the same set. Using
similar logic, we get F ∩ E = ∅.

By the optimality of Si+1 and the fact that F ∩ E = ∅,
we get E ∈ OPT(B \ (F ∪ A ∪ {x}), n − |A| − 1). Since
|F | < |A|, Theorem 3 then implies that there is some G′ ∈
OPT(B \ (F ∪A∪ {x}), n− |F | − 1) where G′ ⊃ E. Even if
G′ 6= G, the set G′ could replace G in Si (since A ∩G = ∅)
and still be optimal, and so we define S′

i = (F, x, G′) and
have e(S′

i) = e(Si). Note that by the definition of G′, we
have A ∩G′ = ∅.

Since A ∩G′ = ∅ and |A| > |F |, there must be some bidder
in A that does not appear in S′

i. Let a be the first such
bidder (by a-ecpm). Decompose A into (C, a, D) where C
and D are those bidders with higher and lower a-ecpm than
a, respectively. Note that C ⊆ F , by the definition of a. Let
F1 be the smallest prefix of F (by a-ecpm) that contains all
of C, and let F2 = F − F1.

Similarly, since A ∩ G′ = ∅ and |G| > |E|, we let t ∈ G′ be
the first bidder (by a-ecpm) that does not appear in Si+1.
Let G′

1 be the bidders in G′ with higher a-ecpm than t, and
G′

2 = G′ − G′
1 − t. Note G′

1 is also a prefix of E, and let
E2 = E −G′

1.

Given these definitions, we define nine different solutions
that we will use in our proof (renaming S′

i and Si+1 for
clarity):

5This result can also be obtained by applying the general re-
sult of Archer and Tardos[5]: since this is a single-parameter
setting, and we are using the VCG mechanism (which is
truthful), the valuation function (in this case click probabil-
ity) must be monotone in the bid.

α = Si+1 = (A, x, E) = (C, a, D, x, E)

α′ = (C, D, x, E) = (C, D, x, G′
1, E2)

β = S′
i = (F, x, G′) = (F, x, G′

1, t, G
′
2)

β′ = (F, x, G′
1, G

′
2)

γ = (C, D, x, E + t) = (C, D, x, G′
1, t, E2)

δ = (F1, a, F2, x, G′
1, G

′
2)

ζ = (C, a, F1 − C, F2, x, G′
1, G

′
2)

ζ′ = (C, F1 − C, F2, x, G′
1, G

′
2)

η = (C, F1 − C, a, F2, x, G′
1, G

′
2)

In the following claims we will often use the generic identity

e(X, y, Y )− e(X, Y ) = q(X)(ey − (1− qy)e(Y )) (7)

Claim 1. e(γ)− e(α′) > e(β)− e(β′)

Proof. Using (7), we can rewrite the claim as

q(C, D, x, G′
1)(et − (1− qt)e(E2))

> q(F, x, G′
1)(et − (1− qt)e(G

′
2)). (8)

Since q(C, D, x) ≥ q(C, a, D, x) = q(A, x), and q(F ) < q(A),
we get q(C, D, x, G′

1) > q(F, x, G′
1), and so it remains to

prove e(E2) ≤ e(G′
2). But this follows from the optimality

of β, since E2 could replace G′
2 in solution β (indeed, E2 ⊂

G′
2).

Claim 2. e(ζ)− e(ζ′) ≥ e(α)− e(α′)

Proof. Using (7), we can rewrite the claim as

q(C)(ea − (1− qa))e(F1 − C, F2, x, G′
1, G

′
2))

≥ q(C)(ea − (1− qa)e(D, x, E)). (9)

Since (F1−C, F2, x, G′
1, G

′
2) has the same length as (D, x, E),

and does not contain a or any bidders in C, it could replace
(D, x, E) in α; but since α is optimal, we may conclude
that e(D, x, E) ≥ e(F1 − C, F2, x, G′

1, G
′
2), which proves the

claim.

Note that e(η) ≥ e(ζ), since all bidders in F1 have a higher
a-ecpm than a. Finally, note that a simple application of (7)
gives

e(η)− e(ζ′) = e(δ)− e(β′) (10)

We now conclude the proof with the following contradiction:

e(α)− e(α′) ≥ e(γ)− e(α′) (by opt. of α)
> e(β)− e(β′) (Claim 1)
≥ e(δ)− e(β′) (by opt. of β)
= e(η)− e(ζ′) (by (10))
≥ e(ζ)− e(ζ′)
≥ e(α)− e(α′) (by Claim 2)



4. Computing the Optimal Assignment

In this section we give algorithms for computing the optimal
assignment of bidders to positions using the structural prop-
erties we proved in the previous section. We begin with a
simple dynamic program that gives an O(n log n + nk) time
algorithm. We then show how our insights from the previous
sections give a faster O(n log n + k2 log2 n) time algorithm.

4.1 Optimal Assignment using Dynamic Program-
ming. The algorithm proceeds as follows. First, sort the
ads in decreasing order of a-ecpm in time O(n log n). Then,
let F (i, j) be the efficiency obtained (given that you reach
slot j) by filling slots (j, . . . , k) with bidders from the set
{i, . . . , n}. We get the following recurrence:

F (i, j) = max(F (i + 1, j + 1)qi + ei, F (i + 1, j)).

Solving this recurrence for F (1, 1) yields the optimal assign-
ment, and can be done in O(nk) time.

4.2 Near-linear Time Algorithm. Let B = {1, . . . , n}
be the set of bidders, sorted by a-ecpm. Suppose we had
an oracle that told us, for any j, j′ ∈ B, the bidder y with
j ≤ y ≤ j′ that maximizes f(qy, ey) for an arbitrary linear
function f . We will later show how to construct this oracle,
but first we describe our algorithm that uses this oracle.

Our algorithm will construct a solution Si ∈ OPT(B, i) for
all i = 1, . . . , k, the final one Sk being the overall optimum.
By Theorem 3, we may assume that Si+1 ⊃ Si. Using this
fact, our algorithm builds Si+1 from Si by simply finding
arg maxx/∈Si

e(Si ∪ {x}). To perform this max, the algo-
rithm first guesses (i.e., searches exhaustively for) the a-
ecpm rank of the new bidder x among the bidders in Si;
this a number ` from 1 to i + 1. Let {s1, . . . , si} be the el-
ements of Si sorted by decreasing a-ecpm. The new bidder
x has a-ecpm between s`−1 and s`, and so e(Si ∪ {x}) =
e(s1, . . . , s`−1) + q(s1, . . . , s`−1)(ex + qxe(s`, . . . , si)). Since
e(Si ∪ {x}) is linear in (qx, ex), we may appeal to the ora-
cle to find the bidder x that maximizes e(Si ∪ {x}) among
all bidders with a-ecpm between that of s`−1 and s`. We
make i + 1 calls to this oracle for each i, and thus O(k2)
calls overall. To get the coefficients of e(Si ∪{x}) to pass to
the oracle, we precompute the quantities q(s1, . . . , sp) and
e(sp, . . . , si) for all p. (This can be done in O(k) time per i,
for O(k2) time overall.)

It remains to show how to implement the oracle. We first
preprocess the sequence [1, . . . , n] of bidders as follows. We
consider the dyadic intervals [α2β +1, . . . , (α+1)2β ] for each
possible α, β, for a total of O(n) intervals. Note that any
subsequence [j, . . . , j′] is made up of at most O(log n) such
intervals. For each such interval, we will make a data struc-
ture that can find max f(qx, ex) over bidders in that inter-
val in O(log n) time. So overall, given [j, . . . , j′], the oracle
takes the max of O(log n) calls to the data structure, and
completes in O(log2 n) time.

The data structure we compute for a particular interval
[α2β + 1, . . . , (α + 1)2β ] is simply the convex hull of the
points (qx, ex) in two-dimensional space defined by bidders
x in the interval. We can compute all these convex hulls
in O(n log n) time by successively merging convex hulls for

increasing β. Given the convex hull (with the points sorted
in order of qx for example), a simple binary search can find
the point maximizing f(qx, ex) in O(log n) time.

This gives,

Theorem 5. Consider the auction with n Markovian bid-
ders and k slots. There is an optimal assignment which can
be determined in O(n log n + k2 log2 n) time.

It follows that using VCG pricing with this optimal assign-
ment, we obtain a truthful mechanism for sponsored search
with Markovian users.

5. Concluding Remarks

We approached sponsored search auctions as a three party
process by modeling the behavior of users first and then
designing suitable mechanisms to affect the game theory be-
tween the advertiser and the search engine. This formal
approach shows an intricate connection between the user
models and the mechanisms.

There are some interesting open issues to understand about
our model and mechanism. For example, in order to im-
plement our mechanism, the search engine needs to devise
methods to estimate the parameters of our model, in par-
ticular, qi’s. This is a challenging statistical and machine
learning problem. Also, we could ask how much improve-
ment in efficiency and/or revenue is gained by using our
model as opposed to VCG without using our model.

More powerful models will also be of great interest. One
small extension of our model is to make the continuation
probability qi a function of location as well, which makes
the optimization problem more difficult. We can also gen-
eralize the Markov model to handle arbitrary configurations
of ads on a web page (not necessarily a search results page),
or to allow various other user states (such as navigating a
landing page). Finally, since page layout can be performed
dynamically, we could ask what would happen if the layout
of a web page were a part of the mechanism; i.e., a function
of the bids.
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