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Abstract. We consider auction design in a setting with costly preference elicitation. Well
designed auctions can help to avoid unnecessary elicitation while determining efficient al-
locations. Careful design can also lead to more efficient outcomes when elicitation is too
costly to permit perfect allocative efficiency. An incremental revelation principle is developed
and used to motivate the role of proxied and indirect auction designs. Proxy agents, situated
between bidders and an auction, can be used to maintain partial information about bidder
preferences, to compute equilibrium bidding strategies based on the available information,
and to elicit additional preference information as required. We derive information-theoretic
elicitation policies for proxy agents under a simple model of costly elicitation across different
auction designs. An experimental analysis demonstrates that indirect mechanisms, such as
ascending-price auctions, can achieve better allocative efficiency with less preference elicita-
tion than sealed-bid (direct) auctions because they promote better decisions about preference
elicitation.

Keywords: computational mechanism design, incremental revelation principle, meta-deliberation,
proxy agents, preference elicitation.

1. Introduction

As traditional commerce moves on-line and more business transactions are
completed in electronic market places there will be an opportunity for agent-
mediated transactions, with software agents responsible for dynamic nego-
tiation between multiple, fluidly changing, market participants [17, 49]. The
success or failure of agent-mediated electronic commerce will depend in large
part on the trust that can be placed in agent mediation, which will in turn
depend on the level of optimality that can be provided by agents, and thus
on the computational complexity of the decision problem facing agents. It
is this back drop that suggests that one important role of market design is to
design simple worlds that can be effectively populated by automated software
agents.

Faster optimization technology can scale to clear large and complex winner-
determination problems [28] and bidding languages can be designed to allow
for useful expressiveness [35]. Some markets can even be designed with
simple dominant-strategy equilibrium [1, 29]. But, the Achilles heel of elec-
tronic markets, the part most resistant to simplification, may be the problem�
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of preference elicitation. Bidding agents can only bid on behalf of market
participants if they are well-informed about a bidder’s valuation for different
allocations. Yet, bidders often find it costly, or even impossible, to provide
precise and complete information about their preferences.

The London bus route auction presents a good example of the issues sur-
rounding preference elicitation [5]. With thousands of routes it was unrea-
sonable to expect a prospective bus operator to bid her operating cost for
all possible combinations of routes. Rather, the London transportation au-
thority chose to implement a multi-round auction to give bidders the chance
to refine their bids in the light of feedback about bids from other potential
operators. The auction design allowed participants to bid effectively without
exact information about their own costs for all routes.

Thus, while agent-mediated electronic markets with automated clearing
engines remove many of the transaction costs associated with traditional mar-
kets and enable substantial new possibilities for scale and aggregation, elec-
tronic markets also serve to bring the problem of preference elicitation to
the fore. We consider the role of auction design in mitigating this problem
of costly preference elicitation. Although market design cannot simplify the
underlying valuation problem facing a bidder (for instance, the scheduling
problem facing a supplier of logistics in a transportation setting [47]), a well-
designed market can provide feedback to guide a bidder towards the part of
the good space on which she is likely to be most competitive.

It is instructive to compare the elicitation properties of a sealed-bid auction
with those of an ascending-price auction. Suppose that truthful bidding is a
dominant strategy in the sealed-bid auction, and that straightforward bidding,
in which an agent bids for the bundle of goods that maximizes utility at the
current prices, is an equilibrium bidding strategy in the ascending-price auc-
tion. Clearly, an automated bidding agent in a sealed-bid auction will require
complete and exact information about the bidder’s valuation to follow the
optimal (equilibrium) bidding strategy. In comparison, an automated bidding
agent in an ascending-price auction only needs enough information on the
bidder’s valuation (for example bounds on her value for different bundles of
goods) to compute a best-response to the current prices.

This paper provides a theoretical framework in which to study the pref-
erence elicitation properties of auction mechanisms. We define the family
of incremental-revelation mechanisms (IRMs), and prove via a revelation
principle that it is without loss of generality to focus on these mechanisms
even in settings with costly preference elicitation. The bidding language in
an IRM allows a bidder to refine information about her value for different
outcomes during an auction, but restricts a bidder to make only direct claims
about her value. For instance, a bidder can state “my value for bundle ��� is
at least $100”, but cannot bid directly for the bundle at current prices. The
revelation principle also serves to motivate the role of proxy agents, that sit
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between bidders and an auction and maintain a partial model of a bidder’s
preferences.

We illustrate, with a simple model of costly preference elicitation, that
proxied and indirect mechanisms can achieve better allocative efficiency with
less preference elicitation than sealed-bid (direct) mechanisms. As an ex-
emplar of the class of IRMs, this provides new motivation for proxied and
ascending auctions [41], demonstrating that they have efficiency advantages
over sealed-bid auctions because they promote better decisions about pref-
erence elicitation. Price feedback guides bidders to the part of the allocation
space on which they are likely to be most competitive, given current bids from
other bidders.

Preference elicitation is modeled by assuming that bidders can provide
bounds on their values for items, and refine these bounds at some cost. In
a simple posted-price setting we can derive optimal elicitation and bidding
policies, that elicit the right amount of information on a bidders value, making
a tradeoff between the cost of queries and the possibility of avoiding mistakes
by having better value information. Our approach considers the expected
value of information, and builds on that proposed by Russell & Wefald [45]
for meta-deliberation by bounded-rational computational agents. In moving
to even simple dynamic auctions, with strategic interactions with other agents,
a full game-theoretic equilibrium analysis of the combined elicitation and
bidding policies is not possible given current techniques and computational
methods. Rather, we develop heuristic elicitation and bidding policies for
proxied and indirect auctions for multi-item allocation problems.

Finally, we present an experimental analysis to compare the allocative
efficiency and cost of preference elicitation across different auction designs,
given this model of elicitation. In Section 4, we consider a single-item al-
location problem and a model in which bidders incur a cost � for each
query. Indirect auctions, with incremental revelation, are shown to implement
efficient outcomes with less elicitation cost, and to extend to problems in
which sealed-bid auctions fail. In Section 5, we consider a multi-item (non-
combinatorial) allocation problem and a model in which each bidder has a
budget limit on the number of queries she will perform. Again, proxied and
indirect auctions are shown to dominate sealed-bid and posted-price auctions
in terms of allocative efficiency and elicitation properties. We conclude with
a discussion of related work and suggest a number of directions for future
research.

2. Incremental Revelation Mechanisms

In this section, we introduce a formal model in which to study the perfor-
mance of allocation mechanisms in problems with costly preference elici-
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tation. We introduce a variation on the revelation principle, that identifies
the role of incremental-revelation mechanisms (IRMs) in settings with costly
preference elicitation. The strategy space in an IRM restricts a bidder to mak-
ing statements about her value for goods, and allows a bidder to refine this
information during an auction. The incremental revelation principle serves to
highlight the role of proxy-based auction design.

We also define first-best and second-best proxy strategies. In the first-best
model, a proxy will assume that the cost of elicitation, while non-negligible
(so that elicitation is best avoided if possible) is small enough that a bidder
will always be willing to provide information when it can lead to a more
accurate bidding strategy. On the other hand, a second-best proxy strategy is
one in which a proxy must sometimes bid despite some residual uncertainty
about the bidding strategy, because the additional cost of elicitation is not
thought justified given the expected value of information.

2.1. PRELIMINARIES: MECHANISM DESIGN

Mechanism design (MD) [20] studies the question of how to implement an
outcome with desired properties, such as allocative efficiency, in settings
with multiple self-interested agents each with private information about their
valuations. Game theory is used to study the properties of mechanisms. Mech-
anism design embodies a careful separation between the protocol itself, which
is under the control of the mechanism designer, and the agent strategies,
which are assumed to be out of the designer’s control. The second-price
sealed-bid, or Vickrey [52] auction, is an example of a simple mechanism.
Truthful bidding is a dominant strategy in the Vickrey auction, and the auction
is said to be strategyproof.

Formally, mechanism design considers a set of choices, � , and a set of
agents, � . Let 	 denote the number of agents. Each agent, 
 , has a type,�
�������

, which defines its valuation, � ����������������� across choices
� � � .

In an auction setting, the choice
�

can define both the allocation of goods
and the payments made by agents. The system-wide goal is represented with
a social choice function (SCF), ! " �$#&% '('(')%*�,+ - � , that selects
choice ! ���.� given type vector

�/�0�
, where

��1��$#2%3'('('4%5�,+
is the joint

type space. allocative efficiency is a typical goal in an auction setting, with
SCF ! defined to select the allocation that maximizes the total value across
all agents.

A mechanism, 6 17�98:#;�('('(';�<8=+>�@?A� , defines a set of feasible strategies,8B�
, for each agent, and an outcome rule,

? " 8,#/%C'('('D%�8=+ - � ,
from strategies to a choice. Mechanism 6 is said to implement SCF ! if
outcome ! ���E�0� � is selected in equilibrium, for all types. Formally, we
have

?F�HGJI # ���K#L�<�('('('���GJI+ ���M+N���,1 ! ���E� , for all
�O�P�

, where
GMI

is an equilib-
rium strategy in the game induced by mechanism 6 . Equilibrium solution
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concepts adopted in MD include: Bayesian-Nash equilibrium, in which each
agent’s strategy is a best-response in expectation to the strategies of the other
agents; and dominant strategy equilibrium, in which each agent’s strategy is
a best-response whatever the strategies and private valuations of other agents.

A simple class of mechanisms are the incentive-compatible direct-revelation
mechanisms (DRMs). In a DRM the strategy spaces,

8Q�
, are simply equal to

agent type spaces,
� �

, and the outcome rule,
? " �R- � , selects a choice

based on reported types. A DRM is said to be incentive-compatible when
truth-revelation is an equilibrium strategy, and

G I� ���
�H�D1S���
for every agent. It

follows that the SCF implemented in an incentive-compatible DRM is simply
the outcome rule, with ! 1 ? .
2.2. FAILURE OF THE REVELATION PRINCIPLE WITH COSTLY

PREFERENCES

In the absence of computational considerations and without costly preference
elicitation, the revelation principle can be used to simplify the mechanism
design problem. The revelation principle [15, 16], states that the outcome
of any arbitrarily complex mechanism can be implemented as an incentive-
compatible DRM. The intuition behind the revelation principle is simple to
state. Given an arbitrary mechanism, 6UT , we can construct an incentive-
compatible DRM, 6 , that asks agents to report their types and commits to
simulating the entire system for the original mechanism, both the equilibrium
bidding strategies and the rules of the mechanism. As long as 6 implements
the equilibrium strategy profile in 6UT , then every agent should report its true
type.1

Under classical assumptions, the revelation principle provides a useful
simplification to theoretical mechanism design. It can be used both to prove
negative results, and also to define incentive-compatible payment rules. How-
ever, the revelation principle ignores computational costs [26, 37, 10]. Con-
sider the following two computational disadvantages of DRMs:

1. All computation (e.g. winner-determination, payments) is centralized in a
DRM, while an indirect mechanism can distribute computation to agents.
For instance, agents in an ascending-price combinatorial auction must
compute the bundle of goods that is a best-response to prices in each
round. The combination of the iterative auction with straightforward agent
bidding strategies can be viewed as a (decentralized) primal-dual algo-
rithm for solving the underlying allocation problem [34, 40, 12].

2. Truthful bidding, which is an equilibrium in the incentive-compatible
DRMs of the revelation principle, requires that every agent know its com-

1 For instance, the Vickrey auction, or second-price sealed bid auction, is the equivalent
direct-revelation mechanism to the ascending-price English auction.
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plete and exact valuation for all possible (combinations of) goods. This
can be infeasible when preference elicitation is costly. In comparison,
an indirect mechanism can implement the same outcome as the DRM
without agents revealing or even computing their exact valuations for all
outcomes.

We focus here on the second effect, that of the role of indirect mechanisms
in mitigating the cost of preference elicitation. Preference elicitation is not a
concern within classic microeconomic theory, where it is standard to assume
that every agent can state (at no cost) its value for all possible outcomes [31].

2.3. AN INCREMENTAL REVELATION PRINCIPLE

We now define the family of incremental revelation mechanisms, and prove
that this space of mechanisms is the appropriate generalization of DRMs to
settings with costly preference elicitation.

To develop a revelation principle that is meaningful with costly preference
elicitation we introduce an additional requirement to the definition of the
equivalence of a pair of mechanisms:

Mechanisms 6 and 6 T are equivalent in settings with costly prefer-
ence elicitation if they implement the same outcome in equilibrium and
require the same information revelation by agents.

One way to think about this is that we bring the amount of preference
elicitation into the definition of the “outcome” of a mechanism, so that two
mechanisms are equivalent if they make the same choice in the world and
also perform the same elicitation.

In order to define the information revelation in a mechanism, we must
make explicit the message space in the protocol that is used to implement a
mechanism. Let V denote the message space, and W �@�HG.���E���X� V I denote the
sequence of messages sent by agent 
 in mechanism 6 given strategy profileG.���E�Y1Z�HG # ��� # �<�('('('��[G + ��� + ���

.

Definition 1. The information revelation in mechanism 6 1Z�98>#;�('('(';�<82+��@?A�
by agent 
 , given type

� �
, types

�K\ � 1]��� # �('('('��^� � \ # �^� �`_a# �('('('��^� + �
, and given

equilibrium strategy profile
G[I

, is defined as:bdc;eFf� ���
�g�^� \ �9�h1ji�� T� "NW ���HG I� ��� T� �<��G I \ � ��� \ �H���h1 W �@�HG I� �����k�<��G I \ � ��� \ �H���<�^� T� �0���gl
In words, the information revealed by agent 
 for a particular instantiation

of the mechanisms is that the agent identifies itself as one of a set of possible
types

bdc;e f� ���E�
. These are all the types that would send the same messages in

equilibrium. We can write,
bdc;e f ���E�21m� bdc;e f # ��� # �^�K\ # �<� bdc;e fn ��� n �^�K\ n �<�('('('��bdc;e f+ ���M+,�^� \ +N����oC�

, to denote the joint information revealed by agents in
a mechanism, given types

�
.
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Following Parkes [38], let a query language, p , define a set of preference
queries q � p . A query, q " �:�*- r[sut

, is a mapping from the possible
types of agent 
 to a subset of types. Response, q �Kv���9�Bo ��� to query q makes
the claim that the agent’s type is within the set q �Kv���9� .2 For instance, a query
language might ask “is your value for the good at least w ?” An agent that
wishes to claim that � �Nx w should response “yes” and an agent that wishes
to claim that � �Yy w should respond “no.”3

A response to a query is truthful if
�[�)� q �
v�
�H� , where

�
�
is the agent’s type

and
v�
�

is the type adopted in providing a response. A sequence of responses,z # �('('(';� zE{ , to queries, q # �('('('
� q { , is said to be valid if the intersection, z #a|'('(' | z {�}1�~ . This requires that there is some type that is consistent with the
agent’s response to every query.

Incremental-revelation mechanisms (IRMs) relax the standard notion of
a DRM. In an IRM, an agent’s strategy defines the information that it will
reveal in response to a query that can be more expressive than the standard
“what is your type?” query of DRMs. The outcome rule of an IRM is defined
to allow an outcome to be selected before the exact type of agents has been
pinned down.

Definition 2 (incremental revelation mechanisms). An incremental revela-
tion mechanism 6 1Z� p � y ?��)�@?��0��� defines:

1. A strategy space
8=�

with strategy � �B1�G��@���
�H�>�*8B� defining a response� �@�H���^�[�Qo��:� to each query
�
, given history of queries

��1]���E#(�^� n �('('('�� ,
with
���,� p .

2. A query rule,
?�� " 8�#�%S'('('h% 8=+ - r[s

, that determines the
type information

?��)�HG.���E���Xo��
revealed by agents given query strategiesG.���E�Y1Z�HG�#
����#<�<�('('('���GJ+>���M+:���

.

3. A choice rule,
? � " r[s�- � , that defines a choice

? � �H���>� � for
each possible subset of types

�mo �
.

A query strategy,
G
�@���
�9���m8B�

, defines how an agent will respond to a
query given a history of previous queries. Of course, a strategy is only valid
if � �(��� � �@�H���E���^�<��� }1�~ for all sequences of queries

�
of length � , with� �E�

denoting the first � queries in
�

and
� �

the � th query. Query rule,
? �

,
determines the final information revealed about types,

?A�)�HG.���E���>oU�
, given

strategies
G
. In a realization of an IRM, the query rule can (and should)

be history-dependent, with queries chosen adaptively, given the response by
agents to previous queries. Choice rule,

?.�
, defines the final outcome, so that

2 Given message space � , then message ����� sent by agent � has an interpretation��  �.¡d¢D£u¤¦¥ t given query ¢ .
3 Note that we choose to exclude stochastic queries, that provide probabilistic information

about an agent’s type.
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8 Parkes?��&�§?[�¨�HGE���.�����B� � is the choice when agents follow strategy
G

and have type�
.

An IRM is said to implement SCF ! ���E�©1C?.�ª�§?M�Y�HG
I[���.����� , for all
���«�

,
when

G I
is an equilibrium strategy profile. Borrowing terminology from that

of DRMs, we say an IRM is incentive-compatible, or truthful, when
�K�¬�� �@�H���^�[� , in equilibrium profile, � �­1SG I� ���
�H� , for all

�
�
, all bidders 
 , and every

history of queries
�¦1Z��� # �^� n �('('('�� , and every

�ª� p .
Just as with DRMs, the precise equilibrium solution concept will depend

on the model of agents but could (for example) be Bayesian-Nash equilibrium
if agents have a distributional model of the types of other agents and play an
expected-utility maximizing best-response, or ex post Nash equilibrium if the
same strategy is an equilibrium whatever the types of other agents as long as
they play an equilibrium strategy.

We can now state a revelation principle for IRMs that respects the prefer-
ence elicitation properties of a mechanism. Consider some mechanism 6®T ,
and let W�¯� �HG I� �����9�<��G I \ � ��� \ �9���Q� V denote the ° ’th message sent by agent 
 to
the mechanism given strategy profile

G�I
and types

�
.

Theorem 1 (incremental revelation principle). Any SCF, ! ���.� , that can be
implemented in the equilibrium of some mechanism, 6 T 1��98N#(�('('('��<82+,�@?A� ,
with costly preference elicitation, can be implemented in a truthful equilib-
rium of an IRM, 6 1±� p � y ?��a�@?����N� , and with the same information
revelation.

Proof. Let
�HGMI # �('('(';��GJI+ �

denote an equilibrium in 6 for which
?F�HG�I[���E���²1! ���E� . We construct an IRM, 6 , by simulating 6 T internally, and with a

“proxy agent” playing strategy
G�I�

for each agent. The proxy agents execute
queries on demand, to refine their information about an agent’s type when
additional information is required to determine the equilibrium strategy

G.I
for an agent. Concretely, construct the following IRM:

1. Query Language, p . Consider step ° , when message W ¯� �HGJI� �����9�<��G
I \ � ��� \ �H���=�V is sent by agent 
 to the center in 6 T . Let W #(�('('('
� W�³ � V denote the
range of message correspondence, WY¯� , for different types

� �
. Then p must

contain a query that asks the agent to place its type into a set � from setsi
�¦#(�('('('
��� ³ l , such that W­¯� �HG I� ��� T� �<��G I \ � ��� \ �9���D1 W � for all
� T� �0��� . The

IRM language must include a query of this kind for all type profiles,
�
,

all agents, and all steps ° .
2. Query rule,

? � �HG.���E���h1 b§c;e f²´ �HG I ���.���
, because the IRM mechanism, 6 ,

will execute any query, q � p , that is required to simulate strategy profileG I
(but only those queries).

3. Choice rule,
? � �H���=1 ! ��� T � , some

� T �«�µoj� when ! ���E� is the same
choice for all

�«���
, and

?K�ª�H���&1·¶
(the null choice) otherwise. By

construction, this null choice will only occur out of equilibrium.
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By construction, if agents reveal truthful information in response to queries
then mechanism 6 will simulate strategy

G I
in mechanism 6 T and terminate

with outcome
?K�ª�§?M�Y�HGE���.������1¸?[�ª� bdc;e f ´ �HGJI[���E������1 ! ���E� , where ! ���E� is

constant for all
�

in
bdc;e f ´ �HG I ���E���

because ! ���E�X1C?F�HG I ���E��� and by the defi-
nition of the information set,

b§c;e
. Finally, to see that a truthful query strategy

is an equilibrium in IRM 6 , assume agents }1 
 are truthful. Strategy
G.I�

was
a best-response for agent 
 in 6 T (including a consideration of the cost of
refining its beliefs about its type), and agent 
 should respond truthfully so
that its proxy agent plays the same strategy within the simulated mechanism.
In pursuing its truthful strategy every agent will undertake the same cost in
refining its type (and responding to elicitation) as was required to determine
its strategy in mechanism 6 T . ¹º

The proof of this incremental form of the revelation principle assumes
that IRM 6 can simulate equilibrium bidding strategy

G I
in 6 T . Here, we

implicitly assume that the center in IRM 6 can solve the same meta-level
problem that agents must solve to determine the equilibrium in 6 T . For in-
stance, the mechanism needs information about the cost for queries and a
model for the new information received in performing a query, so that it can
make an appropriate tradeoff between this cost and the expected utility from
being able to make a more informed decision about how to bid. The easiest
way to justify this step is to consider an initial stage in which every agent
reports its “meta type”, i.e. information about its preference elicitation model,
to the mechanism. This is valid under the following assumption.

Definition 3 (Meta-level assumption). It is costless for a bidder to provide
her model for preference elicitation, for instance the cost to perform different
types of queries and a distribution on the responses to each query, in an initial
step of an incremental revelation mechanism.

We believe that the meta-level assumption is much more justifiable than
the classic assumption that the type information itself can be provided by a
bidder at no cost. For instance, it seems reasonable that London bus operators
can describe the process by which they will respond to queries about cost
and provide an idea of: a) the cost of this process; b) a model for the likely
response to each query.

2.4. AN INFORMATIONAL HIERARCHY

The formal definition of the information revelation,
bdc;e f ���E�

, of mechanism6 suggests a partial order across outcome-equivalent mechanisms. Mecha-
nism 6 # informationally-dominates mechanism 6 n if the two mechanisms
implement the same outcome in equilibrium, and

b§c�e f�» ���E��¼ bdc;e f�½ ���E�
for

all
�3�¾�

, and
bdc;e f�» ��� T �>¿ bdc;e f�½ ��� T � for some

� T �¾� . (Recall that more
types in an information set implies less revelation).

amai.tex; 2/08/2004; 11:26; p.9
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The following (trivial) lemma observes that DRMs can never informationally-
dominate any other mechanism (although there can be settings in which they
are worst-case optimal) [36].

Lemma 1. The information revelation in an incentive-compatible DRM, 6 ,
is
b§c;e f ���E�¨1S�

.

Proof. Trivial, since there is a bijection between messages sent by agents to
the mechanism and the type of an agent. ¹º

Similarly, the following lemma notes the correspondence between the def-
inition of a query rule in an IRM and the information-revelation in the IRM.

Lemma 2. The information revelation in a truthful IRM is
b§c�e f ���E�¨1 ?[�Y�HG I ���E���

,
for truthful strategy profile

G[I
.

The extended example in Section 2.6 illustrates that a second-price staged
auction can implement an efficient allocation without complete information
revelation, and thus informationally-dominates a second-price sealed-bid (Vick-
rey) auction.

2.5. FIRST-BEST AND SECOND-BEST PROXIED AND INDIRECT

MECHANISMS

The incremental revelation principle suggests a class of proxied and indirect
mechanisms, with proxy agents that maintain partial information about bidder
valuations and query bidders when the cost of elicitation is outweighed by the
expected utility of bidding with improved value information. Indeed, eBay4

auctions already require that bidders use proxy agents. eBay provides proxy
agents that accept a lower-bound on a bidder’s value for an item (also thought
of as an upper-bound on the maximum that a proxy will bid for an item).
Proxy agents bid in an ascending price auction, up to these bounds, and then
prompt a bidder to refine her lower bound (upwards) whenever she is not the
current winner.

The proxy mechanisms we have in mind are a little more sophisticated,
in that they will also determine how many times to query a bidder, and on
which items. This is not a problem in current eBay auctions (which are almost
always for a single item), but will prove important in scaling agent-mediated
electronic markets to settings with thousands or millions of goods. Thus,
a proxy agent’s strategy in an IRM combines both elicitation and bidding.
In defining this strategy it is important to distinguish between first-best and
second-best models.

First best. The cost of elicitation, while non-negligible (so that elicitation
is best avoided if possible) is small enough that a bidder will always

4 www.ebay.com
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Costly Preference Elicitation 11

be willing to provide information when it can lead to a more accurate
bidding strategy. Proxy agents follow the same bidding strategy as they
would follow with complete value information.

Second best. Elicitation is costly enough that a proxy must sometimes bid
despite some residual uncertainty about the bidding strategy, because
the additional cost of elicitation is not justified given the expected value
of this information in improving the proxy’s bid.

When proxy agents play first-best strategies the goal is to design auctions
that implement a desired social choice function (e.g. allocative efficiency)
with minimal elicitation. However, there will be many settings in which even
minimal elicitation is too costly and the goal of auction design is instead to
best approximate a desired social choice function given a model of costly elic-
itation. This is the second-best model. The incremental revelation principle
holds in both first-best and second-best models.

In equilibrium, a second-best proxy strategy defines an elicitation action
or bidding action for all possible states of a mechanism, and forms a best-
response to the combined elicitation and bidding strategies of the other agents.
Unfortunately, a full game-theoretic analysis for this second-best problem ap-
pears beyond the scope of current methods (either analytic or computational),
even for simple auctions such as an ascending-price auction for a single item.5

We will instead adopt heuristics to model second-best proxy strategies in the
experimental analysis later in the paper.

2.6. EXTENDED EXAMPLE

To understand the preference elicitation advantage that a proxied and indi-
rect mechanism can enjoy over a direct mechanism consider a single-item
allocation problem with three bidders, with values � #�1ZÀÁ� � n 1�Â.� �[Ã 1ÅÄ;r
respectively. Suppose the bidders have determined the following bounds on
their values:

Bidder 1: � # �«ÆÇr.�<È�É
Bidder 2: � n 1ÊÂ
Bidder 3: ��Ã �«ÆËÄ[ÄM�;Ä;Ì
É

5 Larson and Sandholm [25] have been able to perform some limited analysis of the com-
bined deliberation and bidding strategy of agents in simple auctions, but stopped short of
deriving a full equilibrium (except in a stylized setting with two deliberation actions and a
sealed-bid auction [24]). Compte & Jehiel [7, 8] and Rezende [43] derive equilibrium strate-
gies, but only for simple models in which agents can refine beliefs at most once. In fact,
computing equilibrium in infinite strategy games (such as auctions) is a topic of current AI
research [42].
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Now, consider the following two auctions, that we will populate with proxy
agents to convert into IRMs. We define the first-best bidding and elicitation
strategy for a proxy in each auction (i.e., with a proxy that performs queries
until it can follow the bidding strategy that is in equilibrium with complete
value information).

Second-price sealed-bid auction (Vickrey). Each agent must submit a sin-
gle bid. The item will be sold the highest bidder for the second-highest
bid price.

First-best Proxy Strategy. Query the bidder for her exact value and the
bid this value in the auction.

Staged second-price auction An agent can increase its bid during the auc-
tion. The auction maintains an ask price equal to the current second-
highest bid price and a new bid is valid as long as the bid price is at
least the current ask price. The auction terminates when no new bids are
received, with the item sold to the highest bidder for the second-highest
bid price.

First-best Proxy Strategy. Whenever the agent is not the current winner,
ask the bidder to refine her lower and upper bounds on value until a) the
lower-bound is greater than the current ask price, or b) the upper-bound
is less than the current ask price. In case a), the proxy agent will bid this
new lower bound. In case b), the proxy agent will leave the auction.6

The staged second-price auction can be formally mapped to the definition6 1Í� p � y ?M�a�@?[�Í�N� of an IRM. Query language, p , defines questions of
the form: “refine bounds on value so that at least one of the following holds: i)
your lower-bound is above the current price; ii) your upper-bound is below the
current price.” A valid query strategy must be consistent, requiring the bidder
tighten her bounds during the auction. An example (truthful) query strategy,G������
�k�

, might be “increase my lower bound to between price and value when
price is less than value, and decrease my upper bound to between price and
value when price is greater than value.” The query rule,

?A�
, defined in 6

can be constructed by supposing that in quiescence the mechanism selects
a (losing) proxy at random and asks it to “bid or leave.” At this point the
proxy will query its bidder. New bids will advance the state of the auction,
perhaps triggering further bids, until the auction returns to quiescence. This
process will terminate when only one agent’s lower-bound is above the price.

6 Bidding at some price between the ask price and the bidder’s true value whenever the ask
price is less than the value, and leaving the auction otherwise, is an ex post Nash equilibrium
(i.e. a best-response as long as other agents also follow this strategy, whatever their values).
To see this notice that the direct-revelation form of the auction is strategically equivalent to
the Vickrey auction.
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Costly Preference Elicitation 13

Thus, the final type information revealed by bidders will be bounds
Æ � � � É , s.t.

there is a single proxy (representing the winner) with a lower bound above
the upper bound of the other proxies, and another proxy (representing the
second-highest bidder) with exact value information. Finally, the choice rule?��

will allocate the item to the bidder with the highest lower-bound at the
final ask price.

In our example, the proxy agents have enough information to bid the price
up to

Â:ÎPÏ
in the staged auction, for some small

Ï>�ÊÐ
. At this point, proxy

agents acting for bidders 1 and 2 will drop out of the auction, leaving bidder
3 to win the item for $8. Neither bidder 1 or bidder 3 needed to know, or
report, their exact value to the proxy. In comparison, the proxy agents in the
sealed-bid auction must perform additional queries to implement their first-
best equilibrium strategy. Thus, we see that the staged second-price auction
informationally-dominates the Vickrey auction.

Briefly, we can also consider how a second-best proxy strategy would dif-
fer from this first-best strategy in the second-price staged auction. A second-
best proxy might simply stop bidding even though the current price is less
than its upper bound (and without performing additional elicitation). Simi-
larly, a second-best proxy might continue to bid without additional elicitation
even though the current price is greater than its lower-bound. In both cases,
this would suggest that the cost of an additional query is greater than the
expected loss in utility from following a suboptimal bidding strategy. We see
examples of this kind of analysis in the next section.

3. Modeling Costly Preference Elicitation

To further illustrate the issue of costly preference elicitation and its impact
on auction design we will adopt a simple model of of preference elicitation.
We consider proxy agents that sit between bidders and an auction, and must
determine when, and for which item, to ask a bidder to refine its value. Our
analysis considers both single item and multiple item allocation problems,
and a variety of different IRM designs. For instance, we determine an optimal
(second-best) elicitation and bidding strategy for a proxy agent in a single
item posted price auction. We are forced to make some simplifying assump-
tions to approximate an optimal (second-best) proxy strategy in sealed bid
and ascending price auctions.

We adopt the analysis of meta-deliberation proposed by Russell & Wefald
[45] for resource-bounded computational agents. The key observation is that
additional information about preferences can only be useful to a proxy if it is
possible that the information might change an agent’s bid. For costly prefer-
ence elicitation, this requires computing the expected utility of an additional
query and comparing this with the cost of elicitation. For budget-limited
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preference elicitation, at least with a myopic strategy, this suggests continued
preference elicitation while within the budget and while the expected utility
of additional information remains positive. An interesting effect of costly
preference elicitation is that a proxy agent may accept a posted price even
when the price is between its bounds on value, because the cost of additional
elicitation cannot be justified.

The auction designs are all fairly standard. We define posted-price (PP),
ascending-price (AP) and sealed bid (SB) auctions, for both the single item
and multi-item allocation problems. One novelty is in the method adopted
in the ascending-price auctions to prompt agents to either submit a new bid
or leave the auction. This ensures progress in the auction, and is a form of
activity rule [32]. In addition, each auction is augmented with mandatory
proxy agents that maintain bounds on bidder valuations. It is these proxy
agents that make the auctions IRMs. The PP and AP auctions are designed
to allow proxy agents to follow first-best bidding strategies without complete
value information, and to enable effective second-best bidding strategies.

3.1. MODEL DETAILS

In our model, proxy agents maintain a lower- and upper-bound on a bidder’s
value for an item. In a single item allocation problem, we denote lower- and
upper-bounds on an agent’s value as

Æ � � � � �ÑÉ , and
�$�21 � �YÒ � � denotes the

current uncertainty about a bidder’s true value. The true value is assumed
uniformly distributed in this range. With multiple items � �OÓ , we denote the
bounds on item � as

Æ � �Ô� � � �Ô� É .
We consider queries of the form “refine your lower- and upper-bounds,”

with a parameterized model for the cost of a query and for its effect on value
bounds. In the model, a query response reduces the current uncertainty by a
multiplicative factor,

Ð y�Õ y Ä
, so that the new bounds are

Õ �¦�
apart, and

the mean of the new bounds is uniformly distributed, Ö � � � Î Õ � � �H× r.� � � ÒÕ � �ª� × r��
, after � queries. The upper and lower limits on this distribution

ensure that the new bounds are tighter than the current bounds. We refer to�@Ä=Ò Õ �
as the effectiveness of the query. We consider two basic variations in

formalizing the cost of elicitation to a bidder:

Costly Each response to a query incurs a fixed cost, � �¾Ð , to the bidder.

Budget-limited Each bidder will perform a fixed number, � �¾Ð , of queries.

The use of both lower- and upper-bounds can be considered a gener-
alization of the lower-bounds on value used within eBay’s proxy bidding
system.7 Upper-bound information provides negative evidence, and allows

7 Recall that eBay users provide a lower-bound on value, up to which the eBay proxy
will bid for the user in an ascending-price auction. Often people think of this as an “upper-
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Costly Preference Elicitation 15

a proxy agent to better focus elicitation on items for which the bidder is com-
petitive. Moreover, in settings such as logistics, in which auctions are used
to determine transportation solutions for moving goods in a supply chain,
local valuation problems can be formulated and solved as optimization prob-
lems [47, 6]. Standard methods, such as A* search with admissible heuristics
and linear programming-based branch-and-bound maintain lower and upper
bounds on the value of the optimal solution.

Many aspects of costly preference elicitation only become apparent with
multiple items, and we consider both single-item and multi-item allocation
problems.8 In the multi-item setting, � �Ô��xUÐ denotes the value for an agent
on item � , if this item is provided in isolation. The value for a bundle of goods
is defined for two different models:

Additive Each bidder has a valuation � ���9Øh�31ÚÙ �;ÛMÜ � �Ô� for each bundleØ¾o Ó
.

Unit-demand Each bidder has a valuation � ���9Øh��1�Ý/ÞJß��(Û[Ü � �Ç� for each
bundle

Øào Ó
.

We first consider costly elicitation and single-item auctions, and then move
to budget-limited elicitation and multi-item auctions.

3.2. COSTLY ELICITATION AND SINGLE-ITEM ALLOCATION

For each of posted price, ascending price, and sealed bid auctions we define
the auction rules and describe a second-best proxy strategy.

3.2.1. Posted Price (single item)
Auction Design. Choose a fixed price, w , and offer the price to each agent
in turn as a take-it-or-leave-it offer, with agents selected in a random
order. The item is sold to the first agent (if any) that accepts the price.

First-best Proxy Strategy. Accept the price if w y � � . Reject otherwise.

Now consider the second-best proxy strategy, in which the proxy agent
must determine whether to continue to query the bidder or make a decision
about whether or not to accept the item.

First, we define the optimal bidding strategy for an agent with valuation
bounds,

Æ � � � � �dÉ , that believes that the true value is uniformly distributed be-
tween these bounds and will do no further elicitation. We assume that agents

bound” on the price a user will pay for the item but it corresponds with a lower bound in our
framework.

8 Specifically, with budget-limited elicitation an optimal proxy strategy in a single-item
setting is to execute all queries, whatever the auction design. The elicitation problem is more
interesting when the proxy must decide which items to query.
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are risk neutral, with utility � �EÒ w for buying an item with value � � at price w .
Then, the agent should accept the item at price w if and only if

� � � Î � �9� × r/x w .
Let á denote the current information a proxy has about the valuation (i.e.

bounds on value), and let á ' q � denote the information after an additional� queries (of course, this will be a random variable before the queries are
executed). Let â Iã denote the optimal bid given state á , and let â Iã4ä å�æ denote
the optimal bid after � queries. Let ç ã � � â Iã � denote the expected utility of the
optimal bid given information á , computed as:

ç ã � � â Iã �¨1éè w ÒP� � � Î � �9� × r , if
� � � Î � �H� × r�x wÐ

, otherwise

Now, consider the expected utility from performing an additional � queries.
An agent can only estimate this utility because there is uncertainty about how
a bidder will respond to a query, and also about the bidder’s true value. The
estimate of this expected utility, vç �@� q � � , is defined with respect to the query
model, as the estimated increase in utility from � queries minus the cost of
elicitation: vç � � q � �¨1 vç ã4ä å æ� � â Iã4ä å�æ �YÒ vç ãêä å æ� � â Iã �YÒ �0�
where vç ãêä å æ� � â Iã4ä å�æ � is the expected utility from the optimal bid given in-
formation á ' q � , computed with respect to a model of the response of a
bidder to the queries. The expected utility from the current bid, â Iã , is also
estimated with respect to the model of the proxy’s information about the
value for the item once it has performed � more steps of elicitation. As
noted in Russell and Wefald [45], this is important to ensure that additional
information is always evaluated with positive utility. Otherwise we could have
“surprises” when we find that the value of the item is much less than we had
assumed when evaluating the expected utility from the current decision given
the current model á .

We derive an analytic expression for vç ��� q � � , in terms of elicitation pa-
rameters,

Õ � � , price, w , and the current bounds on value. An optimal elicita-
tion strategy for the proxy agent is to request additional value information
whenever vç � � q � �S�ëÐ for some � �±Ð

. (Notice that we drop the so-
called meta-greedy assumption in Russell and Wefald [45] and the proxy will
consider the effect of � steps.)

Clearly, if � �=ì w or � � x w then there is no possible response to queries
that will change the optimal bid and â Iã4ä å�æ 1 â Iã , for all q � , and vç ��� q � �h1Ò �0� . So, the interesting case is when � � y w y � � . In this case, the utility
of elicitation depends on the difference between the price, w , and the mean,v� ��1Z� � � Î � � × r of the bounds. It is useful to define:í �­1 r�$�[î w Ò v� � î
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Costly Preference Elicitation 17

This value of í is between 0 and 1, because � � y w y � � . By symmetry, it
is sufficient to consider the subcase, v� �²ì w y � � . In this case, the current
optimal bid is to reject the price, and elicitation is useful when it changes this
decision, to accept.

Given our model of elicitation (defined in Section 3.1), after a sequence
of � queries the mean value is distributed uniformly, according to Ö � � � ÎÕ � � �9× r.� � � Ò Õ � � �H× r�� where

�@Ä>Ò Õ �
is the elicitation effectiveness and�ª�a1 � �uÒ � � . Define � IJ� Õ � � � as the smallest number of queries for which� �­Ò Õ � �ª� × r0� w . Solving, and with substitution � �aÒ w 1®�$�­Ò�� w Ò v� �H� ,

we have: � I � Õ � í �©1ðï
ñóò[ô �@Ä2Ò í �ñóò[ô � Õ �öõ �
and because the current decision is to reject the price and vç ãêä å æ� � â Iã �²1ÅÐ ,
then the expected utility from elicitation by � x � I � Õ � í � steps, is:

vç �@� â I÷ æ �h1 ø t
\4ù æ)ú¨û nü
ýø tÑþAÿ

� v� �FÒ w ��ª���@Ä2Ò Õ � ��� v� �FÒ�Ð,Ò �0�
1 � � �FÒ Õ � �$� × r,Ò w � nr[�ª���@Ä2Ò Õ � � Ò �0�
1 �ª���@Ä2Ò í Ò Õ � � nÂÁ�@Ä2Ò Õ � � Ò �0�

The limits on the integral arise because the expected value after � queries
is distributed according to Ö � � � Î Õ � � �H× r.� � � Ò Õ � � �H× r�� , and the agent will
accept the price if the new mean is greater than the price.

Putting everything together, the expected utility to the proxy agent for an
additional � queries, is defined as:

vç ����� � �¨1 � ú t�� # \��[\4ù æ	� ½
 � # \4ù æ � Ò �0� , if � x � IM� Õ � í �Ò �0� , otherwise.

A quick analysis of the comparative statics of this expression shows that� vç ����� � � ×�� í y Ð , � vç �@��� � � ×�� � ��Ð , when w 1 v� � , � vç �^��� � � ×��êÕÅy Ð ,
when w 1 v� � , and

� vç �^��� � � ×�� � y Ð , i.e. preference elicitation is more
useful as the price gets closer to an agent’s expected value (because it is more
likely to change an agent’s bid), as the uncertainty increases, as effectiveness
increases, and as cost decreases.

For a particular uncertainty,
���

, and
� Õ � � � , it can be useful to compute

elicitation bounds. These bounds,
Æ 
 � � 
��dÉ

, define the range on prices (perhaps
empty) for which the proxy should elicit additional value information before
making a decision about whether or not to buy the item. The bounds are
centered on an agent’s current estimated value, v� � , and computed in terms of
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the smallest
��I�

for which vç ����� � �0�µÐ for some � � Ð . When no such�
exists, then


.�:1�
 � 1 v� � and the proxy should choose not to elicit any
information for any ask price. Otherwise,


 � 1 v� ��Î²�/I� × r and

 � 1 v� �<Ò:��I� × r .

Example
Consider a bidder with

Õ 17ÐA' Ì
and � 1éÐA'ÔÐ�Ì , and a proxy facing a price,w 1�Ì and with value bounds (a) [4,7], (b) [3,8], and (c) [4.5, 5.3]. The

expected value is 5.5 in case (a) and case (b), and the elicitation bounds
are [5.05,5.95] and [4.5,6.5] respectively. The proxy should accept the price
without elicitation in case (a), but ask for additional information in case (b).
The elicitation bounds are [4.9,4.9] in case (c), indicating that there is no price
for which the proxy should request additional information. Given its expected
value of 4.9, the proxy rejects the price.

In summary, the combined elicitation and bidding strategy of a proxy
agent in the posted price auction, is to execute preference elicitation queries
while the price is within elicitation bounds

Æ 
 � � 
��§É
, and finally buy the item if

the price is less than v� � and reject the offer otherwise.

3.2.2. Ascending Price (single item)
Auction Design. The auction maintains an ask price, equal to the

Ï��®Ð
above the highest bid. The highest bidder is the provisional winner, at its
bid price. A list of active bidders is maintained, with all agents initially
active. In a period of quiescence, with no bids received for a fixed period
of time, then the auction picks (at random) one of the agents not winning
and asks the agent to improve its bid or leave the auction. The auction
terminates when there is only one active agent, which wins at its final bid
price.

First-best Proxy Strategy. Bid while the ask price is less than value, � � ,
and not winning. Leave the auction when the ask price is greater than
value.

Now consider the second-best proxy strategy. The preference elicitation
problem facing a proxy agent in an ascending price auction is more diffi-
cult than in a posted price auction because of price dynamics. For example,
while it might be worthwhile to elicit additional information before bidding
at the current ask price, if a proxy agent believes that the price will increase
further— perhaps to above its upper-bound on value —then the proxy would
be better not to query the bidder. A further complication is that a model of
price dynamics requires a model of the other bidders.

It is beyond the reach of current game-theoretic analysis to determine
the equilibrium, for both elicitation and bidding, in this setting. Instead, we
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define a heuristic second-best proxy strategy. We assume that proxy agents
will determine whether or not to execute queries only when prompted by the
auction to bid or leave the auction. Moreover, at this time we assume that the
proxy agents act myopically and assume that the current price faced in the
auction will be the final price.

We make the following assumptions in modeling proxy agent behavior:

A1 Proxy agents only elicit value information from bidders when prompted
by the auction to submit a new bid or leave. At that time, proxy agents
are myopic and assume the current price is fixed.

A2 Proxy agents will bid whenever the price is less than their lower elicita-
tion bound


 �
.

A3 Proxy agents will leave the auction whenever the price is above their
upper elicitation bound,


 �
.

We deviate from a game-theoretic analysis in assumptions (A1) and (A2).
The agent bids when it knows it would rather take the current price than
query the bidder (A2), even when this might help another agent. The agent
queries the bidder when the current price is such that its expected utility
from querying is positive (A1), even though prices might increase further.
Assumption (A3) is justified because the ask price is increasing and will
always be greater than the upper elicitation bound. As a special case, when
the elicitation bounds


 � 1 
K�
then the proxy agent will bid while the price is

less than its belief about expected value, and leave the auction once the price
is greater than its expected value.

3.2.3. Sealed Bid (single item)
Auction Design. Each agent submits a sealed bid, and the item is sold to
the highest bidder for the second-highest bid price.

First-best Proxy Strategy. Bid true value, � � .
Now consider the second-best proxy strategy. In the sealed-bid auction, the

amount of preference elicitation that a proxy agent should perform depends
on the distribution over second price that the proxy will face, which in turn
depends on the bids by other agents, which in turn depends on the amount of
preference elicitation performed by other agents. Again, we have a complex
game-theoretic problem, beyond the limits of current game-theoretic analysis.

We choose to compute an upper-bound on the number of queries per-
formed in a (symmetric) pure Nash equilibrium. We assume that each proxy
agent will execute the same number of queries,

�
, and use a computational

method to determine the maximal number of queries,
���	���

, that can be in an
economy with positive expected utility to each agent. Monte Carlo analysis
is used to determine

���	���
. For each level of

�
, we:
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Do � times:
– sample the value distribution
– perform

�
queries of each bidder

– determine the final set of agent bounds
– determine the outcome of the auction and expected utility

The number of queries,
� �	���

, depends on the number of agents, the query
effectiveness

�@Ä�Ò Õ �
, and the query cost, � . In summary, the combined

preference elicitation and bidding strategy of a proxy agent in the sealed-
bid auction is to execute

���	���
queries and submit a bid equal to its final belief

about the bidder’s expected value.

3.3. BUDGET-LIMITED ELICITATION AND ADDITIVE VALUES

Budget-limited preference elicitation is interesting in problems with multiple
items because the proxy must determine when to query the bidder, and which
item(s) to query the bidder about. Again, we describe a posted price, ascend-
ing, and sealed-bid auction, and derive heuristic second-best proxy strategies.
We assume a lower-bound on uncertainty,

� ����� �SÐ
, that is assumed to cor-

respond with exact information. When the proxy has bounds with uncertainty�ª�Ô�²ìÊ� �����
the proxy considers this exact information and has no value for

continued queries on the value of that item.

3.3.1. Posted Price (additive)
Auction Design. Choose a fixed price, w . Run the single-item posted-price
auction for each item in parallel, with the same price w in each auction
and agents selected in a different (random) order for each item.

First-best Proxy Strategy. When offered an item, � , buy the item if w y � �Ô�
and reject the offer otherwise.

Now consider the second-best proxy strategy. The bidding strategy, given
bounds on the value of items and no further elicitation is to buy any item
offered that has price below the proxy’s belief about the expected value of the
item. We model a proxy’s elicitation strategy as follows:

1. Maintain a set of items with uncertainty,
���Ô�&� � �����

, and for which the
price is between the valuation bounds.

2. While this set is non-empty and the number of queries executed is less
than the elicitation budget, � , choose an item at random from the set and
perform a query.
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3.3.2. Ascending Price (additive)
Auction Design. Run the ascending price auction for each item separately,
with each auction running in parallel and closing at the same time, when
there is only one active agent in each auction.

First-best Proxy Strategy. For each item, bid while the ask price on that
item is less than value and while the agent is not winning. Leave the
auction on that item when the price is greater than value.

Now consider the second-best proxy strategy. The bidding strategy, given
bounds on valuation and no further elicitation is to bid on any item with
price less than the expected value that the proxy is not currently winning. In
addition, the proxy will always bid on an item that is priced below � �Ô� . As a
heuristic elicitation strategy, we model a proxy that only executes elicitation
queries on an item when prompted by that auction to submit a new bid or
leave. At this point the proxy acts as though the price is a posted price and
performs a query on this item until the current price is outside of its valuation
bounds (or until

� �Ô� ìP�������
). When its budget is exhausted the proxy adopts

expected values v� �Ô� to guide its bidding strategy.

3.3.3. Sealed Bid (additive)
Auction Design. Run the single-item sealed-bid auction for each item in
parallel, with each auction closing at the same time.

First-best Proxy Strategy. For each item � , bid � �Ô� in the corresponding
auction.

Now consider the second-best proxy strategy. The optimal bidding strat-
egy, given no further elicitation, is to bid the expected value on each item.
Notice that a query on an item � with

���Ô�*�¸� �����
has positive expected

utility during the elicitation phase because it is possible that the highest bid
from another agent will have a value between the item’s current bounds. With
this in mind, we model a proxy agent’s elicitation strategy as follows:

1. Maintain a set of items with uncertainty,
���Ô���P� �����

.

2. While this set is non-empty and the number of queries executed is less
than elicitation budget, � , choose an item at random from the set and
perform a query.

Once an agent has exhausted its elicitation budget, or the value is known
on all items, then it bids the expected value for each item.

3.4. BUDGET-LIMITED ELICITATION AND UNIT DEMAND

Finally, we consider the multi-item allocation problem with unit-demand val-
uations, such that each bidder wants at most one item.
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3.4.1. Posted Price (unit-demand)
Auction Design. Choose a fixed price, w , and maintain a set of unsold
items,

Ó T o7Ó , that initially contains all the items. Consider the agents
in some random sequence. Make at take-it-or-leave-it offer for every item
still in set

Ó T to each agent in turn. The agent can purchase any subset of
the remaining items, each at price w . Remove the items as they are sold.

First-best Proxy Strategy. Bid for the item with ����� �;Û�� ´ i � �Ô�[l , as long as��� � �;Û�� ´ i � �Ô�[l>� w .
Now consider the second-best proxy strategy. The bidding strategy, given

bounds on the value of items and no further elicitation is to buy the item with
the greatest expected value (as long as the expected value is greater than the
price). We model a proxy agent’s elicitation strategy as:

1. Maintain the set of items in
Ó T with uncertain values,

�/�Ô�/��� �����
, that

are still undominated by the other items, i.e. for which � �Ô�/x � �Ô� ´ for all� T }1 � , and for which � �Ô� � w .
2. While this set contains more than one item, and the number of queries ex-

ecuted is less than � , choose an item at random from the set and perform
a query.

3. When this set contains a single item, continue to refine the bounds on this
item until its valuation is known

�H���Ô�¬ìZ� ����� �
, or there are no queries

left to execute.

3.4.2. Ascending Price (unit-demand)
Auction Design. Run the ascending price auction for each item simulta-
neously, but with a single active status for each agent across all auctions.
Agents can bid in multiple auctions. Only when every auction is in quies-
cence will the auction poll an agent and ask it to submit a bid. The auction
looks for an agent that is not winning an item in any auction, and asks this
agent to bid in at least one auction, or leave all auctions. Terminate when
every active agent is winning an item in one or more auctions.

First-best Proxy Strategy. While not winning in any auction, bid for the
item with

Ý/ÞJß�� � �Ç�hÒ w � , where w � is the current ask price on item � , untilÝ�ÞJß[� � �Ô�QÒ w ��ì¾Ð (at which point leave).

Now consider the second-best proxy strategy. The optimal bidding strat-
egy, once the proxy will perform no further elicitation, is to bid for the item
with the greatest expected utility at the current price (while the proxy is not
winning on an item). Before its elicitation budget is exhausted, we model a
proxy’s elicitation strategy as follows:
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The proxy agent will only execute queries when prompted by the auction
to submit a new bid or leave. At this point the proxy acts as though the
prices in each auction are posted price and follows the elicitation strategy
for the posted-price auction.

The proxy will always bid while an item’s lower-bound utility (lower-
bound value minus price) dominates the upper-bound utility of the other
items, and only adopts the expected values to guide its bidding when the
elicitation budget is exhausted.

3.4.3. Sealed Bid (unit-demand)
Auction Design. Provide an exclusive-or bidding language [35], so that
an agent can bid its value for each item but also state that it is interested
in winning at most one item. Implement a Generalized Vickrey Auction
(GVA) to provide strategyproofness for informed proxy agents.9

First-best Proxy Strategy. Bid the true value for each item, together with
an exclusive-or constraint to state that the agent will buy at most one item.

Now consider the second-best proxy strategy. Notice that a query on an
item with uncertain information

�H���Ô�¬��� ����� �
has positive expected utility

while it remains possible that more accurate value information will change
the allocation decision, given the bids from other agents. With this in mind,
we model a proxy agent’s elicitation strategy as follows:

1. Maintain a set of items with uncertainty,
� �Ô� �P�������

.

2. While this set is non-empty and the number of queries executed is less
than elicitation budget, � , choose an item at random from the set and
perform a query.

Once an agent has exhausted its elicitation budget, or the value is known
on all items, then it submits as its bid the expected value for each item.10

9 The allocation is computed as a solution to the assignment problem,!#"%$'&)(+* Ù t Ù-,/. t , � t , s.t.
Ù t � t ,1032

for all 4 and
Ù-, � t ,1032

for all � , and � t , �6587�¡ 2%9 ,
where

. t , is the bid from agent � for item 4 . Given solution � �t , , then agent � with � �t ,;:/< 2
for

item 4 ´ is allocated the item, and makes payment
. t ,=:?>  A@= CB £ > @= CB	D �§£H£ , where

@X CB £ is
the revenue from the assignment problem with all agents and

@2 CBED �§£ is the revenue from the
optimal solution to the assignment problem with agent � removed.

10 This is the optimal bidding strategy because the bids from other agents set a price on each
item, and the rules of the GVA will purchase the item with greatest reported surplus given the
agent’s bid, and given these prices.
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4. Experimental Results: Single-Item Auction

In this section, we compare the allocative efficiency of the PP, AP, and SB
auctions in a single-item allocation problem and with the costly model of
preference elicitation. The experimental analysis adopts the preference elici-
tation and bidding strategies outlined in the previous section.

Given allocation � 1µ� � #;�('('(';� � +�� , with � ���Êi�ÐA�;ÄJl to denote whether
agent 
 gets the item, and

Ù � � �&ì�Ä , the allocative efficiency is computed
as
Ù � � � � � × Ý�ÞJßA� � � . We compute the average allocative efficiency of each

auction across a number of runs. In general, the results show that the AP
auction outperforms the PP auction which outperforms the SB auction. The
AP auction is better able to control elicitation, with more queries asked of
bidders with a high value for the item than of bidders with a low value.
Feedback in the auction, via prices, is used to focus elicitation and promote
better decisions.

4.1. EXPERIMENTAL SET-UP

We consider bidders with independent, identically distributed, values drawn
from a Uniform distribution, Ö ��ÐA�;Ä(ÐK� . Every agent is initially ignorant of
the bidder’s value, with initial valuation bounds

Æ ÐA�;Ä(ÐJÉ
. We consider four

pairs of preference-elicitation parameters
� Õ � � � : [1] (0.7,0.5); [2] (0.3,0.5);

[3] (0.7,0.05); and [4] (0.3,0.05). The initial elicitation bounds (see Section
3.2.1) are [5,5], [4.2,5.8], [2.9,7.1], and [1.8,8.2], for [1], [2], [3] and [4]
respectively. Moving from [1] to [4] preference elicitation gets more effective,
and less costly.

In simulation we refine bounds to ensure that the bounds are tighter than
the current bounds, and to keep the true value uniformly distributed between
the bounds with respect to the distribution over possible sequences of refine-
ments. This requires biasing the new range of values towards mean values
that are weighted in favor of values towards the edges of the current range,
because the Uniform distribution is not conjugate with itself, and a Uniform
distribution to generate the means of the new range does not generate a final
value that is uniformly distributed given the initial bounds.11

The price in the posted-price auction is selected (in simulation) to max-
imize the average revenue to the seller, given the preference elicitation and
bidding strategies followed by agents. This is intended to provide a best-case
measure of the performance of the PP auction, for a well-informed seller.12

11 Fong [14] fixes this requirement by considering a Gaussian distribution for valuation,
which is conjugate with itself.

12 The optimal price, for
 AF ¡ 2 7�¡;G%7�¡=HI7�¡KJL7;¡ F 7;¡ 2 7M7L£ agents,

is
  J�N O;¡KJ�N O�¡=J�N O;¡KJ�N O�¡KJ�N O;¡KJ�N O�¡=J�N OL£ ,  AF N P;¡ F N P�¡ F N P;¡ F N P�¡ F N P;¡ F N P�¡ F N P £ , RQ N Q ¡ Q N Q ¡;S'N 7;¡;S'N 2 ¡;STN 2 ¡�S'N 2 ¡;STN 2 £ , and

 RQ N P;¡;S'N P�¡;P�N G(¡=P�N G;¡=P'N G(¡=P�N G;¡;P'N G<£ , for elicitation
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The posted price increases with the number of agents, and as elicitation be-
comes cheaper and more effective. For costly or ineffective elicitation the
seller should set a price close to the initial expected value of the buyers,
to encourage agents to elicit costly value information and also to provide
additional surplus to the buyers (and justify additional queries).

The myopic assumption made by the proxy agents when making prefer-
ence elicitation decisions in the ascending-price auction can overestimate the
value of queries. For this reason, we set the bid increment,

Ï
, to the min-

imal increment that leaves bidders with non-negative expected utility from
participation.13 This ensures that any performance benefits that occur in the
ascending-price auction do not occur because agents are performing more
preference elicitation than can be sustained in the auction given bidder utility.

In the sealed-bid auction, we compute the number of queries as the max-
imal number of queries that can be sustained with non-negative expected
utility in equilibrium.14 The auction can sustain less preference elicitation as
the number of participants increases because there is more competition and
the winning agent pays a higher price and receives less surplus. For some
settings of

� Õ � � � and for some numbers of agents, no elicitation can be
supported in the symmetric equilibrium.

4.2. RESULTS: ALLOCATIVE EFFICIENCY

Figure 1 plots allocative efficiency in SB as the number of agents increases
for parameters [1], [2], [3] and [4], averaged over 500 trials. SB performs
well for small numbers of bidders and with effective or cheap elicitation,
but fails with ineffective and costly elicitation, even with small numbers of
bidders. In these cases, the expected surplus from participation is less than
the cost of performing even a single query to each bidder. For instance, the
SB auction cannot sustain an efficient market with 10 or more bidders in
elicitation models [1] and [2].

Figure 2 compares the efficiency of SB and PP, for different elicitation
parameters. For comparison, we also plot in subplot [4] (line ‘ U ’) the effi-
ciency of PP with agents that have exact value information. All results are
averaged over 1000 trials. In general, the PP auction performs better with
larger numbers of agents because there is less variance in the maximum value
across the agents. However, notice that with costly preference elicitation the

parameters [1], [2], [3] and [4] respectively. The optimal ask prices for agents with
exact information about values are

 RQ N P;¡;S'N P�¡=P'N Q ¡=P�N P�¡=O;¡=O�N H�¡=O'N F £ .
13 The bid-increment, for

 AF ¡ 2 7�¡;G%7�¡=HI7�¡KJL7;¡ F 7;¡ 2 7M7L£ agents, is set to
  2 ¡ 2 ¡ 2 ¡ 2 ¡ 2 ¡ 2 ¡ 2 £ ,  7�N S;¡ 2 ¡ 2 ¡ 2 ¡ 2 ¡ 2 ¡ 2 £ ,   7�N G;¡=7'N G;¡=7�N J�¡=7�N J
¡=7'N F ¡;7�N F ¡=7'N F £ , and

  7'N G(¡=7�N G;¡=7'N Q ¡;7�N Q ¡=7'N Q ¡=7�N Q ¡=7�N Q £ ,
for elicitation parameters [1], [2], [3] and [4] respectively.

14 The number of queries, for
 AF ¡ 2 7�¡;GI7;¡=HM7;¡KJL7�¡ F 7�¡ 2 7M7 £ agents, are  2 ¡ 2 ¡K7�¡=7;¡=7�¡K7;¡=7�¡K7;¡=7�¡K7L£ ,   2 ¡ 2 ¡=7;¡K7�¡=7;¡K7�¡=7;¡K7�¡=7;¡K7 £ ,   2 S;¡ 2 7�¡;S(¡KH�¡;G(¡ 2 ¡ 2 ¡ 2 ¡=7;¡=7 £ , and  2 Q ¡ 2 7;¡ Q ¡;G;¡ 2 ¡=7�¡V7�¡=7�¡V7�¡=7 £ , for elicitation parameters [1], [2], [3] and [4] respectively.

amai.tex; 2/08/2004; 11:26; p.25



26 Parkes

0 20 40 60 80 100
0.4

0.6

0.8

1

Number of Agents, N

E
ff 

(%
)

[1,2] [4] [3]

[Opt]

Figure 1. Efficiency in SB for elicitation parameters [1], [2], [3] and [4]. The auction
is efficient with agents that have exact value information [Opt].
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Figure 2. Efficiency in PP (‘o’) and SB (‘x’) auctions, for elicitation parameters [1]
to [4]. For comparison, we also plot, in subplot [4], the efficiency of PP with agents
that have exact value information (line ‘ � ’).
efficiency does not approach 100% even as the number of agents gets large.
This is because the seller cannot set the initial price above the initial upper
elicitation bound, which is 8.2 with parameters [4] (see Section 3.2.1). In
comparison, the seller in the auction with 100 informed agents can set the
price at 9.5 to maximize revenue.

Nevertheless, the PP auction outperforms the SB auction when there are
many agents. The posted price, coupled with the take-it-or-leave-it offer that
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isolates the decision making of one agent from the other agents, allows a
proxy agent to follow an optimal elicitation strategy, and without concern as
to the strategies of other agents. This leads to the reversal of the comparative
efficiency under a classic economic model, in which one would expect the SB
auction to be efficient and to outperform the PP auction.

Figure 3 compares the efficiency of AP with PP for different elicitation
parameters. These results are averaged over 200 trials. AP matches the effi-
ciency of SB for small numbers of agents, and matches the efficiency of PP
for large numbers of agents. Unlike SB, the performance of AP holds up as
the number of agents increases because queries are implemented in sequence,
with information propagated via prices before other agents execute queries.
Only a single proxy is called on to perform elicitation and improve its bid
when the auction reaches quiescence. Also, we see that AP outperforms PP
because it is able to set a higher final price than PP through competition be-
tween proxy agents that discover high values through incremental elicitation.
Thus, AP seems to dominate both SB and PP auctions.
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Figure 3. Efficiency in AP (‘+’) and PP (‘o’) auctions, for elicitation parameters [1]
to [4].

4.3. A MIXTURE OF INFORMED AND UNINFORMED BIDDERS

It is interesting to consider a mixture of bidders, some with exact value in-
formation and costless elicitation, and some with costly preference elicitation
problems. We assume a fraction, W , of bidders with costly elicitation. Figure
4 shows the efficiency of SB, PP and AP,15 with 30 bidders, and elicitation

15 The bid increments in AP were set to
  7�N G(¡=7�N H�¡=7'N J�¡=7�N J
¡;7'N J�¡=7�N Q £ for fractions,  7�¡K7'N G;¡=7�N J�¡=7�N Q ¡;7�N P;¡ 2 N 7 £ , to provide positive expected utility to agents. The ask price in PP
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parameters [4], as the fraction of bidders with costly elicitation is increased
from 0 to 100%.
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Figure 4. Efficiency of SB, PP and AP, for 30 agents and elicitation parameters [4] as
the proportion of bidders with costly preference elicitation increases.

None of the proxies for bidders with costly elicitation choose to execute
any queries in SB because the auction is too competitive and the feedback not
rich enough to guide elicitation. Thus, the efficiency in SB is due to the bids
from the proxy agents with exact value information and costless elicitation
(this explains why performance falls as W approaches 1). Overall, we see that
the efficiency of AP dominates both PP and SB, matching that of SB for
costless elicitation and remaining efficient as the proportion of bidders with
costly elicitation increases.

4.4. A CLOSER LOOK: DISTRIBUTION OF QUERIES

It is interesting to compare the number, and distribution, of queries performed
by proxy agents across the different auctions. We compare this distribution
with that of the optimal elicitation strategy, that asks the minimal number of
queries that is required to determine the efficient allocation, given the benefit
of hindsight.16 Bidders must be queried until there is one bidder with a lower
bound that is greater than the upper bound of all other bidders. We find that
the AP auction allows proxy agents to ask more queries of bidders with a
high value for the item than bidders with a low value, and that the query
strategy that emerges in AP shares similar characteristics with that of the
optimal strategy.

was set to
  P�N P�¡=P'N Q ¡=P�N G;¡;P'N G(¡=P�N G;¡=P'N GL£ for fractions,

  7�¡=7�N G(¡=7�N J
¡=7'N Q ¡=7�N P�¡ 2 N 7L£ , to maximize
the expected revenue.

16 This is the nondeterministic verification setting in Nisan and Segal [36].
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Figure 5 (a) plots the average number of queries executed by agents against
the true value of the bidder for the item, for the PP, SB, and AP auctions.
These results are averaged over 500 trials, and for elicitation parameters [4].
For this problem, the efficiency of AP is 96.1%, compared to 92.1% for SB
and 91.6% for PP. The agents in SB all execute a single query. The agents
in AP all execute a single query on average, but 53.4% do not execute any
query, including 51.8% of agents with value between 8 and 10.
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Figure 5. Query distribution for 30 agents and elicitation parameters [4]. (a) Queries
in the AP, SB and PP auctions. (b) Queries with optimal preference elicitation with
hindsight, both with and without constraints on the total number of queries.

What is particularly striking is that bidders with a higher value in AP tend
to receive more queries than bidders with low values. This is useful, because
these are the bidders that matter in determining the efficient allocation. In
comparison, the agents in PP executed an average of only 0.29 queries each,
and 81.2% of the agents execute no queries, including 80.9% of agents with
value between 8 and 10. The problem in PP is that the seller cannot set the ini-
tial price above 7.1 (the initial upper elicitation bound), and this price means
that the item is sold quite quickly and without being offered to enough high
value agents.

Figure 5 (b) plots the queries performed in the optimal and constrained-
optimal elicitation strategy for 30 agents and elicitation effectiveness as in
model [4]. The distribution for the constrained-optimal case is limited to
an average of 1 query per agent to match the average number of queries
performed in AP. For a particular instance, we compute the optimal num-
ber of queries to each bidder by searching across all policies that assign an
increasing number of queries to bidders with higher values (this set of policies
completely characterizes the set of optimal solutions). The same basic proce-
dure is used to find the constrained-optimal strategy, except that the search is
now limited to a finite number of queries.
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Bidders with high value receive more queries than bidders with low value
in the optimal distribution. For instance, although the average number of
queries per-agent is 2.6, the three bidders with the highest values receive
an average of 5.8 queries while the bidder with the highest value receives
an average of 10.2 queries. To determine the efficient allocation it is more
important to have precise information on the bidders with high values, that
are in contention for the item, than the bidders with low values that are out
of contention. On comparison with the distribution in the AP auction, we can
infer that the AP auction is effective because it provides enough information
to allow proxies to execute more queries to bidders with high values, which
in turn boosts the efficiency of the auction. As the price increases, the agents
with high values are incented to continue to refine their information while the
agents with low values can leave the auction.

5. Experimental Results: Multi-item Auctions

In this section, we compare the performance of the PP, SB, and AP auctions in
the multi-item allocation problems, considering both linear-additive and unit-
demand agent valuations. We adopt the budget-limited model of preference
elicitation, and consider the efficiency of auctions with proxy agents that can
ask only a finite number of queries of their bidders. In this setting, good
auction design can allow proxy agents to make better decisions about which
item to query.

5.1. EXPERIMENTAL SET-UP

In all problems we consider elicitation parameter,
Õ 1mÐA' È

, and each query
costs one unit of a total budget limit � , which is varied from 1 to the total
number of queries required for exact information about a bidder’s valua-
tion. We consider problems with 10 items and define the value on an item
in isolation, � �Ô� , as identically and independently distributed across bidders
according to Ö ��ÐA�;Ä(ÐK� . The proxy agents are initially completely uncertain
about a bidder’s value for each item, with initial bounds

Æ ÐA�;Ä(ÐJÉ
. We set the

minimal uncertainty,
� ����� 1öÐA' Ì

, and agents view the value information
as exact for bounds closer than this. Given this, the number of queries re-
quired to compute an exact value for a single item, denoted �YX �M�[ZV\ , is 9.
Given allocation

Ø 1 �9ØY#(�('('('��<Ø�+N�
, with

Øu�«o�Ó
, efficiency is defined

as
Ù � � � �9Ø � � × Ý/ÞJß Ü ´ Ù � � � �9Ø T� � , for feasible allocations

Ø T , with values as
defined in Section 3.1.
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Figure 6. Additive-value problem and Budget-limited Queries: Efficiency and Cor-
rectness as the Elicitation Budget is Increased.

5.2. ADDITIVE VALUES: EFFICIENCY AND CORRECTNESS

Figure 6 illustrates the efficiency and correctness for the additive-value al-
location problem with 10 items and 20 agents, averaged over 30 trials.17

Figure 6 (a) plots efficiency against elicitation budget, with the elicitation
budget normalized with respect to the number of queries required for exact
value information (i.e. 90 queries). Figure 6 (b) plots the percentage of correct
allocations, and provides a more nuanced view in cases in which both the SB
and AP auctions have reasonable allocative efficiency. The PP auction never
produces a correct allocation.

We see that the AP auction performs better than the SB auction for agents
with the same computation budget, at least until the agents have almost ex-
act information about preferences. The AP auction uses the same amount of
query information more effectively, as prices guide agents as to which items
to query.18 The performance of the PP auction is dominated by the AP and
SB auctions, largely because it is difficult to set a single price for every item
that will support an efficient allocation.

Figure 7 plots the allocative efficiency against the number of queries per-
formed by proxy agents in each auction, with the data generated by varying
the elicitation budget between 0 and

Ä(Ð � �	��� .19 The proxy agents in AP will
often not use the full elicitation budget, when the bidding strategy is well-
defined with partial information. For instance, only 31% of the complete

17 The price in PP is set to 8.4, and the minimal bid increment in AP is set to ] < 7�N 2 , to
maximize allocative efficiency over a range of budget limits.

18 Notice that although the AP and SB auctions approach 100% efficiency as the budget-
limit approaches ^`_Ra;bVcAd the number of correct allocations remains less than 100%. This is a
result of the residual error inherent in adopting an acceptable uncertainty level of egf�h i .

19 Results are averaged over 80 trials with 5 agents and 20 trials with 20 agents, the posted
price is 5.6 and 8.8 for 5 and 20 agents respectively.
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Figure 7. Additive-value problem: Efficiency vs. Queries Executed.

elicitation queries are required for allocative efficiency in AP with 5 agents,
and only 49% is required with 20 agents. In comparison, the SB auction
needs almost 100% of the complete information queries to achieve allocative
efficiency. The PP auction is able to outperform the AP auction when the
elicitation budget is very small (less than 10% of � �	��� ) and as the num-
ber of bidders increases (i.e. with 20 but not with 5 bidders). However, the
PP auction is limited in its ability to achieve high efficiency (above around
93%) because it lacks dynamic pricing, and the AP auction dominates for all
elicitation budgets with smaller numbers of bidders.

5.3. UNIT-DEMAND: EFFICIENCY AND CORRECTNESS

Figure 8 illustrates the efficiency and correctness of each auction in the unit-
demand allocation problem, with 20 agents, and as the elicitation budget
varies between 0 and

Ä(Ð � �	��� .20 The auction properties are very similar to
the properties in the multi-item allocation problem with additive values. The
AP auction is more efficient than the SB auction except at very low or very
high budget limits, and agents in the AP auction can compute optimal bidding
strategies (and the auction is efficient) with only 51% of the queries required
for complete information.

5.4. DISCUSSION

The proxied AP auction is more efficient than the SB and PP auctions for
a budget-limited number of queries. The information feedback provided by
prices in AP allows better decisions about how to use each query. In fact, we
can determine the efficient allocation in AP with around 50% of the number
of queries that are required to reveal full information on bidder preferences.

20 Results are averaged over 20 trials and the price in PP set to 6.5, and the bid increment
in AP to ] < 7�N 2 .
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Figure 8. Unit-Demand Problem and Budget-Limited Queries: Efficiency and Cor-
rectness as the Elicitation Budget is Increased.

6. Related Work

6.1. MECHANISM DESIGN WITH BOUNDED-RATIONAL AGENTS

An earlier study of Vickrey auctions in computational settings demonstrated
that the strategyproofness of an auction can break when agents have approx-
imate values for items and options to continue computation or submit bids
[48]. Sandholm’s analysis shows that an agent can make a better decision
about whether or not to perform further computation about the value of an
item when it is well informed about the bids from other agents. Larson &
Sandholm [25, 23] have modeled agent deliberation in situations of strategic
interdependence, and in particular when agents must make explicit decisions
about whether to deliberate about their own values or the values of other
agents. The authors model a deliberation equilibrium, including both deliber-
ation actions and base-level (strategic) actions and are able to state a number
of facts about the equilibrium. However, they are unable to derive the full
game-theoretic equilibrium, and their work places less emphasis on alloca-
tive efficiency. Recent work adopts computational methods to determine an
equilibrium for a sealed-bid auction and agents considering a sequence of two
deliberation actions [24].

Contemporaneously with this work, Compte & Jehiel [7, 8] and Rezende
[43] have proposed stylized equilibrium models for costly information ac-
quisition by agents in sealed-bid and ascending-price auctions. The models
assume agents can make a single decision about whether or not to acquire
information. This simplification makes equilibrium analysis tractable. Both
models provide support for the analysis in this paper, and suggest that as-
cending auctions have better economic properties than sealed-bid auctions
because they promote better decisions about information acquisition.
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6.2. AUCTION MODELS WITH COSTLY PARTICIPATION

A number of economic models consider the costs associated with partici-
pation in an auction, for example costs of bid preparation and information
acquisition [27, 46, 21, 30, 50]. However, these models assume that all par-
ticipation decisions are made as a one-shot decision before an auction starts,
and none can distinguish between iterative and single-stage auctions, because
agents decide whether or not to enter the auction before the auction starts.
In one of the few models to allow agents to enter sequentially, Ehrman &
Peters [13] compare the performance of different auctions for agents with
one-shot participation costs. The authors show that a sequential posted-price
auction is useful in settings with high costs of participation because it limits
competition.

There is also a subtle, but interesting relation between Milgrom & We-
ber’s [33] seminal work on auction design with affiliated values and the de-
sign of auctions with private values but costly elicitation. Milgrom & Weber
show that the English auction outperforms other auctions in an affiliated
value model. Information exchanged between agents during the auction al-
lows agents to refine their estimates of value. In our setting, iterative auctions
are preferred because bids from other agents provide information that im-
proves an agent’s preference elicitation decisions, and thus the accuracy of the
final valuations. By analogy to Milgrom & Weber’s linkage principle, which
states that a seller should reveal any information that will help bidders to value
a good, this suggests the importance of helping to mitigate the elicitation
problem facing bidders in our model.

6.3. PREFERENCE ELICITATION IN AUCTIONS

Parkes [38] and Nisan & Segal [36] (in a more general model) derive a lower
bound on the information-revelation requirements for efficiency in combina-
torial auctions. Nisan & Segal use this to emphasize that an indirect mech-
anism cannot outperform a DRM in the worst case, because one can always
construct instances for which exact information is required to determine the
efficient allocation (for example two bidders with almost identical values).
This is a worst-case result, and does not preclude the many benefits that prox-
ied and indirect mechanisms can enjoy in typical cases. Lahaie and Parkes
[22] use this to emphasize the role of prices, and derive polynomial elicitation
results for a computational learning theory model of elicitation. Many other
papers [40, 41, 9, 19, 2] have considered the preference-elicitation problem
in combinatorial auctions, but all for a first-best model in which the goal
is to elicit just enough information to determine the efficient allocation. A
number of studies have considered the role of proxied and indirect auctions in
mitigating the cost of preference elicitation in multiattribute auctions [51, 39].
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Within a second-best model, Holzman et al. [18] characterize the proper-
ties of a family of VCG-based mechanisms with less communication com-
plexity than the full-revelation mechanism, and Ronen [44], considers mech-
anism design for limited preference-revelation languages. In recent work,
Blumrosen et al. [3, 4] consider auction design with severely limited com-
munication and are able to design single-item auctions for ñ`ò[ô �H��� bits of
communication with an optimal loss in efficiency and revenue. Iterative auc-
tions are shown to have better performance, but only up to a factor of 2 in
the amount of communication needed [4]. Unlike our work, these papers
on preference-constrained settings work with an a priori fixed limit on the
amount of elicitation.

7. Conclusions

Proxied and indirect mechanisms can outperform sealed-bid (direct) mech-
anisms when there is costly preference elicitation. For instance, carefully
designed iterative auctions can allow proxy agents to follow optimal (first-
best) bidding strategies without complete preference elicitation. The dynamic
price feedback in an ascending-price auction provides aggregate information
about the preferences of other agents, and allows a proxy agent to elicit
value information on parts of the outcome space that matter in the efficient
allocation. We have identified the central role of incremental revelation mech-
anisms, that allow a bidder to refine her preference information during an
auction.

The ultimate goal in auction design for costly preference elicitation should
be to develop incremental-revelation mechanisms that are provably optimal,
given a particular model of costly elicitation. This will require methods to
explicitly structure and coordinate preference elicitation decisions across a
system of agents, so that the right level of elicitation emerges endogenously
as a tradeoff between elicitation cost and value of information. Determining
an informational hierarchy for classes of IRMs should be another interesting
direction for future work. Finally, given that it appears difficult to deter-
mine equilibrium elicitation and bidding strategies, even in simple single-
item auctions, we should work to design mechanisms with well-defined (and
computable) second-best equilibria.
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