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Abstract

We show that the only social choice functions that are implementable in a multi-unit auctions
setting with two bidders which always allocate all items are affine maximizers.

1 Introduction

This note is an addendum to [2]. One of the results of [2] is that the only implementable social choice
functions for combinatorial auctions with subadditive bidders (or XOS) are affine maximizers. In
this note we prove the analogue of this result in the multi-unit auctions setting. This result was
implicit at [2] and uses no new techniques. We refer the reader to [2] for context for this note and
discussion.

A function f is called affine mazimizer if there exists a subset of the alternatives A’ such
that f(vi,...,v,) = argmaxsearc 4 wivi(a) + ¢4, where the w;’s and the ¢,’s are predetermined
non-negative constants. The only simplification for the sake of presentation we make is that we
consider only functions that are scalable. A function is scalable if for each o > 0 we have that
flor,...,vn) = fla-vy,...,a-vy,). Very informally, the “currency” that we use does not matter.
Notice that the scalability assumptions means that all the ¢,’s in the definition of affine maximizers
are zero (such functions are also called weighted welfare mazimizers). This assumption can be
removed, but we do not do it here.

In a multi-unit auction we have m items and n bidders. Bidder’s i’s private information is his
valuation function v; : [m] — R. We assume that the v; are monotone, and that v;(0) = 0. The
theorem we prove is that every (scalable) implementable function f must be an affine maximizer.

The theorem is a strengthening of [3] that proves an identical result, but using the extra condi-
tion that the f is decisive: if player i bids high enough for v;(m), he will indeed be assigned all the
m items. Thus, our proof can also be seen as a simpler (and stronger) proof of this result from [3].

Let us say a word about the computational implications of this result. Let A be a deterministic
truthful mechanism for multi-unit auctions that provides a 2 — ¢ approximation ratio, for some
€ > 0, and always allocates all items. By the theorem, it must be an affine maximizer. However, by
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the result of [1], an affine maximizer that provides a better-than-2 approximation ratio must run
in exponential time. Thus, any truthful mechanism that always allocates all items cannot provide
a better-than-2 approximation ratio in polynomial time, although a non-truthful FPTAS exists.
Removing the assumption that A always allocates all items, and thus proving a genuine separation
between the power of polynomial time truthful mechanisms and polynomial time algorithms is a
major open question in algorithmic mechanism design.

2 The Characterization

Theorem 2.1 Let f be a scalable social choice function of a truthful multi-unit auction with 2
bidders that always allocates all items. Suppose that f has a range of size at least 3. Then, f must
be an affine mazximizer.

Before proceeding to the proof, we require some notation. Let v, v’ and u be valuations. A
mechanism f is weakly monotone if for all valuations v, v and w, if f(v,u) = a, and f(v',u) = b,
then v(a)—v(b) < v'(a)—v'(b). A mechanism is called strongly monotone if for all valuations it holds
that v(a) —v(b) < v'(a) —v'(b), if @ # b. In domains where a player is interested in minimizing his
cost rather than maximizing his value (like scheduling) the direction of the inequalities is reversed.

Note that every implementable social choice function satisfies weak monotonicity. Further,
using the following lemma from [3], we can focus on social choice functions that satisfy strong
monotonicity.

Lemma 2.2 Suppose there ezists a social choice function f : V—A that satisfies weak monotonic-
ity, allocates all items and is not an affine mazimizer. Then there exists a social choice function
' V—A with the same range that satisfies strong monotonicity, allocates all items and is not an
affine mazximizer.

Fix an arbitrary social choice function f : V—A that satisfies strong monotonicity, allocates
all items and has at least three outcomes in its range. Since we have that f satisfies strong
monotonicity, we do no have to assume that v(0) = u(0) = 0. These values can take arbitrary
values (while keeping the monotonicity constraints) since the valuation can always be normalized
by deducting v(0) from all values of the valuation. The output of the mechanism is left unchanged,
by strong monotonicity.

The main part of the proof is to show that f is an affine maximizer. Let the vectors v and
u denote the valuations of bidders 1, 2 respectively. The outcome (ni,ny) allocates n; items
to bidder 1 and ny items to bidder 2. We now define the sets P(x,y) for any two allocations
(x,m —2x),(y,m —y) € A.

Definition 2.3 Let (x,m—=x) and (y,m—1y) be two allocations in the range of f. a = (a1, az) € R?
is in P(x,y) if there exist two valuations v and u such that f(v,u) = (x,m—=x), and a1 = v(z)—v(y)
and ag = u(m — x) —u(m —y).

The sets P(z,y) have the following geometric interpretation. Suppose we plot (a1, 2) = a on
the cartesian plane. We can partition the plane into three regions. P(z,y), P(z,y), and an invalid
region. We say that a point a = (aq, ag) is invalid if there are no two valuations v and u such that
a1 = v(x) —v(y) and ag = u(m —x) —u(m —1y). Notice that monotonicity of valuations, implies for



x >y, bidder 1 prefers x over y and bidder 2 prefers m — y over m — x; thus the only valid points
are in the south-west quadrant. By definition, any o € P(z,y) is valid. Finally, a point belongs to
P(z,y) if it valid and not in P(x,y). We use the notation P(z,y) to denote the interior of this set,
which is defined in the usual topological meaning.

The proof structure is as follows. The next lemma shows the definition of the P’s “makes sense”:
for any two valuations profiles (v,u) and (v/,u’) such that for each bidder, the relative preference
of the outcome (z,m — x) over the outcome (y,m — y) in both valuation profiles is the same, the
allocation chosen by the mechanism must satisfy a consistency property.

The motivation is as follows. If f is a weighted welfare maximizer, then there must exist a
constants wy, wy for the two players such that for any valuation v and f(v) = (z,m — x), and for
any other outcome (y,m — y),

wy - v () + wy - ve(m — ) > wy - v1(y) + wy - va(m —y)
Rearranging, we have that
wy - (vi(7) —v1(y)) > wa - (v2(m —y) — va(m — )

This implies that if we plot the sets P(z,y) and P(z,y) on the cartesian plane, they must be
separated by a line (through the origin for weighted welfare maximizers). Further, the slopes of the
line must be identical for all choices of x and y, x > y. This is exactly what the next two lemmas
prove.

Lemma 2.5 proves that all the P’s are identical in the interiors, for all x, y where x > y.
Finally, Lemma 2.9 shows that P(z,v) is separated from P(z,y) by a line. Recall that since all the
interiors of the P’s are identical, this line must be identical for all P(x,y) too. Thus, since each P
is separated from P by the same line, it must be the case that f is an affine maximizer.

). Let a = (v(z) —

Lemma 2.4 Let v and u be two valuations such that f(v,u) = (z,m — x
) —v'(y) = v(z) —v(y) and

v(y),u(m — x) — u(m —y). Let v' and v’ be two valuations where v'(x
u'(z) = u'(y) = u(x) —u(y). Then, f(v',u') # (y,m —y).

Proof: Throughout the proof we assume that > y. The other case where x < y is symmetric.
The proof is by contradiction, assume that f(v’,u') = y. Define (v”,u") as follows; intuitively, the
relative preferences of the outcomes in (v”,u”) is @ and in valuation profiles (v, u’), (v,u) and the
valuation profile is 'flattened’ so that all other outcomes are less attractive. Note that ¢ > 0 is
chosen to be small enough so that the valuation is monotone.

max(v(t),v'(t)) + ¢, t=x,t=y
" max(v(z),v' (z)) +c+t-€, t>x
v (t): /
max(v(y),v' (y)) +c+t-e, z>t>y
t-e, y >t
max(u(t), v (t)) + ¢, t=m-—xz,t=m-—y
" max(u(m —y),v'(m—y))+c+t-e, t>m—y
u'(t) = /
max(u(m —z),u'(m—z))+c+t-e, m—y>t>m-—z
t-e, m—x > 1.



For small enough €, by strong monotonicity and since all items are allocated: f(v,u) =
f"u) = f(" ") = (x,m — x). Similarly, f(v',u') = f(v",u') = f(",u") = (y,m —y). As
x # y, we have a contradiction. ]

In a sense, the lemma says that we can use the following processes of “pairwise elections”: fix
two valuations u and v, and select two allocations (z,m — z) and (y,m — y). Then, by looking
only at the vector of differences (v(z) — v(y),u(m — xz,m — y), we can rule out the possibility that
f(v,u) = (z,m—x) or the possibility that f(v,u) = (y, m—y). If we continue this pairwise elections
process for all possible pairs of allocations, we are guaranteed to find f(v,u) (notice that the order
we conduct this election process does not matter).

Lemma 2.5 Suppose that for each P(x,y), © > y, and every € > 0 there exists B € P(z,y),
|0 <e. Letx >y, w>z Ifa€ Px,y), then o € P(w, z).

Proof: It is enough to prove the following two claims:
Claim 2.6 Letz >y > 2. a € P(z,y) < o€ P(z,2).

Proof: In one direction, let o € P(x,y) and choose some f — 0, f € P(y,z). By Lemma 77,
o+ (€ P(z,y), and thus a € P(z, 2).

As for the other direction, take some v, u, such that f(v,u) = (z,m — z), and a = (v(z) —
v(2),u(m —x) —u(m — 2)). For each t in the range of f where x >t > z, select some ' € P(z,y),
Bt — 0. Define v/ and '

i u(z) =B z<t<z,
vi(t) = { v(t), otherwise.
W (t) = v(im—2z)+ 6, zT<t<z,
] (e, otherwise.

Notice that v’ is indeed monotone for some small enough choices of the 3’s (since v is strictly
increasing). Observe that f(v,u) = f(v/,u') = (x,m — z): by Lemma 2.4 the output is not
(t,m —t), for x >t > z. The output is also not (t,m — t) for some ¢t > x or t < z, by using strong
monotonicity and the fact that f(v,u) # (¢,m —t). Thus, f(v,u') = (x,m — x). Finally observe
that by choosing small enough 3'’s we get that (v/(x) —v'(y), 4 (z) — v/ (y)) — «, hence the lemma.

]

Claim 2.7 Letx >y > 2. a € P(x,2) <= a € P(y, 2).

Proof: Both proofs are similar to the proof of the previous claim. For the proof that a €
P(z,2) = a € P(y, z) we choose small enough 3¢ € P(y,t), for x > t > y. For the proof of
a € P(y,z) = a € P(z,2), we choose small enough ' € P(z,y), for z >t > y. In both cases
continue as in the proof of the previous claim. L]

O

The last lemma essentially proves that if > y and w > z then P(z,y) and P(w, z) are equal.
Therefore, if > y drop the index (z,y) from P(z,y).

Lemma 2.8 (Closure) Let o € P(x,y). Let € = (e1,€2). If x >y then €1 > 0,2 <0, ifrx <y
then €1 < 0,ea > 0. Then o+ € € P(z,y). As a corollary, if « € P(x,y) then a — e € P(z,y).



Proof:  Let v and u be two valuations where a = (v(z) — v(y),u(m — z) — u(m — y), and
f(v,u) = (x,m—2z). Define v'(t) = v(t)+€1,u'(t) = u(t) +e2. Observe that by strong monotonicity
flo,u) = f(v' u) = f(V', ) = (x,m — z), as needed. 0

Lemma 2.9 P and P are separated by a line.

Proof: Let a be some point that is on the border of P and P (notice that such point must exist,
otherwise either (r,m — z) or (y,m — y) are not in the range). Notice that by scalability ¢ - « is
also on the border, for all t. Finally, observe that the closure lemma separates the plane into two
separate regions: if 3 is above the ¢ - « line then it is in P, if it is below the line, then it is in P. [

As we observed before, all the P’s are equal, up to invalid points. By this and the previous
lemma, all the P’s are separated by the same line, up to invalid points. This is enough conclude
the proof and claim that f is an affine maximizer.
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