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We consider the robustness of extensive form mechanisms to deviations from
common knowledge about the state of nature, which we refer to as information
perturbations. First, we show that even under arbitrarily small information per-
turbations the Moore-Repullo mechanism does not yield (even approximately)
truthful revelation and that in addition the mechanism has sequential equilibria
with undesirable outcomes. More generally, we prove that any extensive form
mechanism is fragile in the sense that if a non-Maskin monotonic social objective
can be implemented with this mechanism, then there are arbitrarily small infor-
mation perturbations under which an undesirable sequential equilibrium also
exists. Finally, we argue that outside options can help improve efficiency in asym-
metric information environments, and that these options can be thought of as
reflecting ownership of an asset. JEL Codes: C72, D23, D78, D82.

I. INTRODUCTION

The literature on “complete-information” implementation
supposes that players know the payoff-relevant state of the
world, and asks which mappings from states to outcomes, that
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is, which social choice rules, can be implemented by mechanisms
that respect the players’ incentives. Although only Maskin mono-
tonic social rules are “Nash implementable” (Maskin 1999), a
larger class of social choice rules can be implemented in extensive
form games provided that a more restrictive equilibrium notion is
used.’

This article considers the robustness of subgame-perfect im-
plementation to arbitrarily small amounts of incomplete informa-
tion about the state of nature 6, which we refer to as “information
perturbations.”® It is known that refinements of Nash equilib-
rium are not robust to general small perturbations of the payoff
structure (Fudenberg, Kreps, and Levine 1988, henceforth FKL),
but our results do not follow from theirs as we consider a more
restrictive class of perturbations: we fix the map from states to
payoffs and perturb the prior distribution over the states of the
world and signal structure, so in particular the messages in
the mechanism remain cheap talk and do not enter directly into
the payoff functions.

Our starting point is the Moore and Repullo (1988, hence-
forth MR) result which roughly says that for any social choice
rule, one can design a mechanism that yields unique implemen-
tation in subgame-perfect equilibria (i.e., for all states of nature,
the set of all subgame-perfect equilibria of the induced game
yields the desired outcome). In particular, in environments with
money, Moore and Repullo propose a simple mechanism (which
we call an MR mechanism) inducing truth-telling as the unique
subgame-perfect equilibrium. As in MR, our focus is on exact
implementation, where “exact implementation” means that we
require the set of equilibrium outcomes to exactly coincide with
those picked by the rule.?

1. Recall that a social choice rule or function f'is Maskin monotonic if for any
pair of states 6 and ¢’ such that a =f(0), and a never goes down in the preference
ranking of any agent when moving from state 60 to state ¢, then necessarily a =f(¢').

2.1t follows from Theorem 14.5 of Fudenberg and Tirole (1991a: 567)
that under our small informational perturbations, for each profile of signals
that has strictly positive probability under complete information, some state of
nature is common p-belief (Monderer and Samet 1989) with p arbitrarily close to
1. That is, everybody believes this is the true state with probability at least p,
everybody believes with probability at least p that everybody believes this is the
true state with probability at least p and so on.

3. Much of the implementation literature studies exact implementation.
Virtual implementation (Matsushima 1988; Abreu and Sen 1991) uses nondeter-
ministic mechanisms, and only requires that social choice rules be implemented
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The requirement of exact implementation can be decomposed
into the following two parts: (1) there always exists an equilib-
rium whose outcome coincides with the given rule; (2) there are
no equilibria whose outcomes differ from those of the rule.

Our first result shows that MR mechanisms can only
robustly satisfy the first requirement of exact implementation if
the rule that is implemented is Maskin monotonic. That is, when-
ever an MR mechanism implements a non-Maskin monotonic
social choice rule, the truth-telling equilibrium ceases to be an
equilibrium in some nearby environment. More specifically, we
show that an MR mechanism that implements a social choice rule
funder common knowledge (or complete information*) about the
state of nature does not yield even approximately truthful reve-
lation under arbitrarily small information perturbations, if this f
is not Maskin monotonic.’

We then move beyond MR mechanisms to consider any
extensive-form mechanism. Our second result is concerned with
the nonrobustness of the second requirement of exact implemen-
tation: namely, whenever any mechanism implements a non-
Maskin monotonic social choice rule, there exists an undesirable
equilibrium in some nearby environment. More specifically, re-
stricting attention to environments with a finite state space and
to mechanisms with finite strategy spaces,® then given any mech-
anism that “subgame-perfect” implements a non-Maskin mono-
tonic social choice rule f under common knowledge (i.e., whose
subgame-perfect equilibrium outcomes in any state 0 is precisely
equal to f{9)), we can find a sequence of information perturbations
(i.e., of deviations from complete information about the state of
nature) and a corresponding sequence of sequential equilibria

with high probability. As pointed out by Jackson (2001), unlike exact implementa-
tion, virtual implementation is not robust to introducing a small amount of non-
linearity in preferences over lotteries. In addition, virtual implementation provides
incentives for renegotiation on the equilibrium path: as Abreu and Matsuhima
(1992) acknowledge, virtual implementation supposes that the social planner can
commit ex ante to outcomes that will be known at the time of implementation to be
highly inefficient.

4. Throughout the article, we use “complete information” and “common knowl-
edge” interchangeably.

5. As we shall stress in Section II.E below, Maskin monotonicity is precisely
the property that the social choice rules usually considered in contract theory donot
satisfy.

6. The Online Appendix extends the result to the case of countable message
spaces.
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for the mechanism under the corresponding information perturb-
ations, whose outcomes do not converge to f{9) for at least one
state 0. In other words, there always exist arbitrarily small infor-
mation perturbations under which an “undesirable” sequential’
(and hence perfect Bayesian) equilibrium exists.

Three insights underlie our analysis. The first is that even a
small amount of uncertainty about the state at the interim stage,
when players have observed their signals but not yet played the
game, can loom large ex post once the extensive form game has
started and players can partly reveal their private signals
through their strategy choice at each node of the game. The
second insight is that arbitrarily small information perturbations
can turn the outcome of a non-sequential Nash equilibrium of the
game with common knowledge of 6 into the outcome of a sequen-
tial equilibrium of the perturbed game. In particular, we know
that any extensive-form mechanism that “subgame-perfect”
implements a non-Maskin monotonic social choice rule under
common knowledge has at least one Nash equilibrium which is
not a subgame-perfect equilibrium; we prove that this undesir-
able Nash equilibrium can be turned into an undesirable sequen-
tial equilibrium by only introducing small information
perturbations. The third insight is that there is a role for asset
ownership to mitigate the investment and trade inefficiencies
that arise when the contracting parties have private information
ex post about the state of nature 6.

Our results are not a straightforward application of those on
the robustness of refinements of Nash equilibrium because we
consider a smaller class of perturbations. While FKL consider
several nested classes of perturbations, even the most restrictive
form they analyze allows a player’s payoff in the perturbed game
to vary with the realized actions in an arbitrary way. In the mech-
anism design setting, this implies that some (low-probability)
“crazy types” might have a systematic preference for truth tell-
ing. Because the messages and outcome functions of the mechan-
ism are not primitives but endogenous objects to be chosen by the
social planner, it may seem natural to restrict the perturbations
to be independent of the messages and depend only on the allo-
cation that is implemented.

Our article contributes most directly to the mechanism design
literature, starting with Maskin’s (1999) Nash implementation

7. We remind the reader of the formal definition in Section IV.B.
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result and Moore and Repullo’s (1988) subgame-perfect imple-
mentation analysis, by showing the nonrobustness of subgame-
perfect implementation to information perturbations.® Our article
is also related to Chung and Ely’s (2003) study of the robustness of
undominated Nash implementation. Chung and Ely show that if a
social choice rule is not Maskin monotonic but can be implemented
in undominated Nash equilibrium® under complete information,
then there are information perturbations under which an undesir-
able undominated Nash equilibrium appears. In contrast, we con-
sider extensive-form mechanisms and show that only Maskin
monotonic social choice rules can be implemented in the closure
of the sequential equilibrium correspondence. In general, the
existence of a bad sequential equilibrium in the perturbed game
neither implies nor is implied by the existence of a bad undomi-
nated Bayesian Nash equilibrium, as undominated Nash equili-
bria need not be sequential equilibria, and sequential equilibria
can use dominated strategies.'® Hence, although our article has a
similar spirit to Chung and Ely (2003), our argument is quite
distinct from theirs.

Our article also relates to the literature on the hold-up prob-
lem. Grossman and Hart (1986) argue that in contracting situ-
ations where states of nature are observable but not verifiable,
asset ownership (or vertical integration) could help limit the
extent to which one party can be held up by the other party,
which in turn should encourage ex ante investment by the former.
However, vertical integration as a solution to the hold-up prob-
lem has been questioned in papers which use or extend the

8. Other related mechanism design papers include Cremer and McLean
(1988), Johnson, Pratt, and Zeckhauser (1990), and Fudenberg, Levine, and
Maskin (1991). These papers show how one can take advantage of the correlation
between agents’ signals in designing incentives to approximate the Nash equili-
brium under complete information. These papers consider static implementation
games with commitment and look at fairly general information structures, as
opposed to our focus on the robustness of subgame-perfect implementation to
small perturbations from complete information.

9. An undominated Nash equilibrium is a Nash equilibrium in which no player
ever uses a weakly dominated action.

10. Trembling-hand perfect equilibria cannot use dominated strategies, and
sequential and trembling-hand perfect equilibria coincide for generic assignments
of payoffs to terminal nodes (Kreps and Wilson 1982), but the generic payoffs
restriction rules out our assumption that messages are cheap talk.
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subgame-perfect implementation approach of Moore and Repullo
(1988).!! In particular, Maskin and Tirole (1999a), henceforth
MT, show that the nonverifiability of states of nature can be over-
come by using a three-stage subgame-perfect implementation
mechanism that induces truth-telling by all parties as the
unique equilibrium outcome, and does so in pure strategies. We
contribute to this debate in two ways. First we show that the
introduction of even small information perturbations greatly re-
duces the power of subgame-perfect implementation. This sug-
gests that the introduction of incomplete information can
significantly change the insights obtained by MT. Second, we
show that when there is asymmetric information ex post about
the good’s valuation, an outside option for the seller permits a
more efficient outcome. We argue that this option can be seen
as corresponding to ownership of an asset.

The article is organized as follows. Section II uses a simple
buyer-seller example to introduce the MR mechanism, to show
why truthful implementation using this mechanism is not robust
to small information perturbations, and why such perturbations
generate an undesirable sequential equilibrium. Section III
extends our analysis to general MR mechanisms with n states
of nature and transferable utility, and shows that for a given
social choice rule f, truth-telling equilibria are only robust to
small information perturbations if this f is strategy-proof (which
in turn implies Maskin monotonicity under weak assumptions on
preferences).'? In Section IV, we ask whether any extensive form
mechanism is robust to small information perturbations. There
we prove that for any social choice rule that is not Maskin mono-
tonic one can find small information perturbations under which
an undesirable sequential equilibrium exists. Section V considers
the case of full informational asymmetry ex post and shows that
asset ownership, by providing outside options, can lead to ap-
proximately efficient ex ante investments, whereas contracts or
mechanisms with no outside option cannot. Finally, Section VI
concludes with a few remarks and also suggestions for future
research.

11. For example, see Aghion, Dewatripont, and Rey (1994) and Maskin and
Tirole (1999a, 1999b).

12. Iffis strategy-proof, it is always a weakly dominant strategy for each agent
to tell the truth in the direct mechanism associated with /. See also Definition 1 for a
precise definition of strategy-proofness.
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II. HART-MOORE EXAMPLE OF THE MOORE-REPULLO
MECHANISM

II.A. Basic Setup

Consider the following simple example from Hart and Moore
(2003), which captures the logic of Moore and Repullo’s (1988)
subgame-perfect implementation mechanism.

There are two parties, a B(uyer) and a S(eller) of a single unit
of an indivisible good. If trade occurs then B’s payoff is

Vg =6—p,
where p is the price and 6 is the good’s quality. S’s payoff is

VS =D,

thus we normalize the cost of producing the good to zero.

The good can be of either high or low quality. If it is high
quality then B values it at 0= 14, and if it is low quality then B
values it at 7, =10. We seek to implement the social choice func-
tion whereby the good is always traded ex post, and where the
buyer always pays the true 6 to the seller.

II.B. Common Knowledge

Suppose first that the quality 0 is observable and common
knowledge to both parties. Even though 6 is not verifiable by a
court, so no initial contract between the two parties can be made
credibly contingent on 6, truthful revelation of 6 by the buyer B
and the implementation of the above social choice function can be
achieved through the following Moore-Repullo (MR) mechanism:

(1) B announces either a “high” or “low” quality. If B
announces “high” then B pays S a price equal to 14
and the game stops.

(2) If B announces “low” and S does not “ challenge” B’s
announcement, then B pays a price equal to 10 and the
game stops.

(3) If S challenges B’s announcement then:

(a) B pays a fine F'=9 to T (a third party)

(b) B is offered the good for 6

(c) If B accepts the good then S receives F from T (and
also a payment of 6 from B) and the game stops.

(d) If B rejects at 3b then S pays F to T'

2
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(e) B and S each get the item with probability %

When the true value of the good is common knowledge be-
tween B and S, this mechanism yields truth-telling as the unique
subgame-perfect (and also sequential) equilibrium. To see this,
consider first the case 6 =6g. If B announces “high” then B pays 14
and we stop. If, however, B announces “low” then S will challenge
because at stage 3a, B pays 9 to T and, this cost being sunk, B will
still accept the good for price of 6 at stage 3b (since by rejecting he
will end up at stage 3e and get 1t = 7, but since the good is worth
14 he gets 14 —6=8 by accepting). Anticipating this, S knows
that if she challenges B, she will receive 9+6=15, which is
greater than 10 that she would receive if she did not challenge.
Moving back to stage 1, if B lies and announces “low” when the
true state is high, he gets 14 -9 —-6=—1, whereas he gets
14 — 14 =0 if he tells the truth, so truth telling is the unique equi-
librium here. Truth telling is also the unique equilibrium when
0=0r: in that case S will not challenge B when B (truthfully)
announces “low,” because now B will refuse the good at price 6
(accepting the good at 6 would yield surplus 10—6=4 to B
whereas by refusing the good and relying on the lottery which
assigns the item randomly instead B can secure a surplus equal to
% = 5). Anticipating this, S will not challenge B because doing so
would give her a net surplus equal to % — 9 = —4 which is less
than the payment of 10 she receives if she does not challenge B’s
announcement.

This mechanism (and more generally, the Moore-Repullo
mechanisms we describe in Section III) has two nice and important
properties. First, it yields unique implementation in subgame-
perfect equilibrium, that is, for any state of nature, there is a
unique subgame-perfect equilibrium which yields the right out-
come. Second, in each state, the unique subgame-perfect equilib-
rium is appealing from a behavioral point of view because it
involves telling the truth. In what follows, we show that both of
these properties fail once we introduce small information
perturbations.

II.C. The Failure of Truth Telling with Perturbed Beliefs
about Value

1. Pure Strategy Equilibria. As in the example above, we con-
tinue to suppose that the good has possible values 6 € {6y, 07} with
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0 =14 (the high state) and 97, =10 (the low state). However, we
now suppose that the players have imperfect information about 6.
Specifically, we suppose they have a common prior p, with
wOg)=1—a, w@)=o for some o € (0, 1), and that each player re-
ceives a draw from a signal structure with two possible signals s"
or s, where s” is a high signal that is associated with 6y, and s'is
a low signal associated with 6;,. We use the notation sp = s’4 % (resp
sg = s§) to refer to the event in which B receives the high signal s"
(resp. the low signal s“) and similarly we use the notation sg = st
(resp. sS = sg) to refer to the event in which S receives the high
signal s” (resp. the low signal s %). The following table shows the
joint probability distribution v* over 6, the buyer’s signal s, and
the seller’s signal sg:

£ h Jh h ot L oh Lol

v s st s, sg s, st s, 85
g | (l—a)(l—c—c?) | (1-a)e | (1—a)? (1 — a)e?
2 2
0r, ag? ag? ae a(l-e—¢?)
2 2

Note that for all ¢, the marginal probability distribution of v*
on 0 coincides with p, and that as ¢ converges to 0, v* assigns
probability converging to 1 to the signals being correct. Note
also that the buyer’s signal becomes infinitely more accurate
than the seller’s signal as ¢— 0. This special feature implies
that when deciding whether to challenge the buyer if S and B
were informed of both signals, and the signals disagree, they
will conclude that with high probability the state corresponds to
B’s signal.

We now show that there is no equilibrium in pure strategies
in which the buyer always reports truthfully. To simplify the
exposition of this example, we keep the payments under the per-
turbed mechanism the same as in the MR mechanism under
common knowledge of the previous subsection and assume that
B must participate in the mechanism. This is equivalent to
assuming that B’s participation constraint is slack, which in
turn can be arranged by a constant ex ante payment and so
does not influence the incentives for truth telling. By way of
contradiction, suppose there is a pure strategy equilibrium in
which B reports truthfully, and consider B’s play when sB=sg.
Then B believes that, regardless of what signal player S gets, the
expected value of the good is greater than 10. So B would like to
announce “low” if he expects that S will not challenge the
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announcement. If B does announces “low,” then in a fully reveal-
ing equilibrium, S will infer that B must have received the low
signal, that is, sg = s§. But under signal structure (x), S thinks
that B’s signal is much more likely to be correct, so S now believes
that there is a large probability that 6=06;; therefore S will not
challenge.

But then, at stage 1, anticipating that S will not challenge, B
will prefer to announce “low” when he receives the high signal sg.
Therefore, there does not exist a fully revealing equilibrium in
pure strategies and consequently, the above social choice function
can no longer be implemented through the above MR mechanism
in pure strategies.

2. Allowing for Mixed Strategies. The result that there are no
truthful equilibria in pure strategies leaves open the possibility
that there are mixed strategy equilibria in which the probability
of truthful announcement goes to 1 as ¢ goes to 0. This is close to
the way that the pure-strategy Stackelberg equilibrium can be
approximated by a mixed equilibrium of a “noisy commitment
game” (van Damme and Hurkens 1997). We show that this is
not the case under the signal structure (x).

Let of denote the probability that B announces “low” after
receiving the high signal s%, and let o} be the probability B
announces “high” after receiving the low signal sj, as in the fol-
lowing table:

High Low
h h h
sp | 1—-0p op
/ V4 /
sp op 1—-o0p

The corresponding mixing probabilities for player S are

Challenge | Don’t Challenge

h R h
8¢ 1—o% og
/ l /
Sy og 1—-o0g

Then for mixed strategy equilibria of the mechanism to con-
verge to the equilibrium under complete information where the
buyer announces the valuation truthfully, we should have
ag’h, o5’ afq’h, and o§" all converge to 0 as ¢ — 0. However, this is

not the case, as shown by the following
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ProposiTioN 1. Under the information perturbations correspond-
ing to (%), there is no sequence of equilibrium strategies og, 0§

such that O’gh, agz, ag’h, and ag’e all converge to 0 as ¢ — 0.

Proof of Proposition 1. Suppose to the contrary that there is a
sequence of equilibrium strategies op, og such that agh, o};", ag’h,
and ag’lall converge to 0 as ¢ — 0. In stage 1, the expected payoff of
player B who received the low signal s; and plays “High (H)”
tends to —4 while the expected payoff of player B who received
the low signal s§ and plays “Low (L)” tends to O (here, player
B makes use of the signal distribution (%) together with the
expectation that the seller’s strategies (rg:h and ag’z converge to
0 as ¢— 0, B believes with high probability that S does not
“Challenge”). Now, in stage 1, the expected payoff of player B
who received the high signal sg and plays “High (H)” tends to 0
while the expected payoff of player B who received the high signal
sg and plays “Low (L)” in the limit is below max {14 -6 —9,
7—9}=—1 (recall that B believes with high probability that S
chooses “Challenge”). So for ¢ small, there is no o that makes
player B indifferent between H and L, so player B plays in pure
strategies in Stage 1. As in the argument about pure-strategy
equilibrium, the fact that B’s signal is much more accurate
than S’s implies that such a strategy profile is not an
equilibrium. ]

This shows that one appealing property of the unique equi-
librium in the MR mechanism under common knowledge
(namely, a good equilibrium is a truthful one) can disappear
once we introduce small information perturbations. In the next
subsection we show the nonrobustness of another appealing prop-
erty of the MR mechanism under common knowledge: that it
uniquely implements any desired social choice function.

I1.D. Existence of Persistently Bad Sequential Equilibria

So far we have shown that truth telling is not a robust equi-
librium outcome of the MR mechanism when allowing for infor-
mation perturbations. But in fact one can go further and exhibit
arbitrarily small information perturbations for which the MR
mechanism also has a “bad equilibrium” where the buyer reports
“Low” regardless of his signal, which in turn leads to a sequential
equilibrium outcome that remains bounded away from the
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sequential (or subgame-perfect) equilibrium outcome under com-
plete information.

Consider the same MR mechanism as before, with the same
common prior W(@y)=1—a and udz)=0a, but with the following
perturbation v of signals about 0:

Ve s%, sg 5%, sg 5%, sg 5%, sé
Gek) [ O | (1 —a)(1—€2) | (1 —a)e? (1—a)e? (1—a)e?
3 3 3
0r, ag? ae ae a(l —e—¢?)
2 2

With this signal structure, both agents believe with high
probability that if they receive different signals, the signal cor-
responding to the low state is correct.

In what follows, we construct a sequential equilibrium of the
perturbed game with prior v* whose outcome differs substantially
from that with complete information.

Consider the following strategy profile of the game with prior
V¥, B announces “Low” regardless of his signal. If B has
announced “Low,” S does not challenge regardless of her signal.
Off the equilibrium path, that is, if B announced “Low” and S
subsequently challenged, then B always rejects S’s offer. These
are our candidate strategies for sequential equilibrium. To com-
plete the description of the candidate for sequential equilibrium,
we also have to assign beliefs over states and signals for each
signal of each player and any history of play. Before playing the
game but after receiving their private signals, agents’ beliefs are
given by v° conditioned on their private signals. Similarly, if S has
the opportunity to move (which in turn requires that B would
have played “Low”), we assume that her posterior beliefs are
based on V* together with her private signal. Finally, out of equi-
librium, if B is offered the good for price of 6 (which requires that
S will have challenged), we assume that B always believes with
probability 1 that the state is 07 and that S has received the low
signal s§.

So what we want to show is that for ¢ > 0 sufficiently small,
the strategy profile is sequentially rational given the beliefs we
just described and that, conversely, these beliefs are consistent
given the strategy profile. Here we check sequential rationality
(the basic intuition for the belief consistency part of the proof is
given in note 13). To establish sequential rationality, we solve the
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game backward. At stage 3, regardless of his signal, B believes
with probability 1 that the state is 6;,. Accepting S’s offer at price
of 6 generates 10—9—-6=-5 and rejecting it generates
5—9=—4. Thus, it is optimal for B to reject the offer. Moving
back to stage 2, if S chooses “Challenge,” S anticipates that
with probability 1, her offer at price of 6 will be rejected by B in
the next stage, thus S anticipates that as ¢ becomes small, the
payoff is approximately equal to 7 —9=—2 if her signal is high
(equal to sg) and to 5 — 9 = —4 if the signal is low (equal to s§). On
the contrary, if S chooses “Not Challenge,” S guarantees a payoff
of 10. Thus, regardless of her signal, it is optimal for S not to
challenge. Moving back to stage 1, B “knows” that S does not
challenge regardless of her signal. Now, suppose that B receives
the high signal sg. Then, as ¢ becomes small, B believes with high
probability that the true state is 6z so that his expected payoff
approximately results in 14 — 10 =4. This is larger than 0, which
B obtains when announcing “High.” Therefore, it is optimal for B
to announce “Low.” Obviously, this reasoning also shows that
when B has received the low signal sj, it is optimal for her to
announce “Low.”'?

As we will see in the next section, the fact that the MR mech-
anism cannot induce even approximate truth telling under infor-
mation perturbations is closely related to the fact that the social
choice function we tried to implement is not Maskin monotonic.
But before we turn to a more general analysis of the nonrobust-
ness of subgame-perfect implementation using MR mechanisms,
we review Maskin’s necessity result on Nash implementation,
and explain why the social choice function we try to implement
in this example is not Maskin monotonic.

13. To establish belief consistency, we need to find a sequence of totally mixed
strategies that converges toward the pure strategies described above and so that
beliefs obtained by Bayes’s rule along this sequence also converge toward the beliefs
describe above. It is easy to see that under any sequence of totally mixed strategies
converging toward the pure strategies, the induced sequence of beliefs about 6 will
converge toward v’ conditioned on private signals along the equilibrium path of the
pure-strategy equilibrium. When B is offered the good at price of 6, S has deviated
from the equilibrium path due to the “trembles.” Beliefs about 6 are then deter-
mined by the relative probability that S has trembled after the different signals. For
instance, if one chooses a sequence of totally mixed strategies under which it
becomes infinitely more likely that S has trembled after receiving s§ rather than
when receiving s’sl, then B will assign probability close to 1 to S receiving signal s§.
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II.LE. This Example Does Not Satisfy Maskin Monotonicity

1. Maskin’s Necessity Result on Nash Implementation. Recall
that a social choice function f on state space © is Maskin mono-
tonic if for all pair of states of nature (preference profiles) ¢’ and 6"
ifa=f1¢') and

@)

(i.e., no individual ranks a lower when moving from ¢’ to ¢”), then
a=f0"). Here u,(a; 6) denotes player i’s utility from outcome a
in state 6. A social choice function (SCF) f is said to be Nash
implementable if there exists a mechanism I'=(M, g) where
m=my,....,m,)eM=M;x...xM, denotes a strategy profile
and g: M — A is the outcome function (which maps strategies
into outcomes), and if for any 6 the Nash equilibrium outcome
of that mechanism in state 0 is precisely f{6). Then, Maskin (1999)
shows that if f is Nash implementable, it must be Maskin
monotonic.

Let us summarize the proof, which we refer to again later. By
way of contradiction, if f were not Maskin monotonic, then
there would exist 8 and ¢” such that for any player i and any
alternative b

ui(a; 0) = wib: )} < {G.b)

ui(a; 0") > u;(b; 6’”)}

(1) ui(f(©); 0) = ui(b; )=u;(f(6); 0") = ui(b; ")

and nevertheless f10') Af0"). But at the same time if f is Nash
implementable there exists a mechanism I'=(M, g) such that
f(0) =g(m},) for some Nash equilibrium m}, of the game I'(9).
By definition of Nash equilibrium, we must have

ui(f(0); 0) = ui(g(my); 0) = ui(g(m;, m=*; ,): 0), Vm,.
But then, from (1) we must also have
ui(f(0): 0") = ui(g(my); 0") = ui(g(m;, m*; ,): 0"), Vm,

so that f{¢') is also a Nash equilibrium outcome in state 6. But
then if the mechanism implements f, we must have f{0')=f(9"); a
contradiction.

2. The Social Choice Function in Our Example Is Not Maskin
Monotonic. It is easy to show that the social choice function in our
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Hart-Moore example is not Maskin monotonic. The set of social
outcomes (or alternatives) A is defined as:'*

A = {(q.y8.ys) € [0, 1] x R? such that yg +ys < 0},

where ¢ is the probability that the good is traded from S to B; yp,
ys are the transfers of B and S, respectively; and the utility func-
tions of the seller and the buyer are, respectively:

us(q.yB,ys: 0) =ys

and

up(q.yB.ys:0) =0q +yp.

The two states of the world are 6 and 67, which correspond
respectively to the good being of high and low quality. We have
just seen that if an SCF f under which trade occurs with prob-
ability 1 is Maskin monotonic, then we must have:

fOr) =f(OL).
The SCF we seek to implement requires that

fOr) = (1, -10, 10),
fOr) = (1, —14, 14).

Clearly f(01) #fl6g), but the buyer ranks outcome (1, —10, 10) at
least as high under 67, as under 0y, while the seller has the same
preferences in the two states. Thus, fis not Maskin monotonic, so
Maskin’s result implies that this fis not Nash implementable. It
is implementable by a MR mechanism under common knowledge,
but it is not implementable by this mechanism under information
perturbations.

Our analysis in the next two sections is motivated by
the following questions. (1) Is the nonexistence of truth-telling
equilibria in arbitrarily small information perturbations of the
above MR mechanism linked to the SCF f being non—Maskin
monotonic? (2) Is the existence of a sequence of bad sequential
equilibria in arbitrarily small information perturbations of the
above MR mechanism, directly linked to f being non—-Maskin
monotonic?

In Section III, we consider a more general version of the MR
mechanism and link the failure of MR mechanisms to implement

14. The sum yg +yp can be negative to allow for penalties paid to a third party.
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truth telling in equilibrium under information perturbations to
the lack of Maskin monotonicity of the corresponding SCF. Then
in Section IV, we consider any sequential mechanism that imple-
ments a non—Maskin monotonic SCF (and more generally, social
choice correspondences, SCC) under common knowledge, and
show that for an arbitrarily small information perturbation of
the game there exists a bad sequential equilibrium whose out-
come remains bounded away from the good equilibrium outcome
under common knowledge, even when the size of the perturbation
tends to zero.

III. MORE GENERAL MOORE-REPULLO MECHANISMS

Moore and Repullo (1988) consider a more general class of
extensive form mechanisms, which we shall refer to as “MR
mechanisms.” Under complete information, Moore and Repullo
(1988) consider environments where utilities are transferable
and show that truth telling is a unique subgame-perfect equilib-
rium in the MR mechanisms. Since this is the most hospitable
environment for subgame-perfect implementation, and because
most contracting settings are in economies with money, we focus
on it.

III.A. Setup

Let there be two players 1 and 2, whose preferences over a
social decision d €D are given by (01, 62) € ©®1 x @2=0 where
®; = {6}, ....0"} for each i=1, 2."° The players have utility
functions

ui((d, t1,t2); 61) = Ur(d; 61) — t1
and
uz((d, t1, t2); O2) = Us(d; O2) + 22,

where d is a collective decision, {1 and ¢, are monetary transfers.®
Preference characteristics (01, 62) are common knowledge be-
tween the two parties but not verifiable by a third party.

15. Moore and Repullo (1988) allow for an infinite state space butimpose bounds
on the utility functions.

16. Because we do not assume that the prior on © is a product measure, the
product structure of ©® = ®; x O, is not crucial to our results. To see this, note that
given any finite set of states of nature ® and utility functions z; : ©® x A — R for each
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Let f=(D, T4, T5) be an SCF where for each (01, 63) € © x Oy
the social decision is d=D(0;, 03) and the transfers are
(t1, t2) =(T'1(01, 62), T2(61, 62)).

Moore and Repullo (1988) propose the following class of
mechanisms. These mechanisms involve two phases, where
phase i is designed to elicit truthful revelation of 6;,. Each phase
in turn consists of three stages. The game begins with phase 1, in
which player 1 announces 6; and then carries on with phase 2 in
which player 2 announces 5. Phase 1 proceeds as follows:

(1) Player 1 announces a preference 6, and we proceed to
stage 2.

(2) If player 2 announces ¢; and ¢; =64, then phase 1 ends
and we proceed to phase 2. If player 2’s announcement
¢1 does not agree (i.e., ¢1#6;1) then player 2 “chal-
lenges” and we proceed to stage 3.

(3) Player 1 chooses between

{x; 2 + A}

and

{y?ty"‘A}!

where x =x(61, ¢1) and y=y(61, ¢1) depend on both 6; and ¢,
and A is a positive number suitably chosen (see below) and
(x, y, ty, t,) are such that

Ui(x; 61) —t. > Ui(y; 1) — t,

and

Ui(x; ¢1) — te < Ur(y; 1) — ¢y

If player 1 chooses {x; ¢, + A}, which proves player 2 wrong in
his challenge (in the Hart-Moore example, this corresponds to
the buyer refusing the offer at price 6), then player 1 pays
t1=t.+ A and player 2 receives t;=t,— A and a third party
receives 2A. However, if player 1 chooses {y; ¢,+ A}, which
confirms player 2’s challenge (in the Hart-Moore example,
this corresponds to the buyer taking up the offer at price 6),

player i, we can identify ©; with the collection of {u;(-, 6) }sco. Now, define
U;: 01 X Oy x A — R as follows: for 9; =u,(-, 6) we set u;(-, 0,) := u;(-, 9). This setting
is equivalent to the former one.
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then player 1 pays t;=t,+ A and player 2 receives o =%, + A.
The game ends here.

Phase 2 is the same as phase 1 with the roles of players 1 and
2 reversed (i.e., with player 2 announcing 65 in the first stage of
that second phase). We use the notation stage 1.2, for example, to
refer to phase 1, stage 2.

The Moore-Repullo argument applies as follows when the
state of nature 6 is common knowledge: If player 1 lies at stage
1.1, then player 2 will challenge, and at stage 1.3 player 1 will find
it optimal to choose {y; ¢, + A}. If A is sufficiently large, then at
stage 1, anticipating player 2’s subsequent challenge, player 1
will find it optimal to announce the truth and thereby implement
the SCF f. Moreover, player 2 will be happy with receiving ¢, + A.
If player 1 tells the truth at stage 1.1 then player 2 will not
challenge because she knows that player 1 will choose {x; ¢, + A}
at stage 1.3 which will cause player 2 to pay the fine of A.

III.B. Perturbing the Information Structure

We now show that this result does not hold for small pertur-
bations of the information structure of the following form: each
agent i =1, 2 receives a signal sf‘l where k and [/ are both integers
in {1,...,n}; the set of signals of player i is denoted S;. We assume
that the prior joint probability distribution 1v* over the product of
signal pairs and state of nature is such that, for each (%, I):

Vst sB ok 0h) = ek, Bh)[1 — & — €2
Gk % %)

Vst 56k, ) = not. o) for (ka. 1)) # (k.D)

V(s kel gk gy — (6%, 6h) ——— g forki#kor b #L,

where 1 is a complete information prior over states of nature and
signal pairs (i.e., a prior satisfying M(s}{l’ll, sgz’lz, 9? 912) = 0 when-
ever (k;, [;)#(k, I) for some player i). In these expressions, we
abuse notation and write: (6%, 65) for the marge(1)(6%, 65). This
corresponds to an information perturbation such that each player
i’s signal is much more informative about his own preferences
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than about those of the other player. Note that in an intuitive
sense the prior 1* is close to uwhen ¢ is small; this is also true in a
formal sense.'”

We begin by considering pure strategy equilibria. For this
purpose, we make use of the concept of strategy-proofness:

DeriniTiON 1. An SCF fis strategy-proof if for each player i and
each 0,

wi(f(0;,0-:), 6;) > wi(f (6}, 6-;), 6;) for all 6 and 6_;.

In other words, an SCF fis strategy-proof if telling the truth
is a weakly dominant strategy through a direct mechanism asso-
ciated with f whereby the players are asked to announce their
preference parameter. Strategy-proofness implies a weak version
of Maskin monotonicity, namely, that for any 0, ¢ such that

Vi € N and Vb € A\{f(0)} : ui(f(0); 6;) > u;(b; 6;)
= u;(f(0); 6;) > u;(b: 0,),

we have fl0)=f0).1® As a corollary, strategy-proofness also
implies the usual Maskin monotonicity condition when prefer-
ences over outcomes in f{®) are strict, where A{©®) denotes the
range of f.

17. For concreteness we specify the supremum-norm topology when discussing
the convergence of the priors. That is, let P denote the set of priors over ® x S with
the following metricd: P x P — R,: for any p, W' € P,

d(u, ')y = max |u(®,s) —'(6,s)|.
(0,5)eOxS

So, when we say * — p, we mean that d(V*, p) — 0 as k — co.

18. If f16) # (¥'), it must be that there is some player i and some 6_; such that
£6:,0_;) =1(;, 91,-) #£(0, 9:1-), and so in particular 6; # 6, . Hence, strategy-proof-
ness of f implies that for this player Ai, u; (f(6;,0-); 01-2 =u;(f(6;, é_i); 0;) >
wi(f(0;, 0—); ;) and wi(f(0;, 0-): 6;) = ui(f(0;, 6-), 6;) < wi(f (6}, 0-:); 6;), and setting
b =f(6;,0_;) yields the weak monotonicity condition. Finally, note that if prefer-
ences over outcomes in f{®) are strict, then w;(f(6;,0-;),6)) = u;(f(6;, 6:1-), o) <
u;(f (6, 6_7); 0;) and therefore the argument yields the usual Maskin monotonicity
condition. Our weak monotonicity is closely related to conditions proposed by
Dasgupta, Hammond, Maskin (1979). In that paper, strategy-proof SCFs are char-
acterized via the concept of “independent person-by-person monotonicity” which is
stronger than our condition of weak Maskin monotonicity.
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THEOREM 1. Suppose that a non-strategy-proof SCF f is imple-
mentable by an MR mechanism under complete information.
Fix any complete information prior u. There exists a se-
quence of priors {1°},. ¢ that converges to the complete infor-
mation prior u such that there is no pure equilibrium
strategies under which player 1 tells the truth in phase 1
and player 2 tells the truth in phase 2.

Proof of Theorem 1. Under the signal structure (x * x), if
player 2 sees that player 1’s announcement about 0, is differ-
ent from her signal, and she believes player 1 is reporting
“truthfully,” she disregards her own information on ®; and
follows player 1’s announcement (and symmetrically for
player 1 vis-a-vis player 2 regarding signals over ©y).

Now, suppose that f is not strategy-proof. Then there is a
player, say player 1, and states Hi‘, 9’{, 912 such that

ur(F(OF, 65); ) < ur(F (6%, 6h); O).

We claim that there is no pure strategy equilibrium in which
player 1 reports truthfully in phase 1 and player 2 reports
truthfully in phase 2. By way of contradiction, suppose there
is such an equilibrium, and suppose that player 1 gets signal
s}{’l and player 2 gets signal 3121,1 . Player 1 would like to
announce “6’{” if she expects that subsequent to such an
announcement, player 2 agrees with “9’{” as well and then
tells the truth in phase 2 so that the outcome is f(@'l‘,é)é).
But this is precisely what will happen: In a fully revealing
equilibrium, player 2 will infer that player 1 must have seen a
s}{’l-type signal, therefore player 2 will believe with high prob-
ability that the state must be (6%, 6,). Consequently, player 2
will not challenge player 1’s announcement. But then, antici-
pating this, player 1 will announce “9’{” and thereby receive
f ", 912) instead of f (9’11, 6*12). This in turn shows that there does
not exist a truthfully revealing equilibrium in pure
strategies. ]

Theorem 1 links the nonrobustness of the MR mechanism to
the failure of Maskin monotonicity of the SCF to be implemented.
For instance, in the Hart-Moore example in Section II, the SCF is
not Maskin monotonic and preferences over f{®) are strict, so the
SCF in that example is not strategy-proof.
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Note that the foregoing result does not preclude the existence
of mixed strategy equilibria where truth telling by one or two
players in each phase is robust to small information perturba-
tions. Moreover, the result provides a necessary condition for
the robustness of truth telling by player i in phase i, without
requiring truth telling by player j as well.

Next, we turn attention to mixed-strategy equilibrium. If we
require that both players tell (at least, approximately) the truth
in each of the two phases, then no SCF f=(D, T, T5) can be
implemented by the general MR mechanism in such a way that
truth telling by both players in each phase, is a sequential equili-
brium outcome which is robust to information perturbations.

More formally, in the Online Appendix we prove the
following.

THEOREM 2. Suppose that an SCF fis implementable by an MR
mechanism under complete information. Fix any complete
information prior u. There exists a sequence of priors {1v°},.¢
that converges to the complete information prior u such that
there is no sequence of sequential equilibrium strategy pro-
files that converges to truth telling.

Here is an intuition for why requiring approximate truth
telling by both players in each phase precludes robust implemen-
tation by the MR mechanism. Suppose that both players receive a
signal that is highly correlated with the true state. Player 1 plays
first in phase 1, so if player 1 announces a signal that is highly
correlated with some state 0, then player 2 (playing second in
phase 1) will believe that player 1 has told the truth (because
by assumption player 1’s announcement is close to truthful).
But the mechanism is built in such a way that player 2 never
wants to challenge player 1 if she thinks that player 1 is telling
the truth (otherwise at stage 3 player 2 will be punished), so
player 2, if she is not challenging, will also announce 6 and so
will not follow her private signal and thus she is not reporting
truthfully.

Let us make two remarks at this stage. First, the nonrobust-
ness of truth telling as a sequential equilibrium outcome of the
MR mechanism is of interest because truth telling is cognitively
simple, and also because the nonexistence of a truthful sequential
equilibrium implies the nonexistence of a desirable pure equili-
brium, and implementation theory has mainly focused on pure--
strategy equilibria. Second, neither of the nonrobustness results
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of this section rule out the possibility that some SCF f can be
implemented as the limit of mixed-strategy (nontruthful) sequen-
tial equilibrium outcomes.!® However, in the next section, we
show that if f is not Maskin monotonic but can be implemented
by the MR or by any other extensive form mechanism under
common knowledge, then there always exist arbitrarily small
information perturbations under which there also exist sequen-
tial equilibria with undesirable outcomes.

IV. ANY MECHANISM

In this section, we go beyond MR mechanisms and consider
the set of all extensive form mechanisms. Suppose a non—Maskin
monotonic SCF is implemented by a (not necessarily MR)
mechanism under complete information. Then, we show that
there always exists a “bad” sequential equilibrium in arbitrarily
small information perturbations of that mechanism. We begin by
presenting the argument in a nutshell, using the Hart-Moore
example to illustrate our point. Finally, we proceed to state and
establish a more general result that covers SCCs as well as SCFs.

IV.A. Overview of the Main Result

In this subsection we state the main result and provide the
reader with an intuition for the proof. The main idea is that intro-
ducing just a small amount of incomplete information markedly
enlarges the set of (sequential) beliefs that are consistent with
Bayesian rationality. As a result, one can turn an arbitrary Nash
equilibrium of an extensive form mechanism that implements a
non—Maskin monotonic SCF f under common knowledge into a
sequential equilibrium of the perturbed game.

More specifically, suppose there are n players, and each
player i has a state dependent utility function u;(a; 6) over out-
comes (or alternatives) a € A. In the perturbations we consider,
players do not observe the state of nature 6 directly, but are
informed about it through private signals. An extensive form
mechanism I' together with a state 6 € ® defines an extensive
form game I'(9); let SPE(I'(9)) denote the set of subgame-perfect
equilibria of the game I'(6). An SCF f'is said to be subgame-perfect

19. For conditions under which the unique subgame-perfect equilibrium out-
come of a perfect information game remains an equilibrium outcome in perturbed
games, see Takahashi and Tercieux (2011).
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implementable if there exists a mechanism I'=(M, g) such that
for each state 0, every subgame-perfect equilibrium outcome coin-
cides with f(0). Here is an informal statement of the main result.

1. Main Result. Assume finite state space and finite strategy
spaces.?’ Assume, further, that a mechanism I' subgame-perfect
implements a non-Maskin monotonic SCF f under complete
information. Then there exists a sequence of information pertur-
bations parametrized by some ¢ and a corresponding sequence of
sequential equilibria of the games induced by I' under this
sequence of perturbations, whose outcomes do not converge to
f(6) in some state 6 as ¢ — 0.

In particular, under the usual additional conditions where
Maskin monotonicity is sufficient for Nash implementation, this
result implies the following: whenever an SCF cannot be imple-
mented using static mechanisms (with Nash equilibrium as the
solution concept), there is no hope of implementing it using
sequential mechanisms if we want such mechanisms to be
robust to information perturbations.

2. Intuition for the Proof. Suppose that the SCF f is not
Maskin monotonic. Then, there exist ¢ and 0" such that for any
player i € N and any alternative b € A

(2) ui(f(0); 0) = ui(b; 0)=ui(f(0); 0") = ui(b; 0")

and nevertheless f10') Af0"). At the same time, since the exten-
sive form mechanism I' implements f, there exists a subgame-
perfect equilibrium (SPE) m, in state ¢ such that g(my) = f(¢').
But then using the same argument as in the proof of Maskin’s
theorem summarized in Section II, my is also a Nash equilibrium
in state ¢”, and necessarily a “bad” Nash equilibrium since
f(e/) 7£ ﬂ@//).

The remaining part of the proof follows from the fact that one
can use information perturbations to “rationalize” this bad Nash
equilibrium and turn it into a sequential equilibrium of the per-
turbed games, in the same way as the construction in Section II
showed the nonrobustness of the particular MR mechanism con-
sidered there.

20. In the Online Appendix we extend the result to the case of countable strat-
egy sets.
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As a concrete example, consider again the MR mechanism
studied in Section II. Under common knowledge of the state, it
is a Nash equilibrium for B to announce 6y, at stage 1 and for S to
never challenge at stage 2. However, this is a bad Nash equili-
brium and it is “not” a sequential equilibrium. In particular, if
stage 3 were to be reached under common knowledge, then B
would just infer that S deviated from the equilibrium, but
never update his beliefs about the true valuation 6 or about S’s
perception of 6.

However, perturbing the signals about 6 changes the picture
radically. Now, if stage 3 is reached, then B updates his beliefs
about which signal S might have seen. In particular, if B’s updat-
ing puts enough weight on S having received the low signal s§,
then B will not take the offer at price 6; then, anticipating this at
stage 2, S will indeed not challenge in equilibrium. Note that by
perturbing the signal structure we have enlarged the set of con-
sistent beliefs: under common knowledge it could not be a consis-
tent belief that S saw the low state 07, if B “knew” that the state
was 0y, but this can become consistent under the perturbation.
This is the key to how the perturbation turns a bad (non-sequen-
tial) Nash equilibrium of the game with complete information
into a sequential equilibrium in the perturbed game.

IV.B. A More Formal Statement of the Main Result

Now, we move from intuition and examples to the formal
statement of the result, and refer the reader to the Online
Appendix for the formal proof. In the first reading, the reader
can skip the rest of Section IV here and go directly to Section V
without losing much of the main idea.

1. The Environment. In what follows, we consider a more
general environment, with a finite set N={1,...,n} of players,
with n > 2, and a set A of social alternatives, or outcomes. From
now on, we no longer assume that agents have quasi-linear pre-
ferences with transferable money, as was needed for MR mechan-
isms. Each player i has a state-dependent utility function
u;:Ax©®—>R, where © is a finite set of states of nature.?!

21. One can always interpret a partition over © as corresponding to a particular
player i’s set of types ©;. Thus the set up considered in the previous sections is
indeed a special case of that analyzed in this section.
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Players do not observe the state directly but are informed of the
state via signals. Player 7’s signal set is S; which, for simplicity,
we identify with ©. A signal profile is an element
s=(s1,...,8,) €S =x;cnS;. When the realized signal profile is s,
each player i observes only his own signal s;. We let 1 denote the
prior probability over ® x S. We write u(-|s;) for the probability
measure over © x S conditional on s;. Let s be the signal profile in
which each player’s signal is 6. Complete information refers to the
environments in which p(6, s) =0 whenever s #s” (i will be then
referred to as a complete information prior). Under complete
information, the state, and hence the full profile of preferences,
is always common knowledge among players.

We assume for each i and 60, the marginal distribution on i’s
signals places strictly positive weight on each of i’s signals in
every state, that is, u(s?) = [margg u](s?) > 0, so that Bayes’s
rule is well defined. Note that in case u is a complete information
prior, this implies in particular that for each (6,
s e® xS, s’)>0.

An SCC is a set-valued mapping F :© = A. We have focused
on SCFs in the previous sections. In this section, we generalize
our arguments to encompass SCCs.

Since we consider more general extensive form mechanisms
than MR mechanisms, we need to introduce some notation. Most
of the notation used here is consistent with Moore and Repullo
(1988). The reader is referred to that paper for the definition and
notation of extensive form mechanisms. We restrict attention to
mechanisms that are multistage games with observed actions,
meaning at each history A, all players know the entire history
of the play, and if more than one player moves at A, they do so
simultaneously.??> We also assume that the mechanism has a
finite number of stages. The class of mechanisms we consider in
the present paper is exactly the same as the one Moore and
Repullo (1988) allowed. A mechanism is then an extensive game
form I'=(H, M, Z, g) where (1) H is the set of all histories; (2)
M=M;ix...xM,, M;=xpc;M;(h) for all i where M;(h) denotes
the set of available messages for i at history A; (3) Z describes
the history that immediately follows history A given that the
strategy profile m has been played; and (4) g is the outcome

22. This includes games of perfect information (sequential and observed moves)
as a special case.
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function that maps the set of terminal histories (denoted H7) into
the set of outcomes (A).

The following notation will be useful: An element of
Mh)=M1(h) x ... x M,(h), say m(h)=(my(h),...,m,(h)) is a mes-
sage profile at & while m;(h) is i’s message at h. If #M;(h) > 1 and
#M(h) > 1 then players i and j move simultaneously after history
h, whereas if #M,(h) > 1 and #M,(h) =1 for all j #i then player i is
the only one to move. Histories and messages are tied together by
the property that M(h)={m:(h, m) e H}. An element of M; is a
pure strategy; and an element of M is a pure strategy profile.

There is an initial history ¥ € H, and k, =: (3, m*, m?, ... ,m'™b)
is the history at the end of period ¢, where for each &, m* € M(h},).
Iffort > t+ 1, hy = (he,mt, ..., m'~1), then h, follows history h,.
As T contains finitely many stages, there is a set of terminal
histories?® HyCH such that Hy={h € H :there is no A’ following
h}. Given any strategy profile m and any history &, there is a
unique terminal history denoted by hz[m, h]. Formally, let
Z:M x H— H be the mapping where

(h,m(h)) if h¢ Hp
h otherwise.

Z[m, h] = {

is the history that immediately follows 2 whenever possible given
that strategy profile m has been played; and so Aplm,
h]=lim,_, .Z"*[m, k] where Z*[m, h]l = Z[m, Z*~'[m, hl]]. Finally,
the outcome function g : Hr — A specifies an outcome for each ter-
minal history. We also denote g(m; h) the outcome that obtains
when players use strategy profile m starting from history &, that
is, gm; h) =g(hylm, h]). In what follows, we only consider finite
mechanisms.

AssumptioN 1. M;(h) is finite for each i and A.

RemARK 1. This assumption is useful when using sequential equi-
librium and avoids technical complications due to the use of
countably infinite (or uncountable) spaces. In the Online
Appendix, we provide additional assumptions on the class
of mechanisms so that our result can be extended to count-
able message spaces. This extension is important because the
literature often uses integer games (i.e., games where one

23. Note that M(h)={m:(h, m) e H} =0 for any h € Hy.
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dimension of the message space is the set of positive integers)
as part of implementing mechanisms.?*

A mechanism I together with a state 6 € ® defines an exten-
sive game I'(0). A (pure strategy) Nash equilibrium for the com-
plete information game I'(9) is an element m* € M such that, for
each player i, u;(g(m*; 9)); 0) > u;(g((m;, m*,); ¥); 0) for all m; e M.
A (pure strategy) subgame-perfect equilibrium for the game
'@ is an element m*eM such that, for each player i,
ui(gm*; h); 0) > u;(g((m;, m*,); h); 0) for all m;eM; and all
heH\Hp. Recall that SPE(I'(9)) denotes the set of
subgame-perfect equilibria of the game I'(6) and NE(I'(9)) denotes
the set of Nash equilibria of the game I'(9). We say that a mech-
anism implements an SCC F in subgame-perfect equilibrium, or
simply SPE-implements F, if for each (4, s)e©® x S, we have
g(SPE(I(9));0) = F(6).

Given a prior u, the mechanism determines a Bayesian game
() in which each player’s type is his signal, and after observing
his signal, player i selects a (pure) strategy from the set M;. In
what follows, whenever players face uncertainty about the state
and other player’s signals, they possess a probabilistic belief over
this uncertainty and with respect to this belief, they aim to maxi-
mize expected utility.?> A strategy profile o =(o1,...,0,) lists a
strategy for each player i where o;:S; > M; and o;(h;, s;) is a mes-
sage in M;(h;) given history A, and signal s;. Alternatively, we will
sometimes let o; be a (mixed) behavior strategy, that is., a func-
tion that maps the set of possible histories and signals into the set
of probability distributions over messages: o;(-|h;, s;) € A(M;(h,))
is the probability distribution over M;(h,) given history A, and
signal s;.

With this notation in place we can restate the definition of
sequential equilibrium as specialized to these multistage games
of observed actions. A sequential equilibrium is a profile of as-
sessment (or beliefs) ¢ and strategies o that satisfy both

24. Our results do not critically depend on the countability assumption. We
believe that our results would hold for arbitrary mechanisms if we were to use
perfect Bayesian equilibrium (Fudenberg and Tirole 1991b) instead of sequential
equilibrium as the solution concept.

25. All the results extend to more general representations for preferences under
uncertainty. The interested reader is referred to Kunimoto and Tercieux (2009) for
details.

2102 ‘2 Jequisde uo seirelqi AisieAlun eiquiniod e /Bioseulnolpioxosby:dny wouy pepeojumoq


http://qje.oxfordjournals.org/

1870 QUARTERLY JOURNAL OF ECONOMICS

consistency and sequential rationality. Here consistency is the
requirement that there exists a sequence of totally mixed strategy
profiles o” converging to o such that the beliefs ¢" computed from
o" using Bayes’s rule converge to ¢. Sequential rationality means
that for each period ¢ and history 2' ! up to ¢ — 1, the continuation
strategies are optimal for each player i given the opponents’ stra-
tegies and his belief ¢;. A more formal definition of sequential
equilibrium can be found in the Online Appendix.

2. The Existence of a Bad Sequential Equilibrium with
Almost-Perfect Information. Although we already introduced
the definition of Maskin monotonicity for social choice functions
in Section II, we need to extend it to social choice correspond-
ences. A social choice correspondence F on a payoff relevant
state space ©® is Maskin monotonic if for all pair of states of
nature ¢ and 0" if a € F(¢') and

() {E.D)|uila: 0) > ui(b; 0)} € {0, b)|ui(a: 0") > ui(b; 0")}

(i.e., no individual ranks a lower when moving from 6’ to §”) then
a € F(0"). We are now in a position to provide a more formal state-
ment of our main theorem.

THEOREM 3. ASSUME ASSUMPTION 1. Suppose that a mechanism
SPE implements a non—Maskin monotonic SCC F and sup-
pose that A is a Hausdorff space®®. Fix any complete infor-
mation prior u. There exists a sequence of priors {V},. ¢ that
converges to a complete information prior © and a corres-
ponding sequence of sequential equilibrium assessments
and strategy profiles {(¢°, 6°)},-¢ such that as ¢ tends to 0,
g(o“(s”); W) — a ¢ F(0) for some 6 € © and some outcome a € A.

Proof. See Online Appendix. |

REMARK 2. The essence of the proofis to show by construction that
if a mechanism implements by subgame-perfect equilibrium
alternative a for state ¢, and if {(Z, b)|u;(a; 0') > u,(b; 0")} = {(i,
bua; ') >u,;(b; 0”)}, then there is a sequence of priors con-
verging to the complete-information prior and a correspond-
ing sequence of sequential equilibria of this mechanism such

26. That s, a topological space in which any two distinct points can be separated
by two disjoint open sets. For example, R*"n with the usual topology is a Hausdorff
space.
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that the conditional probability of a given 6" goes to 1. This
shows that whenever an SCC cannot be implementable using
a static mechanism due to the violation of Maskin monoton-
icity, this SCC cannot be implemented using an extensive
form mechanism that is robust to the introduction of a
small amount of incomplete information.

REMARK 3. While non—Maskin monotonic SCFs cannot be robustly
implemented, things are quite different for Maskin monotonic
SCF's. Here we restrict our focus to SCF’s rather than SCCs. In
the Online Appendix we extend the argument to the case of
SCCs.

What appears as a natural candidate for “robust implemen-
tation” of a SCF amounts to constructing a Nash implementable
mechanism with the following two properties: (1) there exists at
least one strict Nash equilibrium; and (2) the map from informa-
tion structures to Nash equilibria has a closed graph, so adding a
small amount of incomplete information only slightly increases
the set of Nash equilibria. In the Online Appendix, we formalize
these two properties and propose a definition of robust Nash
implementation.

To see this, note that the first property ensures that the strict
Nash equilibrium continues to be a strict (Bayesian) Nash equi-
librium for any nearby environment and hence that there is
always a good equilibrium for any nearby environment. The
second property in turn ensures that all Nash equilibria will con-
tinue to have outcomes that are close to the desired outcome for
any nearby environment.

Regarding the first property, the existence of a strict Nash
equilibrium in a mechanism that implements an SCF can easily
be ensured under a slight strengthening of Maskin monotonicity,
namely, strong Maskin monotonicity. In the Online Appendix, we
show that this is also the case for SCCs.

As to the second property, in many situations, Nash imple-
mentation of Maskin monotonic SCF's can be achieved using finite
mechanisms (see Saijo 1988). Routine arguments then imply that
the second property is satisfied.?”

27. This property comes from the following two facts. First, a small change in
the prior probability corresponds to a small change in ex ante payoffs. Second, the
pure Nash equilibrium correspondence is upper hemi continuous in the space of
payoffs.
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For the case of infinite mechanisms, the argument is rele-
gated to the Online Appendix, which provides sufficient condi-
tions under which one can ensure that properties (1) and (2) are
satisfied. There we take care of SCCs as well as SCFs. Interest-
ingly, these sufficient conditions are satisfied by any Maskin
monotonic SCF in quasi-linear environments with money.

V. OUTSIDE OPTIONS AND THE HOLD-UP PROBLEM

Thus far, we have shown that the mechanisms used by pro-
ponents of the “implementation critique” of the property right
theory of the firm (e.g., Maskin and Tirole 1999a) are themselves
not robust to small deviations from perfect information and
common knowledge. That leaves open the question of what role
outside options (e.g., as induced by asset ownership as in
Grossman and Hart 1986) can play in alleviating the hold-up
problem in situations that depart more significantly from com-
plete or just symmetric information.

As a first step in this direction, we consider an environment
with an ex ante investment stage and where ex post bargaining
takes place under one-sided asymmetric information. We present
an example where the presence of an outside option allows mech-
anisms that approximate ex ante efficiency. Moreover, we argue
that static or sequential mechanisms without an outside option
cannot do as well, which, in turn, we see as a justification for the
role of ownership allocation in contracting under incomplete
information.

V.A. The Set-up

Suppose there is a buyer (B) and a seller (S) of a single unit of
an indivisible object with utility ¢ to the buyer, where v € {v, v}
and v > v > 0. The utility of the seller for the object is assumed to
be always zero. Time is discrete, with a contracting period 0
where the good is offered to the buyer at a prespecified price, an
investment period % whereby the seller can increase the buyer’s
valuation for the good; and a trading period 1. Investment is
unobservable as in Grossman and Hart (1986). Moreover, we
allow for the possibility that an outside option can be exerted in
period 2 by one party if trade does not occur in period 1 and focus
attention on the case where the outside option yields utility v to
whoever has the good at that point. A natural interpretation is
that v is the value the buyer and the seller can generate in their
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relationship and v is the default value that can be generated out-
side of the relationship. The timing of the events is as follows:

t=0 t 1 t=1 t=2

~3
I I I I
| | | |

Contract Investment ¢ Trade specified by contract Outside option (if any)

The seller may make an investment in period % that increases
the probability that the good is high quality, as in Che and
Hausch (1999). Specifically, suppose that at cost c¢(i) the seller
achieves v = v with probability i, where c(-) is continuous, twice
differentiable, and satisfies ¢’(i) > 0, ¢/(z) > 0, ¢(0)=0, ¢'(1) =+ o0,
and ¢’(0) < v — v. The buyer will know the value of the good at the
beginning of period 1, while the seller will not, so there is one-
sided asymmetric information.

V.B. Outside Options as Ownership

One can relate the outside option to the idea of ownership by
taking the owner of the good to be the party with the right to
exercise the outside option. Thus, under seller ownership, if the
seller makes an offer to the buyer but the buyer refuses the offer,
then the seller can always choose to always exert his outside
option and gets v.

This interpretation as ownership is consistent with other
works in the property rights literature, starting with Grossman
and Hart (1986), where ownership of the assets of a firm allows
the owner to make alternative use of these assets in case of dis-
agreement in the ex post bargaining with the other party(ies).
This in turn enhances the owner’s ex post bargaining power,
and therefore it increases the fraction of the ex post production
surplus the owner can secure in this bargaining, which, in turn,
enhances the owner’s investment incentives. In our setting too,
ownership of the good will allow the seller to extract a higher
price from a high-valuation buyer, and anticipating this, the
seller will invest a higher i in the relationship. However, as we
will show, no mechanism (contract) without an outside option can
do as well as a contract with outside option to the seller in indu-
cing efficient investment by the seller in period %.28

28. Work in progress by Bester and Miinster (2012) makes a similar point about
the value of outside options in a closely related model of performance evaluation.
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V.C. Ex Ante Efficiency and Outside Options

Under our assumptions, the ex ante efficient outcome is to
trade whenever the good is high quality, consume the outside
option when the good is low quality,?® and set investment equal
to i*, where i*€(0, 1) is the solution to the following first-order
condition:

v—v=c@@").
The resulting total surplus is then
W*=i"0+A —i"v — c@).

We show how a mechanism with an outside option can come arbi-
trarily close to this payoff.

In this setting, a mechanism takes as input the buyer’s
announced value for the good, and specifies a trade probability
q, transfers ys and yg to the seller and buyer respectively, a
probability zg that the seller gets to keep the good if there is no
trade, a probability zz that the buyer gets the good in that
case, and therefore the probability 1 —zz —2zg5>0 that the good
is destroyed when it is not traded (the mechanism does not
specify an investment level, nor condition other outcomes on
it, as investment is not observable). Thus the mechanism
maps the buyer’s announcement 0 € {v,0} into A where
A ={(q.y8,¥5.28.25) €[0, 1] x R} | ys +y5 <0, zg +25 < 1}. In
what follows, we consider the case zg=1 (so that the seller gets
the outside option whenever there is no trade, regardless of the
buyer’s announcement), and therefore the mechanism boils down
to a mapping f(v) such that flv)=(q, ¥, ¥s) (when the buyer
announces v) and /() = (¢, ¥, ys) (wWhen the buyer announces 0).

Given that zg=1, for ¢ > 0 small enough, the mechanism that
implements (1, —(0 — €), v — ¢)) when the buyer announces valua-
tion v, and (0, 0, 0) when the buyer announces v satisfies incentive
compatibility (it is a strictly dominant strategy for the buyer to
report her valuation v truthfully), individual rationality, and ex
post efficiency, that is, trade occurs if and only if there are social
gains from trade.

Now suppose that the buyer and the seller agree on this
mechanism with the outside option v allocated to the seller at

29. From the viewpoint of social welfare it does not matter which party gets to
use the outside option.
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the contracting stage. Then, moving back to time ¢ = %, the seller
chooses the level of investment to maximize

i — &) + (1 — i) — c(i).

Given our assumptions, the optimal investment level i* (for ¢ > 0
small enough) is determined by the first-order condition:

v—e—v=c@".

From the concavity of the problem, this is approximately
the same as the first-best investment when ¢ is small. Thus, a
simple contract with seller’s ownership can exactly implement
an outcome whose total surplus is arbitrarily close to the first
best level; this is what we will mean by “approximate ex ante
efficiency.”

V.D. Ex Ante Efficiency Cannot Be Approximated without
Outside Options

As in the complete information case, a crucial question is:
what exactly can be achieved with contracts/mechanisms that
do not use outside options, so that zg=2z5=0? Below, we show
that under buyer’s private information, any “outside-option-
free” contract between the buyer and the seller leads to an out-
come that remains bounded away from ex ante efficiency.

First, note that if an SCF fthat maps the true buyer’s valua-
tion 0 onto a triplet f(0) = (¢, ¥B, ys), and yields zero continuation
utility to both parties if trade does not occur, is to be implemented
by some (static or sequential®®) mechanism in Bayesian Nash
equilibrium, it must be at least weakly incentive compatible for
the buyer to report truthfully. It is simple to show that fis incen-
tive compatible if and only if

(4) v(@—9q) <yp,—¥B=0(q—9).

Below we prove that one cannot find SCFs with zg=2z5=0
that are incentive compatible and approximately ex ante efficient.
To show this, suppose to the contrary that for any ¢ > 0 there is an
incentive compatible mechanism f* whose ex ante total surplus is
at least W* — ¢. Then, the associated probabilities i° of high quality

30. Approximate ex ante efficiency cannot be achieved by virtual implementa-
tion either, since incentive compatibility is also necessary for virtual implementa-
tion to work. But precisely we show that without outside options, one cannot find
SCF's that are both approximately ex ante efficient and incentive compatible.
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must converge to i, the probabilities of trade ¢ and ¢° must both
converge to 1, and the difference in transfers (i.e., money “burnt” )
lyg — 5l and |yg —yz| must both converge to 0. The incentive
compatibility condition (2) then implies that |y, —y3| — 0, and
this, plus the fact that both |yg —y%| and |y —y3| — 0, implies
that |yg —y5l— 0 as well.

Moving back to time ¢ = %, the seller will choose investment i
to maximize

iyg + (1 —i)yg — (i) = y5 +i(Fs —yg) — c@).

Because [yg — ygl— 0 and ¢’ > 0, the solution i® to this pro-
blem converges to 0, so investment falls far short of the first-best
level, which is not consistent with the assumption that the ex
ante total surplus converges to W*. We conclude that ex ante
surplus must be bounded away from efficiency.

This shows that in our example no approximately ex ante
efficient SCF can be implemented by a mechanism that does
not include an outside option (or some other change to the eco-
nomic environment).>! Because approximately efficient outcomes
can be implemented when outside options are available, and out-
side options can be interpreted as resulting from ownership allo-
cation, our results combined provide a justification for the role of
ownership allocation in contracting under incomplete
information.

V.E. Summary

Analyzing the hold-up problem in a setting with ex post
asymmetric information, as we have done in this section, yields
an interesting new insight: outside options such as those induced
by asset ownership can help relax incentive compatibility con-
straints and thereby improve ex ante efficiency compared to
what can be achieved through “ownership-free” contracts/
mechanisms.

31. Schmitz (2002) proves a related impossibility result in an example featuring
bilateral trade with only two possible investment levels; Bester and Kriahmer
(2012) extend this to the case where the seller’s action is observable but not
verifiable.
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VI. CONCLUDING REMARKS

We conclude by making a few additional remarks. First, the
bad sequential equilibria in Section IV survives a standard equi-
librium selection criterion. Cho (1987) defines forward induction
equilibrium, which is an extension of the Cho and Kreps (1987)
intuitive criterion in signaling games to more general games. The
key restriction in this equilibrium concept is that the belief
system assigns probability 0 to nodes in some information set &
if this node can be reached only by “bad” deviations, provided that
other nodes in & can be reached by nonbad deviations. Here, “bad
deviations” are deviations with the following property: suppose
that at any information set where the deviating player can reach
by deviating, players are playing best responses against some
arbitrary belief that is consistent with that information set
being reached. Then the deviation makes the deviating player
strictly worse off compared to his equilibrium payoff. In the
Hart-Moore example developed in Section II, we can show that
“Challenge” is never a bad deviation for the seller. To see this,
note that when deviating to “Challenge,” the seller may think
that an information set under which B believes that the state
0z may occur with positive probability. Thus we can always
pick an appropriate belief (for instance, one that would assign
probability 1 to 6z) under which it is a best reply for B to accept
S’s offer if S challenges. But we know that in such a case
“Challenge” by the seller makes her strictly better off compared
to the equilibrium, proving that “Challenge” cannot be a bad
deviation.

Our second remark is that the nonrobustness of subgame-
perfect implementation does not mean that implementation is
hopeless, but suggests that we should further explore the impli-
cations of Nash implementation. It is well known that in many
important contexts, Nash implementation (or Maskin monotoni-
city) is quite demanding. For instance, a well-known result by
Muller and Sattherthwaite (1977) states that any onto and ex
post efficient SCF defined on the domain of all strict preferences
is dictatorial when there are at least three outcomes. Maskin
(1999) shows that with only two players, this result extends to
SCCs. However, it has also been shown that under some mild
domain restrictions, for any SCF f, there is a stochastic social
choice function that puts probability close to one on the same
outcomes as [ and that is Maskin monotonic (see Abreu and Sen
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1991 and Matsushima 1988 for the details of this approach).??
Indeed, we saw that the SCF f we sought to implement in
this Hart-Moore example was not Maskin monotonic since
f6r,)=(1, —10, 10) #Af(6y) =(1, —14, 14), and therefore not Nash
implementable. However, the ¢-approximation of that SCF
defined by

f70L) = (1 —& —10,10) # f(On) = (1 — &, —14, 14),

is Maskin monotonic since for example, B strictly prefers (1 —e,
—10, 10) to (1, —10 —11¢, 10) when 0=60;, =10 but the reverse is
true when 6 =605 =14. Hence, even if f is not Maskin monotonic
and therefore not Nash implementable, we can find an ¢-close
stochastic SCF that is Maskin monotonic and therefore Nash
implementable for instance in the Moore and Repullo setting.®?
However, the stochastic nature of this mechanism is problematic
in terms of renegotiation-proofness. For example, if we consider
the SCF f*: with probability ¢, the planner must induce a bad
outcome under which trade does not occur.?* Given that there
are gains from trade, agents will definitely have incentives to
renegotiate. If this possibility is explicitly taken into account by
the contracting parties, then the SCF is not going to be Nash
implementable anymore. Thus, stochasticity (or randomness)
can help robustly implement nearby efficient SCFs but also
raises serious renegotiation-proofness issues.

Finally, we feel that laboratory experiments can be useful in
assessing the importance of the effect of information perturba-
tions on the likelihood that truth telling will still occur in

32. Here preferences are defined on lotteries over outcomes and agents are
assumed to be expected utility maximizers, so typically the restrictions to domains
of strict preferences in Muller and Satterthwaite (1977) or in Maskin (1999) are not
going to be satisfied.

33. Note that in the Moore-Repullo setting (i.e., with quasi-linear utilities and
arbitrary large transfers), for any SCF f, we have the existence of a bad outcome
(i.e., an outcome which, in each state of nature, is strictly worse for all players than
any outcome in the range of the social choice function). In addition, because for each
agent, there is no most preferred outcome, f also satisfies no-veto-power. Thus by
Moore and Repullo (1990, Corollary 3, p. 1094) fis Nash implementable if and only if
fis Maskin monotonic. The stochastic approximation of f can therefore be imple-
mented with a canonical Maskin mechanism, although since the mechanism uses
integer games it is less appealing than the simple MR mechanism.

34. Renegotiation is less problematic in the case of “exact” Nash implementa-
tion since renegotiation then only occurs out of equilibrium.
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equilibrium. Preliminary work by Aghion et al. (2009) suggests
that the effect is potentially large.®®
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An Online Appendix for this article can be found at QJE
online (gje.oxfordjournals.org).
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