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Abstract

We study auctions in which allocations are decided by an itera-

tive process of rejecting the least attractive remaining bids. These

�deferred-acceptance heuristic auctions� have distinctive properties

that make them attractive for applications in computationally chal-

lenging environments. Deferred acceptance �threshold� auctions are

group strategy-proof, can be implemented using clock auctions, and

are outcome-equivalent in our complete-information model to paid-

as-bid auctions based on the same heuristic. Paid-as-bid auctions

based on such heuristics are dominance solvable, and every non-bossy

dominance-solvable paid-as-bid auction is a deferred-acceptance heuris-

tic auction. None of these properties are shared by auctions based on

optimization or greedy-acceptance heuristics.
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1 Introduction

Over the last twenty years, economic theory has contributed to tremendous

progress in the development of practical auctions for buying or selling mul-

tiple di¤erentiated items. The earliest applications were to sales of radio

spectrum licenses, but many more have followed.1 A major challenge on

the frontier of research and development today is to design and build auc-

tions for computationally challenging resource allocation problems� ones

for which it may be impossible to compute exactly optimal allocations. The

leading application in recent years has been to combinatorial auctions, but

an even newer application motivates this study. It arises from the US gov-

ernment�s e¤ort to conduct what it calls an �incentive auction,�to reallocate

frequencies from television broadcasting to wireless broadband services.2 The

planned transaction involves sharing a portion of the proceeds of the sale of

wireless broadcast licenses with current television broadcasters in order to

provide them an �incentive� to relinquish their licenses, while reassigning

the remaining over-the-air broadcasters to a smaller set of channels. The

reassignment of broadcasters who do not sell is a source of the enormous

complexity, because it must be done so that no two broadcast stations are

assigned to channels in ways that create interference between them. There

are more than 100,000 such constraints. Just determining whether a given

1The �simultaneous multiple round�design used in the �rst US spectrum auctions is
described by FCC economist Evan Kwerel in the Foreword to Milgrom (2004). Additional
discussions are found in McMillan (1994) and Milgrom (2000). The �combinatorial clock
auction� design recently adopted in many European countries as well as Australia and
Canada was proposed by Ausubel, Cramton and Milgrom (2006). A sealed bid auction
allowing bidders to express substitution (the �product-mix�or �assignment�auction) was
introduced by Milgrom (2009) and Klemperer (2010) and adopted by the Bank of England
for securities auctions. Variations of these several designs have been adopted in markets
for electricity, natural gas, water rights, diamonds, Internet domain names, gaming rights,
among others.

2According to estimates by the Congressional Budget O¢ ce, the �forward� auction
will raise about $40 billion in gross revenues, of which about $15 billion will be paid to
broadcasters who sell their over-the-air broadcasting rights in the �reverse�auction.
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set of broadcast stations can feasibly be assigned to channels is a compu-

tationally challenging problem, equivalent to the NP-hard �graph coloring

problem�(see Aardal et al. (2007) for a survey of computational approaches

to this problem). The problem of selecting a feasible set of stations to leave

on-air so as to maximize their total value is even harder in practice, and

cannot currently be solved exactly, even using weeks of computer time with

state-of-the-art algorithms and hardware. If an e¤ective auction for the spec-

trum reallocation problem can be designed and implemented, that might also

open a path to devise auctions for other large, highly constrained resource

allocation problems, such as �ight scheduling for aircraft or joint scheduling

for aircraft and commercial space �ights.

Computationally challenging mechanism design problems have so far mostly

been studied by computer scientists in the growing �eld of �Algorithmic

Mechanism Design,� which originated with the work of Nisan and Ronen

(1999). The typical goal is to devise mechanisms that are strategically sound,

generate good economic outcomes, and can be computed in reasonable time.3

In designs like the Vickrey auction, in which prices are determined as the

di¤erence between two optimum values, and even small percentage errors

of optimization can lead to very large pricing errors, destroying strategy-

proofness. Mechanisms based directly on heuristics can sometimes ensure

exact strategy-proofness, even without computing exactly optimal outcomes.

The leading approach to auctions based on heuristics is one pioneered

by Lehmann, O�Callaghan and Shoham (2002) (hereafter LOS), who intro-

duce strategy-proof mechanisms that employ a �greedy-acceptance�heuris-

tic algorithms.4 For the problem of selling a set of heterogeneous goods, a

3Economists have long been concerned about the computational properties of economic
allocation mechanisms, starting at least with Hayek (1945). However, the economic liter-
ature has focused on formal modeling of communication costs (e.g. Hurwicz 1977, Mount
and Reiter 1974, Nisan and Segal 2006, Segal 2007), which are trivial in the present setting
of single-minded bidders, while the computational burden could be overwhelming.

4Variants of greedy-acceptance heuristic auctions have also been studied � see, e.g.,
Mu�alem and Nisan (2008), Babaio¤ and Blumrosen (2008), and references therein.
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�greedy-acceptance�heuristic prioritizes the bids according to some �score,�

and iteratively accepts the highest-scoring bid that is still feasible. For their

analysis, LOS introduce the important concept of a single-minded bidder

� one who is interested in buying just one particular package of goods �

and determine the unique payments to winning bidders that make truthful

reporting a dominant strategy for all single-minded bidders.

In this paper, we introduce a class of auctions based on a similar but dif-

ferent class of heuristics and investigate their economic and game-theoretic

properties. Like the greedy-acceptance heuristics, the alternative heuristics

prioritize bids for consideration, but the processing begins with the �least

attractive�bids for the auctioneer instead of the �most attractive�ones. In-

stead of greedily accepting the most attractive bids, the alternative heuristics

greedily reject the least attractive bids and, when the algorithm terminates,

the bids that were not rejected are �nally accepted. To create a strategy-

proof auction when bidders are single-minded, each winner�s payment is set

to its �threshold price,� which is its least attractive bid that would have

still won, given the bids of the others. We call the combination a �deferred-

acceptance threshold auction�because it is a close cousin to the Gale-Shapley

deferred-acceptance algorithm.5 In our setting with monetary bids, deferred-

acceptance threshold auctions are also closely related to clock auctions, which

o¤er rejected bidders an opportunity to �improve�their price o¤ers, and at

the end accept all the standing bids that are not rejected. For numerous

5In the Gale-Shapley two-sided matching algorithm, the side that receives o¤ers rejects
all but the best o¤ers at each round and only at the end accepts the o¤ers that were
not rejected. In its clock auction version, the bidders in a round of a deferred-acceptance
threshold auction o¤ers its most preferred potentially acceptable terms and then moves
down its list to less preferred ones, with the auctioneer rejecting raising the bar of accept-
ability at each round.
Just as this paper contrasts the properties of deferred-acceptance and greedy-acceptance

mechanisms, Abdulkadiroglu, Pathak, Roth and Sonmez (2005) contrast the Gale-Shapley
mechanism with the greedy-acceptance-based �Boston mechanism.� In the latter mech-
anism, in each round, schools accept their highest ranked student applicants until the
school�s capacity is reached or until the algorithm ends in a round with no new o¤ers.
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examples of deferred-acceptance heuristics and/or clock auctions, see Kelso

and Crawford (1982), Moulin (1999), Ausubel (2004), Gul and Stacchetti

(2000), Milgrom (2000), Hat�eld and Milgrom (2005), de Vries et al. (2007),

Juarez (2009), Mehta et al. (2009), Ensthaler and Giebe (2009, 2010) and

Bikhchandani et al. (2011).

Despite the obvious similarity between the greedy-acceptance and deferred-

acceptance algorithms �one greedily accepts attractive bids, rejecting the

remainder, and the other greedily rejects unattractive bids, accepting the re-

mainder �the classes of auctions based on these algorithms have some very

di¤erent game-theoretic and economic properties that are important in prac-

tice. All deferred-acceptance threshold auctions are group strategy-proof and

can be implemented using clock auctions, but the class of greedy-acceptance

threshold auctions has neither property.6 All paid-as-bid auctions based on

�non-bossy�deferred-acceptance heuristics are dominance solvable, but no

such property holds for the class of non-bossy greedy-acceptance heuristics.7

Another di¤erence emerges in an outcome-equivalence property: when the

same non-bossy deferred-acceptance heuristic is used to select winners for

either threshold auctions or paid-as-bid auctions, the complete-information

undominated Nash equilibrium outcomes for the two mechanisms coincide,

but the same is not generally true when winners are selected by a greedy-

acceptance heuristic.

Yet another property of deferred-acceptance heuristics is that every monotonic

6There are some classes of special cases in which the greedy-acceptance and deferred-
acceptance rules make identical choices, so the auctions based on them coincide. For
example, if the rule is to take the k highest bids from a set of n (with n > k), that can
be implemented by either a greedy-acceptance or a deferred-acceptance algorithm, and
the greedy-acceptance auctions share the properties of the deferred-acceptance auctions
in those cases.

7�Non-bossiness� is a common condition in mechanism design theory. An allocation
rule is �non-bossy� if no change in a participant�s report can alter another participant�s
winning/losing status without altering its own status as well. In deferred-acceptance
auctions, this means making a losing bid worse does not change whether any other bid is
winning.
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allocation rule in which bids are price-theoretic substitutes, and that satis�es

a �no-disposal�property, can be computed exactly using some such heuristic.

This capability is not shared by greedy-acceptance heuristics. For the spec-

trum reallocation problem, while many interference constraints in�uence the

assignments of stations to channels, the most expensive constraints appear

to be the limits to the number of channels available in each metropolitan

area. Those constraints tend to make stations substitutes, which suggests

that some deferred-acceptance auction might perform well. To test that, the

FCC conducted simulations with the actual constraints and internally con-

structed value data. Using a simple deferred-acceptance heuristic, it found

that the value of stations taken o¤-air is only slightly higher that from a

long run of their optimization algorithm. The di¤erence was less than one

percent.

In an important departure from previous studies, we consider an unusu-

ally wide class of heuristics in which the prioritization of bids is not �xed

in advance but rather can be �exibly adjusted during the auction depending

on the identities of the previously rejected bidders as well as their monetary

bids. This �exibility is crucial for both the theoretical and practical parts

of our analysis. For the theory, this wider class is needed to prove several

of the previous results, including (i) the equivalence between the classes of

deferred-acceptance heuristics and clock auctions, (ii) the computability of

substitutable, �no-disposal� allocation rules by deferred-acceptance heuris-

tics, and (iii) that the winning bids in any monotonic, non-bossy, dominance-

solvable paid-as-bid auction are selected by some deferred-acceptance heuris-

tic. For the practice, the wider class is necessary and useful for designing

auctions that incorporate binding budget constraints (or binding revenue

targets) for the auctioneer, as well as ones that incorporate �yardstick com-

petition�among bidders to reduce costs (or increase revenues), as in Segal

(2003).

For concreteness, we focus on procurement (�reverse�) auctions, which
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correspond to the application to radio spectrum reallocation. The deferred-

acceptance heuristic then begins with an excess-supply situation and pro-

ceeds iteratively, rejecting the highest-scoring bids (with scores increasing in

the bid amounts) until excess supply is eliminated. Our results can also be

adapted to apply to selling (�forward�) auctions, which begin with excess-

demand situations and iteratively reject the lowest-scoring bids until excess

demand is eliminated. Combining both versions, our analysis applies to all

the studies of clock auctions cited above, several of which focus on forward

auctions.

The paper is organized as follows: Section 2 describes the general class

of deferred-acceptance heuristics for processing bids and gives a number

of examples. Section 3 de�nes clock auctions in which winners are paid

their �nal clock prices, and shows that, when bidders are restricted to use

only cuto¤ strategies, every clock auction is equivalent to some sealed-bid

deferred-acceptance threshold auction, and vice versa. Section 4 shows that,

in private-value environments, clock auctions are strategy-proof and (weakly)

group strategy-proof: there is no individual or coalitional deviation from

truthful bidding that makes all the deviators strictly better o¤. These

strategy-proofness results hold regardless of what information is disclosed

during the auction, from full disclosure in one extreme to no disclosure in the

other. By the previous equivalence, it then follows that deferred-acceptance

threshold auctions are group strategy-proof. Section 5 answers a question

about the kinds of allocation rules that are exactly implementable using a

deferred-acceptance procedure. It shows that any monotonic allocation rule

that treats bids as substitutes and has a �no-disposal�property can be im-

plemented by some deferred-acceptance heuristic.

Section 6 compares the performance of paid-as-bid and threshold auctions

designs using under the assumption of complete information and assuming

that both auctions use the same deferred-acceptance heuristic to select win-

ning bids. This comparison provides one indicator of the possible cost of
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replacing the familiar paid-as-bid auction by a strategy-proof auction. It

�nds that the dominant strategy solution of the threshold auction is has the

same allocation and prices as some Nash equilibrium outcome of the paid-

as-bid auction. While a paid-as-bid auction will typically have other Nash

equilibria as well, we show that for any non-bossy deferred-acceptance heuris-

tic, the paid-as-bid auction is dominance-solvable for generic values of the

bidders (that is, its payo¤s are completely determined by iterated elimina-

tion of dominated strategies) and that this dominance solution coincides with

the equilibrium described above. Moreover, under the same conditions, every

Nash equilibrium in undominated strategies leads to the same outcome.8 The

distinctiveness of this dominance solvability property is highlighted by the

following converse: any dominance-solvable paid-as-bid auction that selects

winners using a monotonic, non-bossy allocation rule must implement the

same outcome mapping as some deferred-acceptance heuristic.

In Section 7, we demonstrate by means of examples that the properties of

group strategy-proofness and paid-as-bid outcome-equivalence are not guar-

anteed when winners are selected using either a greedy-acceptance heuristic

or optimization. We conclude with a discussion of the several results that

have been useful for evaluating design options for the FCC�s �incentive auc-

tion.�

2 Heuristic Sealed-Bid Auction

Let N be the set of bidders. In the auction, each bidder either �wins�(which

means that his bid to supply a given good or set of goods is �accepted�) or

8These outcome equivalence results are related to the �ndings of Bernheim and Whin-
ston (1986) about the equivalence between paid-as-bid auctions and Vickrey auctions for
the case in which the allocation is chosen to maximize the total bid and bidders are sub-
stitutes. One connection is that, for that case, the Vickrey auction is implementable by a
deferred-acceptance heuristic. A di¤erence is that Bernheim and Whinston (1986) select a
particular Nash equilibrium by imposing a coalition-proofness re�nement while we instead
select an equilibrium using iterated deletion of dominated strategies.
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�loses�(which means that his bid is rejected). We restrict attention to auc-

tions in which winners receive payments but losers do not. The preferences

of each bidder i depend on whether he wins or loses, and, when he wins, on

the payment pi. We assume that these preferences are strictly increasing in

the payment, and there exists some payment vi that makes him indi¤erent

between winning and losing, which we call his �value�. (For unmixed out-

comes, such a preference can be expressed by a quasilinear utility pi when

the bidder wins and vi when he loses.) The set of bidder i�s possible values

is [0; vi] for each i.

A mechanism requests each bidder i to submit a bid bi 2 Bi � R and

generates a set of A � N of accepted bids for every bid pro�le b 2 B = �iBi.
We restrict each bid space Bi to be a closed set such that supBi > vi.9

(Below, we often further restrict Bi to be �nite.) Let � : B ! 2N denote the

winner determination rule or �allocation rule�of the mechanism: � (b) � N
is the set of winners generated for bid pro�le b 2 B.
A deferred-acceptance heuristic is a particular kind of mechanism de-

scribed by a set of scoring functions, as follows. For each set A � N of active

bidders and each bidder i 2 A, there is a scoring function sAi : Bi�BNnA !
RA+ that is nondecreasing in its �rst argument. The heuristic then operates
as follows. Let At � N denote the set of active bids in stage t. Initialize

A1 = N . For each t � 1, if sAti
�
bi; bNnAt

�
= 0 for all i 2 At then stop

and output At, otherwise let At+1 = Atn argmaxi2At sAti
�
bi; bNnAt

�
and con-

tinue. Intuitively, the heuristic process is one of iteratively deleting the least

desirable (highest scoring) bids until only zero scores remain.

9The last restriction ensures that each bidder prefer to participate in the auction.
Alternatively, we could restrict attention to auctions in which each bidder has a �non-
participation bid�that loses against any pro�le of other bids. In this case, a bidder i with
value vi � supBi will submit a non-participation bid. The bidder�s maximum bid that
has the possibility of winning could then be interpreted as that bidder�s �reserve price�.
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2.1 Payments and Strategy-proofness

A payment rule is a function p : B ! RN specifying that agent i receives

pi(b). A sealed-bid auction is a triple hB;�; pi such that pi (b) = 0 whenever
i 2 Nn� (b) (meaning that losing bidders are not paid).
Since we will often use �nite bid sets, it is convenient to replace the usual

notion of �truthful� bidding by a similar concept of �strategy-proofness�

that applies even when some possible bidder values do not correspond to

feasible bids. According to our de�nition, an auction is strategy-proof if it

is always optimal for a bidder to round up its value to next lowest allowable

bid. With this de�nition, if the sets of possible values and bids are both

the same interval of real numbers, then strategy-proofness and truthfulness

coincide.

De�nition 1 The sealed-bid auction hB;�; pi is strategy-proof if for every
bidder i, vi 2 [0; �vi], and b�i 2 B�i, it is optimal for bidder i to bid v+i �
min fbi 2 Bi : bi > vig.

De�nition 2 The allocation rule � is monotonic if and only if i 2 � (bi; b�i)
and b0i < bi imply i 2 � (b0i; b�i).

With these de�nitions, a standard argument implies the following:

Lemma 3 A sealed-bid auction hB;�; pi is strategy-proof if and only if � is
monotonic and payments satisfy the following formula for all b 2 B, i 2 � (b):

pi (b�i) = sup fb0i 2 Bi : i 2 � (b0i; b�i)g : (1)

It is easy to see that any deferred-acceptance heuristic generates a monotonic

allocation rule and that the corresponding threshold prices (1) to the winners

can be computed as follows: Start with p0i = supBi for all i, and then for

each round t � 1, compute
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pti(b) = min
�
pt�1i ; sup

�
b0i 2 Bi : sAti

�
b0i; bNnAt

�
< sAtj

�
bj; bNnAt

�
for j 2 AtnAt+1

		
for every bidder i 2 At+1. In the �nal round of the algorithm, for every

winner i 2 AT , pTi (b) is the winner�s threshold price.10

Inspection of the formula shows a consequential property of the threshold

prices for deferred-acceptance heuristics: holding �xed the �nal set of winners

AT , winning bidders�threshold prices depend on the losing bids bNnAT but

not on the winning bids bAT . It follows that no winning bidder can a¤ect

another winner�s threshold price except by changing to a losing bid.

2.2 Examples

Example 4 (Feasibility Constraint) Let F � 2N denote the set of sets

of bidders that could be feasibly accepted, and assume that N 2 F , so that
the procurement goal is achievable. To ensure that the heuristics maintains

feasibility, we require that sAi
�
bi; bNnA

�
> 0 only if An fig 2 F , and also

that there are no ties, i.e., sAi
�
bi; bNnA

�
6= sAj

�
bj; bNnA

�
for all i 6= j, A,

bi; bj; bNnA.

We say that the heuristic has perfect feasibility checking if sAi
�
bi; bNnA

�
>

0 if and only if An fig 2 F �i.e., it stops only when all active bids are infea-
sible to reject. In some settings, however, perfect feasibility checking may be

too computationally challenging, and imperfect checking must be used instead.

For example, in the FCC�s spectrum-clearing problem, to check whether a

given set A of bidders is in F requires checking whether there exists an as-

signment of the rejected bidders NnA to available channels that satis�es all
interference constraints, and this is an NP-hard problem. When a feasibility

checker has a limited time to run, it may generate three possible outputs: (i)

10These round-by-round computations can be integrated with the heuristic in one single
calculation step.
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establish that An fig 2 F by generating a feasible assignment of the rejected

bidders to channels, (ii) establish that An fig =2 F by generating a proof that
such a feasible assignment does not exist, and (iii) be timed out before gen-

erating either (i) or (ii). In case (i), we set sAi
�
bi; bNnA

�
> 0, while in cases

(ii) and (iii), we need to set sAi
�
bi; bNnA

�
= 0, to guarantee that the heuristic

yields a feasible assignment.

The next two examples show two reasons why it may be useful to condi-

tion the scoring functions on the rejected bids. The �rst reason is to incor-

porate a budget restriction that makes the auctioneer reject additional bids

when the current overall costs are too high. The second reason is to create

�yardstick competition�among bidders by inferring reasonable reserve prices

for the active bidders from the rejected bids.

Example 5 (Budget or Payment Constraint) Suppose that the total pay-
ment to the winners cannot exceed R (A) when the set of accepted bids is A.

For example, in the FCC case, payments to broadcasters are limited by the

revenue obtained from selling the cleared spectrum in the forward auction, net

of some expenditures required by statute or regulations. Since the FCC may be

initially uncertain about how much spectrum it can clear subject to a net pay-

ment constraint, it might set a sequence of n possible procurement goals repre-

sented by feasible sets: F1 � ::: � Fn with the corresponding forward auction
revenues R1; :::; Rn, so that the maximum forward auction revenue achieved

by accepting set A of bids is R (A) = max fRk : 1 � k � n, A 2 Fkg.) Then
in every round t, the algorithm could look at the total threshold prices that

would have to be paid to each of the active bidders in At if the algorithm were

to stop in this round, and continue to the next round if this total exceeds

R (At). For a simple example, if scores are based on functions �i (bi) > 0

(independent of the comparison set A and of others�bids), the threshold price

that would have to be paid to a currently active bidder i 2 A if the heuristic
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were to stop right away can be calculated as:

pi
�
bNnA

�
= sup

�
b0i 2 Bi : �i (b0i) < max

j2NnA
�j (bj)

�
:

To add a �stopping rule� that allows the auction to end only if the budget

constraint is met, we let for each i 2 A,

sAi
�
bi; bNnA

�
=

(
0 if

P
j2A pj

�
bNnA

�
� R (A) ;

�i (bi) otherwise.

This can be viewed as a �revenue-sharing��problem, which is the mirror im-

age of the �cost-sharing��problem of Moulin (1999) and Mehta et al. (2009).

Our formulation permits the auction to generate revenue in excess of R (A) to

be absorbed by the auctioneer, but it is possible to modify it to require revenue

to be exactly R (A). (This possibility will become clearer once we introduce

clock auctions and show (Proposition 8) that for every clock auction there

exists an equivalent deferred-acceptance threshold auction.)

Example 6 (Reference Pricing) Suppose the auctioneer cares about the
expected total pro�t, and that his gross pro�t for acquiring each bidder is

�. Suppose that bidders�values are drawn i.i.d. from a distribution that is

unknown to the auctioneer. In this symmetric setting we can focus without

loss on symmetric auctions. If we consider symmetric deferred-acceptance

heuristics that do not condition on the rejected bids, these heuristics accept all

bids above some �xed reserve price p� (e.g. setting sAi (bi) = max fvi � p�; 0g),
which yields an expected pro�t on each bidder i of (� � p�) Pr fvi � p�g, where
the probability is calculated based on the auctioneer�s prior. Note, however,

that these expected pro�ts could be improved by conditioning the reserve price

p�A
�
bNnA

�
in each round on the rejected bids (i.e., letting sAi

�
bi; bNnA

�
=

max
�
vi � p�A

�
bNnA

�
; 0
	
). For example, the reserve price could be the optimal

price for the beliefs about the distribution of values of the active bidders that

are updated based on bNnA. (Note: the expected pro�t-maximizing threshold
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auction, described in Segal (2003), implements the allocation rule � (b) =

fi 2 N : bi � p (b�i)g where p (b�i) 2 argmaxp (� � p) Pr fvi � pjb�ig. If the
family of possible distributions of bidders�values is ordered in the likelihood

ratio ordering, then p (b�i) is nondecreasing in b�i, hence allocation rule �

has the substitute property. If in addition the range of � has no disposal,

then by Proposition 14 below � can be implemented as a heuristic auction.)

3 Clock Auction

Informally, a (�descending�) clock auction is a dynamic mechanism that

proposes a declining sequence of price o¤ers to each bidder, with each o¤er

followed by a decision period in which any bidder whose price has been

strictly reduced can decide to exit or continue. Bidders that have never exited

are called �active�; others are called �inactive.�Bidders who remain active

when their prices are reduced are said to �accept�the lower price. When the

auction ends, the active bidders become the winners and they are paid their

last (lowest) accepted prices. Di¤erent clock auctions are distinguished by

their pricing functions, which determine the sequence of prices to o¤er the

several bidders.

To formalize the intuitive description, we restrict attention to heuristics

with �nite bid spaces and to �nite clock auctions with discrete periods.11 The

active bidders in period t are denoted by At 2 2N . A period-t history consists
of the sets of active bidders in all periods up to period t: At = (A1; :::; At)

such that At � ::: � A1 = N . Let H denote the set of all such histories. A

descending clock auction is a price mapping p : H ! RN such that for all
t � 2 and all At, p (At) � p (At�1). (Note that we reuse the p notation here
to represent the pricing in the clock auction: it had earlier referred to pricing

11We say that the clock auction is �nite if there exists some T such the auction always
stops by period T . The restriction to �nite auctions and �nite bid spaces avoids familiar
technical di¢ culties, such as those associated with describing continuous time auctions
and with de�ning dominance solvability for in�nite games.
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in the threshold auction.)

The clock auction initializes A1 = N . In each period t � 1, given history
At, a pro�le of prices p (At) is o¤ered to the bidders. If p (At) = p (At�1),

the auction stops; bidder i is a winner if and only if i 2 At and in that case
i is paid pi (At). If i 2 At and pi (At) < pi (A

t�1), then i may choose to

refuse the new price and exit the set of active bidders.12 Letting Et � At

denote the set of bidders who choose to exit, the auction continues in period

t + 1 with the new set of active bidders At+1 = AtnEt and the new history
At+1 = (At; At+1).

To complete the description of the auction as an extensive-form mecha-

nism, we also need to describe bidders�information sets. We allow general

information disclosure: bidder i observes some signal �i (At) in addition to

his current price pi (At) in history At.

A strategy for bidder i in a clock auction is a cuto¤ strategy with cuto¤

bi if it speci�es exit if and only if pi (At) < bi, for some bi � pi (N). Note

in particular that every cuto¤ strategy accepts the opening price. The next

two results show that clock auctions in which bidders are restricted to cuto¤

strategies (for example, in which they must use proxy bidders with cuto¤

strategies) are equivalent to deferred-acceptance threshold auctions, meaning

that the mapping from the pro�le of bids or cuto¤s to allocations and prices

are the same for both auctions.13

Proposition 7 For every deferred-acceptance heuristic with �nite bid spaces
and threshold pricing, there exists an equivalent �nite clock auction in which

12In a variant of the auction, all active bidders i 2 At may choose whether to exit.
Although the results below are the same for the auction in the main text and this variant,
the version in the main text is preferred because, when there is a feasibility constraint as
in 4, it ensures that the clock auction always yields a feasible outcome.
13If we were to implement a deferred-acceptance threshold auction as a multi-round

procedure in which some information is disclosed to active bidders between rounds and
they are allowed to improve their bids, then the resulting mechanisms would be �survival
auctions�like those proposed by Fujishima et al. (1999) for more speci�c settings. These
auctions are strategically equivalent to clock auctions without the restriction to cuto¤
strategies.
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bidders are restricted to cuto¤ strategies.

Proof. Given bid spacesB1; ::; BN , for each v 2 R, let and v+ = min fbi 2 Bi : bi > vg

and v� =

(
max fbi 2 Bi : bi < vg if vi > minBi;

minBi � 1 otherwise.
. Let the opening prices

be pi (N) = maxBi for each i. Given a deferred-acceptance heuristic auction

with scoring rule s, we construct an equivalent clock auction as follows: The

price reduction rule in the clock auction reduces the price to every highest-

scoring active bidder by the minimal amount, while leaving prices unchanged

for the other bidders:

pi
�
At
�
= pi

�
At�1

��
if i 2 argmax

j2At
sAtj

�
pj
�
At�1

�
; pNnAt

�
At
�+�

pi
�
At
�
= pi

�
At�1

�
otherwise.

Note in particular that the auction maintains pi (At) = pi (At�1) for all i 2
NnAt �thus memorizing the prices rejected by bidders who have quit, so
that their cuto¤s can be inferred as pi (At)

+.

Then equivalence is easy to see: First, for every history of the clock

auction, the next set of bidders to quit in the clock auction is the set of

bidders who have the maximum scores among the set of active bidders, so

the set of winners is the same in both auctions. Second, if any winning bidder

had said �no�to any higher price, it would have exited, so each bidder�s �nal

clock price is the highest cuto¤ it could use to be winning � its threshold

price.

Proposition 8 For every �nite clock auction in which bidders are restricted
to cuto¤ strategies, there exists an equivalent deferred-acceptance heuristic

with �nite bid spaces and threshold prices.

Proof. Given a �nite clock auction p, we construct bid spaces and a scoring
rule to create an equivalent deferred-acceptance heuristic. We take each
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bidder i�s bid space to be Bi = fpi (h) : h 2 Hg �the set of possible prices
agent i could face in the clock auction (which is a �nite set in a �nite clock

auction).

Next, we construct the scoring rule in the following manner: Holding �xed

a set of bidders S � N and their bids bS � RS, let At(S; bS) denote the set
of active bidders in the clock auction at round t in which every bidder j 2 S
uses cuto¤ strategy bj and every bidder from NnS never exits. Formally,
initialize A1(S; bS) = N and iterate by setting

At+1(S; bS) = At (S; bS) n
�
j 2 S : bj > pj

�
At (S; bS)

�	
:

This gives an in�nite sequence fAt (S; bS)g1t=1, but the sets start repeating
at some point (when the clock auction stops).

Now for given A, bNnA, i 2 A, and bi, de�ne the score of agent i as the
inverse of how long he would remain active in clock auction if he uses cuto¤

bi and all bidders from NnA use cuto¤s bNnA, while bidders in An fig never
quit:

sAi
�
bi; bNnA

�
= 1= sup

�
t � 1 : i 2 At

�
fig [ (NnA) ;

�
bi; bNnA

��	
:

(Note that the score is 1=1 = 0 in cases in which the auction stops with

agent i still active.) This score is by construction nondecreasing in bi. Also

by construction, given a set A of active bidders, the set of bidders to be

rejected by the heuristic in the next round (argmaxi2A sAi
�
bi; bNnA

�
) is the

set of bidders who would quit the soonest in the clock auction given that

the inactive bidders have used cuto¤s bNnA. If no more bidders would exit

the auction, then all active bidders have the score of zero, so the heuristic

stops. Finally, as argued above, the winners�clock auction prices are their

threshold prices: the winner would have lost by using any higher cuto¤ in Bi
than its clock auction price.

17



4 (Group) Strategy-proofness

De�nition 9 In a clock auction, agent i with value vi is said to �bid truth-
fully� if he accepts clock price if and only if pi (h) > vi. (Equivalently, if the

agent uses a cuto¤ strategy with cuto¤ v+i = min fpi (h) : h 2 H, pi (h) > vg.)

De�nition 10 An auction is �weakly group strategy-proof�if for every pro-
�le of values v and every set of players S � N and every strategy pro�le �S
of these players, at least one bidder in S has a weakly higher payo¤ from the

pro�le of truthful bids vN than from the strategy pro�le (v+NnS; �S).

Remark 11 Clock and threshold auctions are not generally �strongly�group
strategy-proof, because a bid increase by a losing bidder that increases a win-

ner�s threshold price is strictly pro�table for the winner and weakly pro�table

for the loser.

Clock auctions can have various information disclosure policies, leading

to a potentially large set of strategies for bidders, but always including the

cuto¤ strategies. The de�nition of group strategy-proofness applies to all

such auctions.

Proposition 12 Every �nite clock auction (with any information disclo-
sure) is weakly group strategy-proof.

Proof. Consider the �rst stage of clock auction a¤ected by a group deviation.
If at that stage, the deviation is by a bidder who chooses to exit, then his

deviation payo¤ is zero, so he does not bene�t from the group deviation.

The other possibility is that the deviation is by a bidder who chooses not

to exit at a price equal to or below his truthful value, but such a bidder

either eventually exits or wins and receives his �nal clock price, which in a

descending clock auction cannot be higher and so cannot exceed his value.

Hence, this deviator�s payo¤ is non-positive. In both cases, at least one

participant in the group deviation fails to gain from the deviation.
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The preceding argument is independent of the information policy in the

auction, so it works for larger sets of strategies than just the cuto¤ strategies.

In particular, the clock auction is still group strategy-proof when bidders are

restricted to play cuto¤ strategies. Combining the two previous propositions,

we get

Corollary 13 Any deferred-acceptance auction with threshold prices and �-
nite bid spaces is weakly group strategy-proof.

It is possible to establish the result directly, without using the equivalence

to clock auctions or restricting attention to �nite bid spaces.

5 Substitutability -> Heuristic implementa-

tion

We say that a clock auction implements allocation rule � : B ! 2N if (i)

fpi (h) : h 2 Hg = Bi for each i and (ii) the auction generates � (b) when

bidders use cuto¤ strategies with cuto¤s b 2 B. Also, the allocation rule �
is monotonic if i 2 � (b) and b0i < bi implies i 2 � (b0i; b�i). It has substitutes
if i 2 � (b) and b0j > bj for some j 6= i implies i 2 �

�
bj; b

0
j

�
.

A set S � 2N of subsets of N has no disposal if for all A;A0 2 S, A � A0

implies A = A0.

Proposition 14 With �nite bid spaces, any monotonic allocation rule � with
substitutes whose range �(B) has no disposal can be implemented with a clock

auction or a deferred-acceptance heuristic.

Proof. � can be implemented with a clock auction described as follows: For
each i, set pi (N) = maxBi and then in each period t, set

pi
�
At
�
= pi

�
At�1

��
if i 2 Atn�

�
pAt

�
At�1

�
; pNnAt

�
At�1

�+�
pi
�
At
�
= pi

�
At�1

�
otherwise.
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(That is, decrement prices to those bidders who wouldn�t win given the cur-

rent best o¤ers �the current prices for the active bidders, and the last prices

accepted by the bidders who have exited.)

To see that this auction implements �, observe that if bidders use cut-

o¤ strategies with cuto¤s bi 2 Bi, then a bidder i 2 � (b) can never exit
the auction: when i 2 At and he is o¤ered price pi (At) = bi, we will

have pAtnfig (A
t�1) � bAtnfig and pNnAt (A

t�1)
+
= bNnAt, hence the substi-

tute property and i 2 � (b) imply i 2 �
�
pAt (A

t�1) ; pNnAt (A
t�1)

+
�
and

so his price is not decremented. Thus, we have � (b) � At throughout

the auction. On the other hand, when the auction stops we have At �
�
�
pAt (A

t�1) ; pNnAt (A
t�1)

+
�
, and putting together with the previous in-

clusion and using the no-disposal of the range of � implies � (b) = At =

�
�
pAt (A

t�1) ; pNnAt (A
t�1)

+
�
, hence the auction implements �.

The assumption of substitutes is not dispensable in the above proposi-

tion: in Example 22 below, we will see a monotonic allocation rule whose

range has no disposal that cannot be implemented by a clock auction. While

many deferred-acceptance heuristic allocation rules do satisfy substitutes,

not all of them do. For example, consider the allocation rule � (b1; b2) =(
f1; 2g if b1 < 1;

? otherwise.
This allocation does not have substitutes, but is im-

plementable with the deferred-acceptance heuristic with the scoring rule

s
f1;2g
1 (b1) = max fb1 � 1; 0g, sf2g2 (b2; b1) = 1, and s

f1;2g
2 (b2) = s

f1g
1 (b2; b1) =

0.)

The no-disposal assumption is also indispensable, which is illustrated by

the allocation rule � (b) = argmini2N bi, with B1 = ::: = BN (so that ties

exist, and in case of ties all the tied bidders win). Then there is no clock

auction implementing �.14 The no-disposal assumption is satis�ed, e.g., in

14Indeed, any such auction would start with equal prices, and it would then not be �safe�
to reduce any price: if all bidders have set their cuto¤ equal to the common price, then
the reduction would eliminate any a¤ected bidder. On the other hand, if some one bidder
has bid below the common price, then failing to reduce his price prevents the algorithm
from ever identifying that bidder.
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Example 4 if the feasible set F is comprehensive (meaning that A 2 F

implies A0 2 F whenever A � A0) and the heuristic has perfect feasibility

checking. But not all heuristic allocation rules satisfy it (e.g., in Example 5,

the heuristic may accept a set A0 when bids are low and a set A � A0 when
bids are high).

6 Pay-as-Bid: Full-info equivalence

Recall that for any �nite bid space B and allocation rule �, the threshold

prices for winners are given by pi (b�i) = max fb0i 2 Bi : i 2 � (b0i; b�i)g. In
particular, i 2 � (pi (b�i) ; b�i).

Proposition 15 Every paid-as-bid deferred-acceptance auction with �nite
bid sets Bi for all values vi < maxBi has a complete-information Nash equi-

librium pro�le in which, for each i 2 N; the bids are bi = max
�
v+i ; pi

�
v+�i
�	

and in which the resulting allocation is � (b) = � (v+).

Proof. Since changing accepted bids so that they are still accepted does not
a¤ect the deferred-acceptance heuristic�s outcome, we have A � � (v+) =

�
�
pA (v

+) ; v+NnA

�
= � (b) and pi (b�i) = pi

�
pAni (v

+) ; v+NnA

�
= pi

�
v+�i
�
�

v+i for each i 2 A. Now, we verify that the bids constitute a Nash equilibrium.
Every bidder i 2 A is winning and receiving payment of bi = pi

�
v+�i
�
=

pi (b�i) � v+i , and any larger bid by i would be losing, so a winning bidder i
has no pro�table deviation. Every bidder i 2 NnA is losing with its bid of
v+i , and so any winning bid for i earns a negative payo¤: a losing bidder has

no pro�table deviation.

Next, we introduce a pair of standard de�nitions.

De�nition 16 An auction is dominance-solvable in state v if under full in-
formation, there exists a payo¤ pro�le that is the unique outcome of iterated

deletion of (weakly) dominated strategies, regardless of the order of elimina-

tion.
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For �generic�values (vi =2 Bi for each i), a unique payo¤ pro�le implies
a unique outcome (allocation and winning bids).

De�nition 17 Assignment rule � is non-bossy if for any i 2 N , b 2 B and

b0i 2 Bi, � (b0i; b�i) \ fig = � (b) \ fig implies � (b0i; b�i) = � (b).

Non-bossiness means simply that a bidder cannot a¤ect others�allocations

without changing his own allocation. Some deferred-acceptance heuristics are

non-bossy, but as our "reference pricing" example illustrates, some are not.

In a deferred-acceptance-heuristic, a winner who changes its bid without

changing its winning status (that is, agents i 2 � (bi; bi) \ � (b0i; bi)) can
never a¤ect others�winning status, but because bidder�s scores can depend

on losing bids, a loser who changes to a di¤erent losing bid (i =2 � (bi; bi) [
� (b0i; bi)) may a¤ect the set of winners.

Proposition 18 Consider a paid-as-bid auction with a monotonic, non-
bossy assignment rule � and �nite bid spaces B. Say that a value pro�le

v is �generic� if for each i, vi 2 [0; �vi] nBi.
(i) The auction is pure-strategy dominance-solvable for all generic value

pro�les if and only if � can be implemented via a deferred-acceptance heuris-

tic.

(ii) In this case, for every generic value pro�le, the unique payo¤ pro�le

surviving iterated deletion of dominated strategies is also the unique (pure or

mixed) Nash equilibrium payo¤ pro�le in undominated strategies.

(iii) In this case, one strategy pro�le that survives iterated deletion of

dominated strategies and is a Nash equilibrium in undominated strategies is

the one described in Proposition 15.

Remark 19 We need � to be non-bossy to guarantee a unique outcome be-
cause of examples like the following one, which arises as a particular instance

of yardstick competition. Let N = 2, B1 = f1; 3g, B2 = f2; 4g, �(b) = f1g if
b2 = 4, and �(b) = ? otherwise. With v1 < 3, bidder 1�s dominant strategy is
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to bid 3, but bidder 2 has no dominated strategies. The two strategy pro�les

that survive iterated elimination in this example are also the undominated

Nash equilibrium pro�les: they are (3; 4) (in which bidder 1 wins) and (3; 2)

(in which there is no winner). In this example and many others, iterated dom-

inance and undominated Nash equilibrium fails to nail down the losing bids

in a paid-as-bid auction game, leading to a multiplicity of possible outcomes.

When � is non-bossy, the multiplicity of possible losing bids is irrelevant,

because one can deduce the unique auction outcome just by reasoning about

winning bids, as shown in the proof below.

Proof. For the �if�direction of (i), recall from Proposition 7 that any as-

signment rule � that is implementable via a deferred-acceptance heuristic is

also implementable with a clock auction in which bidders use cuto¤strategies

with cuto¤s corresponding to their bids in the deferred-acceptance heuristic.

Furthermore, we can implement assignment rule � with paid-as-bid pricing

using the following �two-phase clock auction�: In phase 1, the the clock

auction described above is run to determine the set of winners. In phase 2,

the payments to the winners are determined by allowing prices to continue

falling (through points in Bi) until all bidders �quit�, with the winners be-

ing paid the last prices they accept. The two-phase clock auction game in

which bidders use the cuto¤ pro�le b obviously leads to the same outcome

as the paid-as-bid sealed-bid auction game based on the deferred-acceptance

algorithm in which the bid pro�le is b.

If the assignment rule is non-bossy, then for generic values vi 2 RnBi the
game satis�es the TDI condition of Marx and Swinkels (1997), and so the pay-

o¤s pro�les surviving iterated deletion do not depend on the order of deletion:

hence deleting dominated or equivalent strategies in any order leads to the

same set of possible outcomes.15 We specify the following deletion process:

15We say that given strategy sets B̂i � Bi for each i two strategies bi; b0i 2 B̂i of agent
i are equivalent if � (bi; b�i) = � (b0i; b�i) for all b�i 2 B̂�i. Obviously deletng strategies
that are equivalent to surviving ones does not a¤ect the solution to iterated deletion of
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Begin by deleting for each agent i all the bids/cuto¤s bi < v+i (which are

either dominated by or equivalent to the bid v+i ). In the game that remains

after these initial deletions, every bidder strictly prefers any outcome in which

it wins to any in which it loses. We specify the next deletions inductively by

referring to the sequence of prices fp(At)g that would emerge during phase 1 if
each bidder were to use the cuto¤strategy v+i . At the beginning of each step t

of our iterated deletion process, the set of strategies remaining to each bidder

i is B̂t�1i = Bi\ [v+i ;max
�
v+i ; pi (A

t�1)
	
]. As the prices are reduced to p (At),

for each bidder i all the cuto¤s bi 2 B̂t�1i such that bi > max
�
v+i ; pi (A

t)
	

are sure to lose and are therefore either dominated by or equivalent to the

cuto¤ v+i , hence we can let B̂
t
i = Bi \ [v+i ;max

�
v+i ; pi (A

t)
	
]. The iterations

continue until phase 1 ends and the winners are determined at the end of

some iteration T to be �(max B̂T ). For each agent i, if B̂Ti is not a single-

ton, then its largest element, max B̂Ti = max(v+i ; pi
�
AT
�
), is dominant in

the game with just the bids B̂T (because it wins at the highest price). So,

we may do one more round of deletions, taking B̂T+1i = fmax(v+i ; pi
�
AT
�
)g.

Hence, the single outcome of iterative elimination of undominated cuto¤s is

the one for the bid pro�le (max(v+i ; pi
�
AT
�
))i2N .

For (ii), �x an undominated mixed Nash equilibrium pro�le. For each
bidder i with a zero equilibrium payo¤, all bids of v+i or more must be always

losing. Hence, by non-bossiness, we may replace every such bidder i�s bids

by the pure strategy bid v+i to obtain another mixed strategy pro�le � with

the same distribution of outcomes. We show below that � is actually a pure

strategy bid pro�le, and speci�cally it is the pro�le (max(v+i ; pi
�
AT
�
))i2N

that results from iterated elimination of weakly dominated strategies, as

described above.

For any bidder i with strictly positive equilibrium expected payo¤s, all

bids in the support of �i have positive expected payo¤s, so all must win

dominated strategies. Note furthermore that given non-bossiness, such equivalence obtains
whenever agent i�s own allocation does not change, i.e. � (bi; b�i) \ i = � (b0i; b�i) \ i for
all b�i 2 B̂�i.
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with a positive probability against ��i. Consider the maximum bid pro�le

in the support of �. Referring to the clock auction process, we infer that if

any positive-payo¤ bidder�s bid is losing for that pro�le, then it is losing for

all pro�les in the support of �, which contradicts positive expected payo¤s.

Since reducing a winning cuto¤/bid in the clock auction does not a¤ect the

allocation, for every bid pro�le in the support of �, the positive-payo¤players

are the winners. Since the highest always-winning bid earns strictly more

than any lower winning bid, this further implies that the winners�equilibrium

mixtures are degenerate: winning bidders play pure strategies. Therefore, �

assigns probability one to some single bid pro�le b.

Next, we claim that the iterative deletions described in the proof of (i)

above do not delete any of the component bids in b. Phase I of the iterative

deletion procedure deletes only bids above v+i for zero-payo¤ bidders and

only always-losing bids for positive-payo¤ bidders, so all the component bids

in b survive that phase. Phase II deletes all but the highest remaining bid

of each winning bidder: the lower bids are never best replies to the highest

surviving bids (they always win, but they are paid less). Hence, the full

procedure never deletes any component bid in the pro�le b. It follows that

b = (max(v+i ; pi
�
AT
�
))i2N and that the outcome of b is the outcome of every

undominated Nash equilibrium.

To prove (iii): in the surviving bid pro�le b, each agent i 2 AT bids

its threshold price, which is pi
�
AT
�
� v+i , while each i 2 NnAT bids v+i ,

which is by de�nition above its threshold price. Thus by Proposition 15 it

is a Nash equilibrium and it contains only undominated strategies, and as

argued above it survives iterated deletion of dominated strategies.

It remains to prove the �only if�direction of (i): we assume that the auc-

tion is dominance solvable and relate a sequence of sets B̂ (At) surviving a

number of rounds of iterated elimination of dominated strategies to a corre-

sponding sequence of clock prices p (At) that implements �. Importantly, our

construction has the properties for each i and any legal history At of the auc-
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tion that (a) max B̂i (At) = pi (At�1) for every i 2 At, min B̂i (At) > pi (At�1)
for every i 2 NnAt, and � (b) � At for all b 2 B̂ (At), and (b) the strategy
sets B̂ (At) are determined by iterated deletion of dominated and equiva-

lent strategies in a particular order for any generic value pro�le v such that

[v+i � pi (At�1) if and only if i 2 At]. We establish properties (a) and (b) by
induction.

We initialize the construction with clock prices p (N) = maxB and sets

of pro�les B̂ (N) = B. For each clock round t = 1; 2; 3; :::, given any legal

history At and previously determined strategy pro�les B̂ (At), we build p (At)

and B̂ (At+1) as follows. Within each �clock� iteration t, we nest a second

iteration employing a dummy variable �B. Initialize �B = B̂ (At). Check

whether there is some i 2 At and bi; b0i 2 �Bi such that b0i > bi and � (b
0
i; b�i) =

� (bi; b�i) for all b�i 2 �B�i. If there is, we delete bi from �Bi. Notice that

the bid bi is dominated by or equivalent to b0i for all value pro�les v (it wins

against the same pro�les b�i and earns a higher price when it wins), so this

step deletes only equivalent or weakly dominated strategies. Repeat this step

to further trim �B until the checking step indicates that no such qualifying

bids b0i > bi remain.

We claim that, after maximal trimming of �B, either all remaining strategy

pro�les lead to the same winners (i.e. �
�
�B
�
= fAtg) or else there exists an

agent i 2 At for whom the bid pi (At�1) = max �Bi always loses, that is,

i 2 Nn� (pi (At�1) ; b�i) for all b�i 2 �B�i. To establish this claim, we use the

inductive property and the assumption of dominance solvability for the game

with a value pro�le v satisfying v+i < min �Bi for i 2 At (so that agents i 2 At
always strictly prefer to win) and v+i > pi (A

t�1) for i 2 NnAt (the remaining
agents prefer to lose). First, by inductive property (b), iterated deletion of

dominated and equivalent strategies for v yields the sets B̂ (At). Next, given

such sets, if there are any two bids bi; b0i 2 B̂i (At�1) such that b0i > bi and

bi is dominated by b0i, then (by monotonicity) both win against the same set

of opposing bid pro�les b�i and hence (by non-bossiness) lead to the same
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allocations. Bids bi that are dominated in this way are eliminated by the

iterative �pruning�described above, at the end of which none such remain in
�B. Hence, unless there is a unique set of winners (�

�
�B
�
= fAtg), dominance

solvability for value pro�le v implies that there is another dominance relation

to be found: there exists at least one active bidder i 2 At and bids bi; b0i 2 �Bi

with with b0i < bi such that bi is dominated by b
0
i. Given v, such dominance is

possible only if bi never wins, which by monotonicity implies our claim that

pi (A
t�1) = max �Bi � bi never wins.
For iteration t of the clock auction, we reduce the price to the identi�ed

bidder i by letting pi (At) = max
�
�Bin fpi (At�1)g

�
and pj (At) = pj (At�1) for

every bidder j 2 Nn fig. The clock auction and the strategy sets for the next
round are then updated as follows. If bidder i accepts the reduced clock price

pi (A
t) at iteration t, we let At+1 = At and B̂i ((At; At)) = �Bin fpi (At�1)g.

If, instead, bidder i quits, we let At+1 = Atnfig and B̂i ((At; Atn fig)) =
fpi (At�1)g. For all bidders j 2 Nn fig, regardless of i�s decision to accept
or reject, we let pj (At) = pj (At�1) and B̂j ((At; At)) = B̂j ((At; Atn fig)) =
�Bj. This guarantees that property (b) extends to both history (At; At) and

(At; Atn fig).
To see that with this construction, property (a) also extends from t to

t + 1, observe that it su¢ ces to check the property for the bidder i whose

price is changed. If v+i � pi (A
t�1), then the bidder remains active and

max B̂i (A
t+1) = pi (A

t), as speci�ed by the inductive property. Otherwise,

v+i > pi (A
t�1), the bidder quits and B̂i (At+1) = fpi (At)g, somin B̂i (At+1) >

pi (A
t). By (a), the clock auction with cuto¤s b leads to the outcome �(b).

Here are two examples of non-bossy allocation rules:

Example 20 (Optimization) Letting F � 2N be the feasible set as in Ex-
ample 4, the optimizing allocation rule is given by

� (b) 2 argmin
A2F

P
i2A bi.
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It is easy to see that, if B rules out ties (so argmin is always single-valued),

optimizing allocation rules are non-bossy, because:

For i =2 � (bi; bi) [ � (b0i; bi) we have � (bi; bi) = arg min
A2F :i=2A

P
j2A bj = � (b

0
i; bi)

For i 2 � (bi; bi) \ � (b0i; bi) we have � (bi; bi) = arg min
A2F :i2A

P
j2Anfig bj = � (b

0
i; bi)

Example 21 (Fixed Scoring and Perfect Feasibility Checking) Suppose
we are in the setting of Example 4, that the feasible set F � 2N is comprehen-

sive (as de�ned above), and that sAi
�
bi; bNnA

�
=

(
�i (bi) if A [ fig 2 F;
0 otherwise,

where the functions �i (bi) are increasing and positive-valued and there are no

ties (so feasibility is always maintained). As observed above, every deferred-

acceptance procedure satis�es non-bossiness for the winning bids. To check

that condition for rejected bids, too, suppose that given bid pro�le b agent i�s

bid bi is rejected in round t and agent j�s bid bj is rejected in round t (hence

Atn fi; jg 2 F , and so by comprehensiveness Atn fjg 2 F ) but replace bi with
a bid b0i < bi that is rejected in round t+1. In this case, bid j must be rejected

in round t (so we must have

max
k2Atnfi;jg:Atnfj;kg2F

�k (bk) < �i (b
0
i) < �j (bj) :

After round t+1 the heuristic is una¤ected by the replacement. Iterating this

argument, we see that any change in bi that preserves this bid being losing

will not a¤ect the allocation produced by the heuristic.

7 Comparisons to Properties of Other Auc-

tions

The properties that we have derived for deferred-acceptance auctions are not

shared by other classes of auctions that have received close attention. Below
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are some examples to show that our �ndings do not apply to auctions in

which winners are selected using either optimization or a greedy-acceptance

heuristic.

7.1 Auctions Using Optimization

An optimizing allocation rule minimizes the total social cost subject to a

feasibility constraint. Letting F � 2N be the feasible set as in Example 4,

an optimizing rule solves

� (b) 2 argmin
A2F

P
i2A bi.

This is a monotonic allocation rule, and if Bi = (0;+1) then the threshold
prices are Vickrey prices - the agent is paid the externality his inclusion

creates on the other agents:

pi (b�i) = min
A2F :A�Nnfig

P
j2A bj �

P
j2�(b)nfig bj

(so that his surplus pi (b�i)� bi captures the entire social cost savings due to
his participation).

In some circumstances, the optimizing allocation rule and Vickrey prices

can be computed with a deferred-acceptance heuristic or clock auction (ignor-

ing any computational challenges that this might involve). This is determined

by properties of the feasible set F . For example, when F is a comprehensive

set and minBi > 0 for each i, the range of � has �no disposal�(as de�ned

above). If � also satis�es substitutes, then by Proposition 14 allocation rule �

is implementable by a clock auction or a deferred-acceptance heuristic when

bid spaces Bi are �nite. (See Bikhchandani et al. (2011) for conditions on

F for an optimizing allocation rule to satisfy substitutes; see also Ausubel

(2004) and de Vries and Vohra (2007) for earlier examples of settings in

which optimizing allocation rules can be implemented via clock auctions.)

In this case, paid-as-bid equivalence also holds. Bernheim and Whinston
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(1986) had shown payo¤ equivalence between Vickrey and paid-as-bid auc-

tions when bidders are substitutes using a coalition-proofness re�nement to

select among Nash equilibrium. Our analysis �nds the same conclusion un-

der di¤erent assumptions and conditions. We use either iterated dominance

or undominated Nash equilibrium to select a Nash equilibrium and we al-

low a wide range of heuristic allocation rules with substitution, but we limit

attention to environments with single-minded bidders.

For an example in which the substitutes condition does not hold and so

an optimizing � cannot be implemented via a deferred-acceptance heuristic,

consider the following:

Example 22 N = f1; 2; 3g and F = ff1; 2g ; f3gg. Intuitively, the structure
of F makes bidders 1 and 2 complementary. In this case, � (b) = f1; 2g if
b1 + b2 < b3 and � (b) = f3g if b1 + b2 > b3. In any deferred-acceptance

heuristic, the �rst bid to be rejected can be based only on pairwise comparisons

of bids, so it cannot be generally consistent with the preceding inequalities.

Observe, too, that the Vickrey auction implementing this allocation rule

does not satisfy either weak group strategy-proofness or paid-as-bid equiva-

lence. For example, when b1 + b2 < b3, the Vickrey prices are p1 (b2; b3) =

b3 � b2 and p2 (b2; b3) = b3 � b1. Then the two winners have a strictly im-
proving coalitional deviation in which they bid b1 < v1, b2 < v2 such that

b1 + b2 < v3: both still win but each is paid strictly more. Also, note that

the sum of Vickrey prices is 2b3 � b1 � b2 > b3, but in the corresponding

paid-as-bid auction, there cannot be a Nash equilibrium in which bidders 1

and 2 win and are paid a total of b1 + b2 > v3, since then bidder 3 would

deviate to undercut them. (In fact, in all the Nash equilibria in which bidder

3 uses undominated strategies and bidders 1 and 2 win, they together pay

b1 + b2 = v3. These outcomes have been identi�ed by Bernheim and Whin-

ston (1986).) So, the Vickrey mechanism appears �too expensive� in this

case relative to optimization with paid-as-bid pricing. One solution that has
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been proposed to the problem of Vickrey auctions�excessive costs (insu¢ cient

revenues) is �core-selecting auctions�(Day and Milgrom 2008), which sacri-

�ce strategy-proofness even for single-minded bidders. Deferred-acceptance

heuristics o¤er a possible alternative way to reduce costs (increase revenues),

which preserves strategy-proofness.

7.2 Auctions Using Greedy-Acceptance Heuristics

To compare to the greedy-acceptance heuristics auctions of LOS, consider

again Example 22. For illustration, let a bidder�s score be its bid, so the

heuristic iterates accepting the highest bid that is still feasible. If we break

ties in favor of lower-numbered agents, we have � (b) = fb1; b2g ifmin fb1; b2g �
b3, and � (b) = fb3g otherwise. Suppose bid spaces are bi =

�
0;�b
�
. The

threshold payments for the reverse auction are as follows: First, if � (b) =

fb1; b2g, then for i = 1; 2, pi = �b if b�i � b3 and pi = b3 otherwise. Second, if
� (b) = fb3g, then p3 = min fb1; b2g.
Observe that this allocation rule cannot be implemented with a deferred-

acceptance heuristic or a descending clock auction, since the allocation is

completely determined by the single �best�(lowest) bid while the �rst step

of the deferred-acceptance heuristic is determined by the single worst bid

according to some criterion. One might conjecture that greedy-acceptance

heuristics could instead be matched with an ascending clock auction, but

that fails, too, because when bidder 3 exits �rst, the allocation is determined

to be � (b) = fb1; b2g but the prices to the winners are not yet determined.16

Next, observe that the greedy-acceptance threshold auction fails weak

group strategy-proofness. For example, if v1; v2 > v3 > 0, bidders 1 and 2

16A traditional purpose of a clock auction is to economize on information transmission or
conceal some information, and accordingly we require that that clock-auction prices stop
changing once the allocation has been determined. Without this condition, any allocation
rule can be implemented with a clock auction, simply by running all the prices down to
elicit complete information about cuto¤s from all bidders and determining the allocation
as a function of those.

31



could jointly deviate to bid b1; b2 < v3, which will give each of them threshold

prices of �b.

Finally, the threshold and paid-as-bid auctions based on the greedy-

acceptance heuristic do not have the outcome equivalence properties de-

scribed above. For suppose that v1; v2 < v3. In the threshold auction, bidders

1 and 2 win and their threshold payments are both �b, but a paid-as-bid auc-

tion with complete information cannot have a pure Nash equilibrium in which

bidders 1 and 2 win and both get paid above v3, since then bidder 3 would

deviate to undercut them both and win. So a greedy-acceptance heuristic

with threshold payments is more expensive in this case than any pure Nash

equilibrium of its paid-as-bid counterpart.

8 Discussion

This paper describes parts of the analysis that were used to develop one

of the options for a �reverse auction�to purchase TV broadcast licenses as

part of the FCC�s incentive auction program. The full incentive auction

program also included two other important parts: the �forward auction,�

in which rights for high-speed wireless broadband would be sold, and the

�clearing rule� in which the results of the forward and reverse auctions are

combined to determine the quantities to be transacted. Neither of those

pieces is described here. Also omitted is a description of the development

by others of algorithms and procedures to make the very fast computations

required by this particular auction.

Several of the game-theoretical and economic analyses of auctions devel-

oped above contribute in signi�cant ways to the practical evaluation of some

proposed incentive-auction designs.

1. The ability to implement the heuristic threshold auction with a clock

auction is important in practice for two reasons. The �rst is familiarity:

most past FCC auctions have used the simultaneous multiple round
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auction design, which closely resembles a clock auction. The second

is that, for single-minded bidders, the dominant strategy property is

much more obvious for clock auctions than for sealed-bid threshold

auctions.17 Also, sealed-bid threshold auctions are strategy-proof only

if bidders trust the auctioneer to compute the threshold prices correctly,

while clock auctions are strategy-proof and (weakly) group strategy-

proof regardless of the clock adjustment rule.

2. Strategy-proofness is important because it reduces the bidders�costs

of participating, especially for small local broadcasters whose partici-

pation is needed for a successful incentive auction. Also, it eliminates

the losses from mistakes that can occur in other kinds of auctions such

as paid-as-bid auctions, in which a bidder�s optimal bid necessarily

depends on a guess about how others will bid.

3. Outcome equivalence is the only available indicator of the extra cost

of providing dominant-strategy incentives, compared to a paid-as-bid

rule. The estimated cost that it implies for auctions based on deferred-

acceptance heuristics is zero.

4. The ability to incorporate a cost target into the price determination

rule may be important for the incentive auction, because of the way

the reverse- and forward-auction outcomes are combined. Markets clear

only when the total cost of procuring licenses su¢ cient to clear all

broadcasters from a set of channels is su¢ ciently lower than the corre-

sponding forward auction revenue.18

5. Yardstick competition is extremely important in practice. It allows the

17Kagel (1987) makes a similar point, providing experimental evidence that bidders in
English auctions may make fewer errors than in the equivalent sealed-bid second-price
auctions.
18By the law authorizing the auctions, the sale can proceed only if the net revenues are

su¢ cient to pay the relocation costs of broadcasters who do not sell, plus the cost of the
FirstNet public safety system, plus a target to be speci�ed by the regulator.
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FCC to set reserve prices based on market information in regions where

there are too many constraints for direct competition to discipline auc-

tion prices.

6. Finally, the fact that deferred-acceptance heuristics can be used to

implement any bid-selection rule with the substitutes and no-disposal

properties is useful, because the most costly constraints in the prob-

lem are the ones limiting on the number of available channels in each

metropolitan area, which enforces a pattern of substitution among

broadcasters.

This formal results in this paper are derived only for the case of single-

minded bidders. In the actual FCC auction problem, the single-mindedness

property describes individual station owners who decide only between selling

their broadcast licenses or continuing on-air. The actual auction, however,

is likely to include additional options, such as allowing a broadcaster to

switch to broadcasting to the same population but in a less-congested, lower-

frequency band. Also, some broadcasters own multiple stations and may wish

to contemplate which subset of stations to sell. These are just two examples

of multi-minded bidders and the actual auction with multi-minded bidders

would need to deviate from the theoretical version described here.

Clock auctions have been used and studied for multi-minded bidders,

but for those bidders truthful bidding is often not optimal. Milgrom (2000)

and Gul and Stacchetti (2000) examine simple heuristic clock auctions (for

example, forward auctions that raise prices for overdemanded goods) under

the assumption that bidders bid �straightforwardly,�showing that with such

behavior, these auctions achieve e¢ ciency when goods are substitutes. But

straightforward bidding is not generally consistent with equilibrium for multi-

minded bidders in this design (Weber, 1997). Some clock auctions do provide

incentives for truthful bidding even for multi-minded bidders by replicating

the Vickrey outcome (see Ausubel (2004) and Bikhchandani et al (2011)),
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but those can entail a signi�cant computational burden. Bartal et al. (2003)

propose a clock auction that trades o¤ e¢ ciency for a reduced computational

burden. In that proposal, each bidder is asked for its demand only once, and

the prices quoted to a bidder depend on what the previous bidders have

chosen. Under some conditions, such an auction may achieve �approximate�

e¢ ciency.

In classical partial equilibrium theory, markets bring together buyers and

sellers of a single homogeneous good, all of whom know the relevant prices of

all other goods and have declining marginal values of additional quantity. In

the transactions we have analyzed, this description is very far o¤the mark. In

the incentive auction transaction and some others, large numbers of complex

constraints or complicated valuations create new challenges for economists

engaged in market design. This paper reports economic theory that has been

helpful to address one such challenge, in the hopes that it may be directly or

indirectly useful for other applications as well.
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