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Abstract

A key problem in mechanism design is the construction of
protocols that reach socially efficient decisions with minimal
information revelation. This can reduce agent communica-
tion, and further, potentially increase privacy in the sense that
agents reveal no more private information than is needed to
determine an optimal outcome. This is not always possible:
previous work has explored the tradeoff between communi-
cation cost and efficiency, and more recently, communication
and privacy. We explore a third dimension: the tradeoff be-
tween privacy and efficiency. By sacrificing efficiency, we can
improve the privacy of a variety of existing mechanisms. We
analyze these tradeoffs in both second-price auctions and fa-
cility location problems (introducing new incremental mech-
anisms for facility location along the way). Our results show
that sacrifices in efficiency can provide gains in privacy (and
communication), in both the average and worst case.

1 Introduction
Mechanism design deals with the creation of protocols that
reach socially desirable (e.g., efficient) outcomes when self-
interested agents have private information—typically util-
ities over the outcome space—relevant to the choice of
an outcome (Mas-Colell et al. 1995). Much research as-
sumes direct revelation, in which agents reveal their full
utility functions to the mechanism. But direct mechanisms
often elicit more information than required to make optimal
choices, leading to communication and computational dif-
ficulties. Incremental mechanisms, commonly used in auc-
tions, alleviate communication complexity in some cases
(Zinkevich et al. 2003), though worst case results show
that nearly complete information is needed in many settings
(Nisan and Segal 2006). Alternatively, one can use approx-
imation, sacrificing outcome efficiency to reduce communi-
cation complexity (Blumrosen and Nisan 2002; Hyafil and
Boutilier 2007).

Direct revelation also requires a sacrifice of privacy: re-
vealing its full utility function may be undesirable for an
agent, especially when some of that information is provably
unnecessary for computing the optimal outcome. Recent
work—using techniques similar to those used in the anal-
ysis of communication complexity (Kushilevitz and Nisan
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1997)—has analyzed privacy preservation of specific mech-
anisms in this sense; that is, where the degree to which an
agent reveals more than is strictly needed to compute the
outcome of the mechanism is the degree to which privacy
has been lost.1 For instance, Brandt and Sandholm(2008)
showed that, for second-price auctions, the English auction
preserves complete privacy—no agent reveals any more than
is strictly necessary to determine the outcome—but that this
comes at the cost of exponential communication complexity.
More recently, Feigenbaum et al. (2010) proposed a gen-
eral framework to analyze the tradeoff between privacy and
communication, defining several forms of privacy approx-
imation. They also showed how different mechanisms for
second-price auctions (and several other problems) improve
privacy at the expense of communication, and vice versa.

Previous work has addressed both the tradeoff between
communication and efficiency, and the tradeoff between pri-
vacy and communication. In this work, we address a third
tradeoff, that between efficiency and privacy, and provide a
general framework for analyzing this tradeoff. Specifically,
we consider approximate mechanisms that find ε-optimal
solutions to choice problems, and show how agents’ pri-
vacy improves as one increases the degree of approximation
ε. Our contributions are as follows: In Sec. 3 we define a
general framework for analyzing these tradeoffs, extending
privacy approximation ratios, introduced by Feigenbaum et
al.(2010), to the case of approximate mechanisms. In Sec. 4,
we analyze the efficiency-privacy tradeoff in approximate
versions of mechanisms for second-price auctions, includ-
ing the English, sealed-bid, and bisection protocols in both
the worst and average cases, and compare our ε-privacy ap-
proximation ratios with the exact ratios derived by Feigen-
baum et al.(2010). We also generalize their analysis from
2-agent to n-agent auctions. In Sec. 5, we develop incre-
mental protocols for facility location problems that imple-

1Note that the notion of privacy used here is quite different from
differential privacy, which deals with the potential “leakage” of a
user’s private information associated with a particular set of queries
to a database (Dwork 2006). Though some connections between
differential privacy and mechanism design have been developed
(McSherry and Talwar 2007), these have focused largely on how
to exploit differential privacy to design approximately efficient and
truthful mechanisms, and do not attempt to limit information reve-
lation in the sense we pursue here.



ment the classic median mechanism (Schummer and Vohra
2007). We analyze the exact privacy approximation ratio for
these new protocols, and again derive results demonstrating
the efficiency-privacy tradeoffs induced by approximate ver-
sions of these protocols.

Approximate mechanisms will not just improve (increase)
privacy, but also generally improve (reduce) communica-
tion complexity. While we have derived communication
complexity results for our mechanisms, space precludes a
full discussion. Furthermore, sacrificing efficiency usually
breaks the incentive properties of standard mechanisms. We
again defer a detailed analysis, but make brief remarks as
appropriate. We simply note that all of our mechanisms are
exactly truthful or ε-incentive compatible.2

2 Preliminaries
We assume an outcome must be chosen from a set X for a
set of n agents. Each agent has a type or valuation function
ti ∈ Ti, with ti(x) denoting its utility for x ∈ X . Let T =
×iTi be joint type space. We take each Ti to be finite and for
convenience, let Ti = {1, . . . , νi}. The outcome is chosen to
maximize some social choice function (SCF) f : T → X .
We focus on social welfare sw(x, t) =

∑
i ti(x), with the

aim of choosing x∗ = argmax sw(t, x). Since ti is private
information, the goal in mechanism design is to construct
protocols that incentivize each i to reveal enough about ti to
allow an optimal choice to be made (Mas-Colell et al. 1995).
We will describe examples of such mechanisms for second-
price auctions (SPAs) and facility location problems (FLPs)
below.

Much of mechanism design deals with direct revelation
mechanisms, in which each agent reveals its entire type to
the mechanism. For simple outcome spaces (e.g., single-
item auctions), the precision required by direct revelation is
often unnecessary; in complex settings (e.g., combinatorial
auctions, or CAs), X has exponential size, imposing signif-
icant burdens on communication. Incremental mechanisms
have been proposed (e.g., ascending auctions (Parkes 1999)
and adaptive elicitation (Zinkevich et al. 2003) for CAs)
which, by eliciting only information that is “needed,” can
reduce this burden in practice, though not in general (Nisan
and Segal 2006). In a different vein, one can use informa-
tional approximation, eliciting information about agent val-
uations that admits only an approximately optimal choice.
For example, increasing the bid increment in an English auc-
tion reduces communication, but loses efficiency by induc-
ing more “ties” due to additional imprecision introduced.
This strategy has been examined for single-item allocation
(Blumrosen and Nisan 2002), and for general quasi-linear,
VCG-style mechanisms (Hyafil and Boutilier 2007).

The communication complexity model for multi-party
computation (Kushilevitz and Nisan 1997) provides a useful
framework for analyzing the costs of specific protocols, but
can be adapted to quantify the degree of privacy revelation in

2Indeed, when one factors in incentives, there is a more com-
plex four-way tradeoff between efficiency, privacy, communication
complexity and incentives. We discuss these issues and communi-
cation complexity results in a longer version this paper.

mechanisms. One can think of an SCF f as a n-dimensional
matrix (tensor)Mf whose entry at position t = (t1, · · · , tn)
is f(t) = f(t1, · · · , tn).
Defn. 1. Let f be an SCF. The ideal monochromatic region
for t ∈ T w.r.t. f is RI

f (t) = {t′|f(t′) = f(t)}. The ideal
monochromatic partition of f is the set of (disjoint) ideal
monochromatic regions w.r.t. T .

Intuitively, RI
f (t) describes the set of type profiles t′ that

are indistinguishable from t relative to f : each such t′ leads
to the same choice x = f(t). Thus the identity of the ideal
monochromatic region is both necessary and sufficient to de-
termine f ’s choice. A (deterministic) communication proto-
col p specifies the rules by which agents with private in-
formation share that information (with a third party or one
another) to compute the outcome of a function (Kushilevitz
and Nisan 1997). If the outcome p(t) on inputs (types) t sat-
isfies p(t) = f(t), we say p implements SCF f . As such, a
mechanism is simply a protocol. Define a rectangle ofM(f)
to be a submatrix of M(f).

Defn. 2. Let pf implement f . The pf -induced rectangle for
t ∈ T , Rp

f (t), is the maximal submatrix S of M containing
t s.t. the run of pf is indistinguishable for any t′ ∈ S.3

The p-induced rectangles correspond to the information
revealed by p. If a protocol pf implements f , then we must
have Rp

f (t) ⊆ RI
f (t). Feigenbaum et al.(2010) use the ra-

tio of the sizes of the ideal (maximal) regions of f and the
regions (rectangles) induced by pf to characterize the de-
gree to which pf discloses extraneous private information.4
We present the definitions using two agents with type vec-
tor t = (t1, t2) (as in Feigenbaum et al.2010), though they
extend to n agents in the obvious way (see below):
Defn. 3. (Feigenbaum et al. 2010) The worst case privacy
approximation ratio (WPAR) of protocol pf for SCF f is:

wpar(pf ) = max
(t1,t2)∈T

|RI
f ((t1, t2))|

|Rp
f ((t1, t2))|

.

LetD be a distribution over T . The average privacy approx-
imation ratio (APAR) of pf is:

apar(pf ) = ED

[
|RI

f ((t1, t2))|
|Rp

f ((t1, t2))|

]
.

We can think of perfect privacy as revealing only enough
about the type profile of the agents to compute f (i.e., re-
veal only the ideal region). These ratios (PARs) then mea-
sures how much additional information a protocol pf reveals
about the type vector (in the worst case, or on average given
some distribution over types). A smaller PAR indicates that
p offers a greater degree of privacy, with the smallest PAR
value of 1 meaning that p offers perfect privacy. A PAR

3The fact that indistinguishable regions of pf must be rectan-
gles is a consequence of the communication model (Kushilevitz
and Nisan 1997) (e.g., see Fig. 1).

4These definitions are objective privacy approximation ratios;
subjective variants can be defined (Feigenbaum et al. 2010), but we
do not use these here.



value of k > 1 means that (either in the worst case or on
average) the protocol learns that the joint type lies in a re-
gion that is k times smaller than required to compute f .

Sandholm and Brandt (2008) show that for SPAs, the En-
glish protocol is the only perfect privacy preserving protocol
for two bidders, though it bears exponential communication
cost; furthermore, perfect privacy is not possible for n > 2
bidders. Feigenbaum et al.(2010) demonstrate interesting
tradeoffs between privacy and communication complexity
in two-bidder SPAs by analyzing sealed-bid, bisection, and
bounded bisection protocols. We discuss these results below
when defining approximate versions of these protocols.

3 Efficiency-Privacy Tradeoffs
The work described above studies the tradeoff between pri-
vacy and communication. There has also been research an-
alyzing the tradeoff between efficiency and communication.
For example, priority games (Blumrosen and Nisan 2002)
model single-item auctions in which agents express their
valuations with limited precision, and provide allocations
(and prices) that sacrifice efficiency (since true types are
unknown) for communication savings; they are also strat-
egyproof. Partial revelation VCG mechanisms (Hyafil and
Boutilier 2007) apply in any setting (social welfare, quasi-
linear) where VCG can be used, but again limit revelation
and sacrifice efficiency. Without efficient outcome selec-
tion, such mechanisms are not strategyproof; but with ap-
proximate variants of VCG pricing, ε-efficiency induces ε-
incentive compatibility in dominant strategies.

Apart from those above, a third natural tradeoff suggests
itself, namely, that between efficiency and privacy. We ex-
ploit the notion of approximate solution (Blumrosen and
Nisan 2002; Hyafil and Boutilier 2007) and show how it
can be used to improve the privacy approximation ratios of
Feigenbaum et al.(2010): that is, how much additional pri-
vacy can be preserved if we allow an ε sacrifice in efficiency.
We first define ε-approximation and ε-implementation:

Defn. 4. We say an SCF f̃ ε-approximates an SCF f if
|sw(f(t), t) − sw(f̃(t), t)| ≤ ε, ∀t ∈ T . If protocol pf̃ im-
plements such an f̃ , we say pf̃ ε-implements f .

In other words, f̃ (and any corresponding protocol pf̃ ) ap-
proximates f if the difference in the social welfare between
the two is no more than ε for any type profile.

We can now introduce privacy approximation ratios rela-
tive to approximate implementations of a SCF f .
Defn. 5. Let pf̃ be a protocol that ε-implements f with SCF
f̃ . The ε-worst case privacy approximation ratio of pf̃ is:

ε-wpar(pf̃ ) = max
t∈T

|RI
f (t)|

|Rp

f̃
(t)|

.

Let D be a distribution over T . The ε-average case privacy
approximation ratio of pf̃ is:

ε-apar(pf̃ ) = ED

[
|RI

f (t)|
|Rp

f̃
(t)|

]
.

These definitions are similar to those in Defn. 3 except
that we compare the ideal monochromatic regions of an SCF
f to the regions (or rectangles) induced by a protocol for its
ε-approximation f̃ . Our definitions in fact reduce to Defn. 3
when ε = 0 (i.e., when f̃ = f ). As above, smaller values of
ε-par indicate a greater degree of privacy preservation. Un-
like exact par which has a minimum value of 1 (perfect pri-
vacy), ε-par can be less than 1, indicating that strictly less
information than required for computing f is revealed. In-
deed, this is only possible because of approximation. While
both measures are interesting, we believe the average case
measure ε-apar (using appropriate distributions in specific
applications) may be more useful in practice.

These definitions can be recast to minimize ε-par over
all ε-implementations of f , measuring the tradeoffs inherent
in f ; but we focus here on the analysis of specific families
of protocols. Mechanisms for specific problems, e.g., SPAs,
can be parameterized by the degree of approximation ε they
offer, especially by limiting the precision with which agents
reveal their valuations, hence improving ε-par by sacrificing
efficiency. We now explore this tradeoff.

4 Tradeoffs in Second-Price Auctions
We illustrate the usefulness of our framework by analyzing
the efficiency-privacy tradeoffs for approximate versions of
three mechanisms used in second-price auctions (SPAs), the
English auction, the sealed-bid auction, and the bisection
auction. Our contributions are two-fold: first, we generalize
the two-agent analysis of Feigenbaum et al.(2010) by pro-
viding privacy approximation ratios (or bounds) for n-agent
SPAs (whose analysis is somewhat more involved). Second,
we demonstrate the additional privacy savings obtained by
admitting approximate efficiency.5

Consider a setting with n agents, and each agent i ≤ n
has a valuation vi for some item. Let v[h] be the h-th highest
valuation in (multiset) V = {v1, · · · , vn} and a[h] the agent
with valuation v[h] (ties broken lexicographically). The SPA
allocates the item to a[1] for price v[2]. The sealed-bid mech-
anism is a one-shot protocol for SPAs: each agent submits
its valuation to the mechanism, which awards the item as
required. The English auction is incremental: a (small) bid
increment δ is chosen, and the price p is raised by δ at
each round; i can drop out in any round (strategically, when
p > vi); when one agent remains, it is awarded the item at
the current price. Ties (i.e., when more than one agent drops
out at the last round) are broken lexicographically (at the
prior price, which all final agents “accepted”). The bisection
auction (Grigorieva et al. 2007) uses a binary search (asking
each i whether vi is above specific values) to determine a
value b that lies between v[1] and v[2]. Once vi < v[2] is
proven, no further queries are asked of i. Once b is identi-
fied, binary search on the interval containing v[2] is used to
identify v[2] to a desired precision σ. Following Feigenbaum
et al.(2010), we treat the valuation space as discrete, repre-
sentable with k bits, allowing ν = 2k distinct valuations. We
assume, w.l.o.g., that vi ∈ Vk = {0, . . . , 2k−1}.

5We omit analysis of the bounded bisection protocol (Feigen-
baum et al. 2010) for space reasons.
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Fig. 1: Partitions induced by the English auction for 2-bidder SPAs
when δ=1 (ε=0, thin line) and δ=2 (ε=1, thick line). When δ=
1, this is also the ideal monochromatic partition. The shaded region
indicates the inputs from which ε-wpar is derived. The numbers
indicate the outcome for each ideal rectangle (e.g., in the leftmost
rectangle, the item is allocated to agent 1 for a price of 0).

English Protocol The English protocol with an “exact”
bid increment δ = 1 has exponential communication com-
plexityO(2k) (Brandt and Sandholm 2008): simply consider
the case of v[2] = 2k − 1. But this high cost allows for very
strong privacy: for two agents, par (both worst and average
case) is 1, i.e., it is perfectly privacy preserving (though for
n > 2 agents, perfect privacy is not possible (Brandt and
Sandholm 2008)). The thin line in Fig. 1 illustrates the ideal
monochromatic partition for a two-agent SPA.

We can approximate the English auction by simply in-
creasing the bid increment, setting δ = 1 + ε = 2d for
some precision d > 0.6 Clearly this ε-English protocol, de-
noted pεE , ε-approximates SPA, with suboptimal allocation
happening only when multiple agents drop out at the last
round; but all such agents have values within an interval of
size (1+ε), guaranteeing ε-efficiency. The price paid is also
within ε of that dictated by the SPA, and pεE is incentive
compatible. The thick line in Fig. 1 illustrates the protocol-
induced partition for the ε-English auction when ε = 1. No-
tice that for some type profiles, the outcome is different from
that of the exact protocol (e.g., with profile (2, 3), pεE allo-
cates the item to agent 1 for a price of 2, while the exact
protocol allocates efficiently to agent 2 for a price of 2). It is
easy to verify that, for any t, the protocol induced rectangle
for pεE is at least as large as that induced by the exact En-
glish protocol, indicating privacy savings. The shaded area
denotes the profiles from which we derive ε-wpar: the ideal
monochromatic region has size 3 while the protocol-induced
rectangle has size 4. Note that ε-wpar = 3

4 < 1, indicating
better than perfect privacy.

These intuitions can be generalized to n-agent SPAs:
Theorem 6. For n-agent SPAs,

ε-wparp(p
ε
E) =

(2k)n−1 − (2k − 1)n−1

(1 + ε)n

Worst-case privacy savings of pεE relative to the exact pro-
tocol are (1 + ε)n, as one would expect (1 + ε per agent).

6We use powers of 2 for convenience only.

Suppose we have a uniform distribution D over type pro-
files (all average-case analysis in the sequel uses thisD). We
can bound ε-apar for the ε-English protocol:
Theorem 7. For n-agent SPAs,

(dn
2
e)2 (2k−1)n−3( n−3

dn
2
e−2

)
(1 + ε)n−2

≤ ε-apar(pεE) ≤ 2

(
n

2

)
(2k)n−2

(1 + ε)n−1

In the ε-English protocol, the valuations of at least n − 1
agents are identified with precision 1 + ε, so privacy sav-
ings are at least (1+ε)n−1 relative to exact implementation.
However, Thm. 7 bounds the savings by (1 + ε)n−1, so the
average privacy savings of pεE are exactly (1 + ε)n−1. We
compare ε-apar of pεE with that of other protocols below.

Bisection Protocol A natural way to approximate the bi-
section protocol is to use early termination, stopping when
we identify v[2] with some desired precision σ (i.e., when
the bisection interval containing v[2] is no larger than σ).
We then allocate to a[1] using the price at the low end
of v[2]’s interval (ties broken lexicographically). To ensure
ε-efficiency, thus defining the ε-bisection protocol pεB , we
must have σ ≤ 2blog2(ε+1)c. This mechanism is ε-incentive
compatible (an agent’s gain by misreporting is at most ε).
We can derive bounds for wpar:
Theorem 8. For n-agent SPAs,

(n− 1)(2k−1)n−1

(2blog2(ε+1)c)n
≤ ε-wpar(pεB) ≤

(2k)n

(2blog2(ε+1)c)n

This worst case occurs when all agents have values clus-
tered in the interval containing v[2]: thus each reports its val-
uation with the maximum precision, so ε-wpar is exponen-
tial in both k and n. The privacy savings of pεB relative to ex-
act implementation is precisely (2blog2(ε+1)c)n ≈ (ε+ 1)n.

For ε-apar, we have the following bounds:
Theorem 9. For n-agent SPAs,

nk

(1 + ε)n
≤ ε-apar(pεB) ≤ (n+ 1)

(
n

bn
2
c

)
(k + 1)n

1 + ε

We see that apar for (exact and approximate) bisection
is polynomial in k (and exponential in n), which compares
favorably to the English protocol (which is exponential in
both k and n). Depending on the number of agents whose
values fall in the bisection interval containing v[2] at termi-
nation, the privacy savings for pεB range from 2blog2(ε+1)c to
(2blog2(ε+1)c)n. We compare exact average case savings of
pεB with those of other protocols below.

Sealed-Bid Protocol The ε-sealed-bid protocol pεS ap-
proximates the usual sealed-bid protocol by simply “coars-
ening” the valuation space, asking for reports vi with limited
precision σ. The bound σ ≤ 2blog2(ε+1)c also holds for pεS ,
requiring termination only when v[2] is known to lie within
an interval of length 2blog2(ε+1)c. ε-wpar for pεS in n-agent
SPAs is identical to that for ε-bisection, since it induces the
same rectangles in the worst case.



ε
Second Price Auctions

n = 3 n = 4 n = 5
ε=0 32 / 15 / 410 1225 / 72.4 / 11254 46563 / 350 / 333760
ε=1 8.1 / 5.11 / 51.25 156 / 20.7 / 703.4 2942 / 86 / 10430
ε=3 2.05 / 1.56 / 6.4 19 / 5 / 44 173 / 17.3 / 325.9
ε=7 0.48 / 0.4 / 0.8 1.95 / 0.96 / 2.75 8.0 / 2.6 / 10.2

Table 1: ε-apar for SPAs with different n and ε when k = 5 bits.
The three values in each cell indicate ε-apar for the ε-English, ε-
bisection and ε-sealed-bid protocols, respectively.

Theorem 10. For n-agent SPAs,

(n− 1)(2k−1)n−1

(2blog2(ε+1)c)n
≤ ε-wpar(pεS) ≤

(2k)n

(2blog2(ε+1)c)n

Despite the same worst case behavior, ε-sealed-bid is
much worse on average than ε-bisection:

Theorem 11. For n-agent SPAs,

(dn
2
e)2 (2k−1)n−3( n−3

dn
2
e−2

)
(1 + ε)n−2

≤ ε-apar(pεS) ≤
(2k)n

(2blog2(ε+1)c)n

Our current lower bound for ε-apar(pεS) is quite loose;
but we can use ε-apar(pεE) in its place: for each pro-
file, pεE induces a larger rectangle pεS , so ε-apar(pεS) ≥
ε-apar(pεE). Hence, ε-apar(pεS) is exponential in both k
and n. In addition, since the size of all induced rectangles
is (2blog2(ε+1)c)n, in both the worst and average case, pεS of-
fers privacy savings of (2blog2(ε+1)c)n ≈ (ε+1)n over exact
sealed-bid.

Summary The average case ε-privacy approximation ra-
tios for SPAs of different sizes, computed numerically, are
shown in Table 1. Recalling that smaller ε-apar indicates
better privacy, we see that our ε-approximate protocols of-
fer significant privacy savings relative to their exact counter-
parts. For instance, when n = 3 and ε = 1, the ε-English
protocol reveals a fraction 8.1

32 ≈
1
4 of the information re-

vealed by the exact protocol, while ε = 3 requires only
1
16 of that information. We also see that ε-bisection has the
smallest ε-apar, preserving much more privacy than either
ε-English or ε-sealed-bid; e.g., when ε = 3 and n = 4, ε-
bisection requires revelation of only 5

19 and 5
44 of the infor-

mation required by ε-English and ε-sealed-bid, respectively.
We also notice that ε-apar, and the privacy savings of the
approximate protocols over their exact counterparts, grows
exponentially with n. This is consistent with our theoretical
results. Moreover, though our current proven lower bound
for ε-bisection is linear in ε, these numerical results suggest
that the actual savings are much greater. We conjecture that
the true savings are O((1 + ε)

n
c ), for some constant c > 1.

To summarize, we have derived privacy approximation ra-
tios for the n-agent versions of three key protocols for SPAs.
We have also shown that approximate variants of these pro-
tocols allow for savings in privacy over their exact counter-
parts that is exponential in the number of agents n and poly-
nomial in the degree of approximation ε in almost all cases
(both worst and average case).

5 Tradeoffs in Facility Location
We now consider another classic domain in mechanism
design, facility location problems (FLPs) (Schummer and
Vohra 2007). We must locate a facility (e.g., warehouse, or
public park) to satisfy the needs of n agents. We have a fi-
nite set of locations on the real-line, which we take to be
integers L = {0, . . . , 2k − 1}. Agent i’s type indicates its
preferred location qi ∈ L, and its cost (negative utility) for
any location y is ci(y) = c(y, qi) = |y−qi|. The objective is
to select an optimal location that maximizes social welfare
by minimizing the SCF f(q) =

∑
i c(y, qi), i.e., the sum of

distances faced by the agents. FLP has also been the sub-
ject of approximate implementation, e.g., to ensure strate-
gyproofness given different social objectives (Procaccia and
Tennenholtz 2009).

The median mechanism is a strategyproof mechanism that
selects the optimal location y for FLPs (Schummer and
Vohra 2007). We use FLP to refer to the problem of im-
plementing the median mechanism in incremental and ap-
proximate fashion in the sequel. For ease of exposition, we
assume an odd number of agents n = 2m − 1; we also as-
sume (w.l.o.g.) that agents are sorted by preferred location:
q1 ≤ . . . ≤ qn. The median mechanism asks each agent i
to report qi and locates the facility at the median qM of the
reported values. Generally FLPs are tackled using sealed-
bid-like direct mechanisms; however, incremental elicitation
of the qi can be accomplished using mechanisms much like
those for SPAs. We can define an English protocol for FLPs:
beginning with a current location p = 0, we increment p by
δ = 1, asking i if qi ≥ p, stopping when at least m agents
have dropped out, thereby identifying the median. The bi-
section protocol for FLPs simply conducts a binary search
to find the median qM : at any stage, if we know either that
qi ≥ qM or that qi ≤ qM , agent i is asked no further queries.
Notice that we need not know the exact value of qi or qM ,
merely that at least half of the agents have locations less than
(respectively, greater than) qi. Approximate versions of both
protocols (as well as “sealed-bid”) are defined analogously
to the case of SPAs.

Before describing results regarding privacy approxima-
tion ratios, we first provide a general negative result:

Theorem 12. There is no perfect privacy preserving pro-
tocol for the median mechanism for n-party FLPs, for any
n ≥ 2.

Intuitively, this holds because any protocol requires the
(indirect) revelation of the identity of an agent with the me-
dian value in at least some instances.
Claim 13. Let q be a type profile with median qM . Then:

RI
f (q) =

m−2∑
t=0

(
n

t+ 1

)
[

t∑
s=0

(
n− 1− t

m− 1− t+ s

)
· (qM )m−1−t+s

· (2k − 1− qM )m−1−s] +

m−1∑
t=0

(
n

t

)
(2k − 1)t

This result shows that the size of the ideal monochro-
matic region for FLPs is a function Z(qM ) of qM , not the
entire profile q. Note Z(r) = O(rm−1(2k − r)m−1), with



its largest value when r = 2k−1. The first term reflects when
fewer thanm agents have location qM , and the second when
at least m agents have location qM .

English Protocol We first analyze the exact English pro-
tocol for FLPs (i.e., where δ = 1).

Theorem 14. Let pEF be the English protocol for n-agent
FLPs. Then wpar(pEF ) = Z(2k − 2).

Worst case PAR is obtained when m − 1 agents prefer
location 2k − 1, and m prefer 2k − 2: then pEF induces a
rectangle of size 1, while the ideal region has size Z(2k−2).

The ε-English protocol pεEF uses a bid increment δ > 1,
identifying the median with precision δ when the proto-
col stops, and randomly selecting a location within this δ-
interval. To ensure ε-approximation, δ cannot be too large:

Lemma 15. pεEF ε-implements FLP only if the bid incre-
ment δ satisfies δ ≤ 1 + ε

n .

The distinction with SPAs, which allow increments of
(1+ε), is due to the fact that an ε-misplacement of the facil-
ity can impact all n agents (not just the winner as in SPAs).
The mechanism is ε

n -incentive compatible.
By Thm. 14 and Lem. 15, we have:

Corollary 16. For n-agent FLPs,

lim
n→∞

ε-wpar(pεEF ) = lim
n→∞

Z(2k − 2− 2ε
n
)

(1 + ε
n
)n

=
Z(2k − 2)

eε

For the ε-English protocol, each agent’s location is iden-
tified with a precision of 1 + ε

n in the worst case, so the size
of the protocol induced rectangle is (1 + ε

n )
n and converges

to eε as n → ∞. However, the Z(qM ) term indicates that
ε-wpar is still exponential in both k and n.

We begin our average case analysis with the exact proto-
col, providing upper and lower bounds:
Theorem 17. For n-agent FLPs,

m

(
m− 1

m
2

)
(2k−1)m−2 ≤ apar(pEF ) ≤ m

(
n

m− 1

)
(2k)m−1

This result allows us to show that the average case privacy
savings of pεEF relative to exact pEF are at most (1 + ε

n )
m.

However, in pεEF , we “coarsen” the revealed locations of at
least m and at most n agents, which means that the savings
are exactly (1 + ε

n )
m, and converges to eε/2 as n → ∞.

These exact savings can be multiplied by the terms in the
bounds of Thm. 17 to derive bounds on ε-apar(pεEF ).

Bisection Protocol We now consider the bisection pro-
tocol pBF for FLPs and analyze its privacy approximation
ratios before considering its ε-approximate implementation.
We first consider wpar for pBF :

Theorem 18. The bisection protocol for n-agent FLPs has
wpar(pBF ) = Z(2k−1).

This worst case occurs with a type profile with m − 1
agents having ideal location 2k−1 + 1 and m agents prefer-
ring location 2k−1: the rectangle induced by pBF has size

1 while the ideal monochromatic region has size Z(2k−1).
Hence, wpar is exponential in both k and n.

The approximate ε-bisection protocol pεBF for FLPs iden-
tifies the median only to some desired precision, but uses
a dynamic precision parameter to determine termination.
Specifically, we terminate when the median is proven to lie
in some interval [qM− , q

M
+ ), and a random point in that inter-

val is selected for the facility. The mechanism is ε
n -incentive

compatible. To ensure ε-efficiency, we require:
Lemma 19. Let l and r be the number of agents in [qM− , q

M
+ )

whose desired location is left of (less than) and right of
(greater than) of qM , respectively. pεBF ε-implements FLPs
iff (qM+ − qM− − 1)(2max{l, r}+ 1) ≤ ε.

This means the “precision” of the final interval [qM− , q
M
+ )

is determined by pεBF dynamically: if, when the median
value interval is identified, no other agents’ locations lie
within [qM− , q

M
+ ), the protocol can stop when the interval is

narrowed to qM+ − qM− ≤ 2blog2(ε+1)c ≈ 1 + ε; but if m− 1

agents remain in the interval, and are left of qM , then the
protocol stops only when qM+ −qM− ≤ 2blog2(1+

ε
n )c ≈ 1+ ε

n .
This mechanism is also ε

n -incentive compatible. By Thm. 18
and Lem. 19, we have the following corollary for the ε-
bisection protocol:
Corollary 20. For n-agent FLPs, ε-bisection satisfies:

lim
n→∞

ε-wpar(pεBF ) = lim
n→∞

Z(2k−1)

(1 + ε
n
)n

=
Z(2k−1)

eε

For average case analysis, we again begin with exact bi-
section, providing upper and lower bounds:
Theorem 21. For n-agent FLPs,(

n

m

)
km−1 ≤ apar(pBF ) ≤ m

(
n

m

)
(k + 1)n

As with SPAs, apar for bisection in FLPs is polynomial in
k, offering significant privacy savings relative to the English
protocol. With ε-approximation, we can show that privacy
savings range from 2blog2(1+ε)c to (2blog2(1+

ε
n )c)n, depend-

ing on the number of agents whose locations fall into the
bisection interval as qM . We compare average case savings
across these different protocols below.

Sealed-Bid Protocol The sealed-bid protocol pSF for
FLPs has each agent reveal her preferred location and re-
turns the median.
Theorem 22. For n-agent FLPs, wpar(pSF ) = Z(2k−1).

The ε-sealed-bid protocol pεSF asks for locations with
limited precision σ. In the worst case, when all locations
lie in the interval of qM , Lem. 19 needs precision σ ≤
2blog2(1+

ε
n )c, and ε-wpar(pεSF ) is identical to that for pεBF .

Corollary 23.

lim
n→∞

ε-wpar(pεSF ) = lim
n→∞

Z(2k−1)

(1 + ε
n
)n

=
Z(2k−1)

eε

We have upper and lower bounds on apar for exact pSF :



ε
Facility Location Problems
n = 3 n = 5

ε=0 96 / 42 / 1228 8776 / 1514 / 1.50E+06
ε=10 6.1 / 3.6 / 19.2 374 / 154 / 46766
ε=15 3.0 / 3.6 / 19.2 152 / 61 / 1461
ε=22 1.34 / 0.97 / 2.4 86 / 36 / 1461

Table 2: ε-apar for FLPs with different n and ε when k = 5 bits.
The three values in each cell indicate ε-apar for the ε-English, ε-
bisection and ε-sealed-bid protocols, respectively.

Theorem 24. For n-agent FLPs,(
n

m

)
(2k − 1)m−1 ≤ apar(pSF ) ≤ (2k)n

In pεSF , each rectangle has size 2blog2(1+
ε
n )c (compared

to size 1 for exact pSF ), so average privacy savings are
(2blog2(1+

ε
n )c)n ≈ (1 + ε

n )
n, converging to eε as n → ∞.

However, ε-apar(pεSF ) is still exponential in both k and n.

Summary As with SPAs above, Table 2 shows average
case ε-privacy approximation ratios for FLPs of different
sizes computed numerically. Results are similar to those for
SPAs, so we omit a detailed discussion.

To summarize, we have proposed two incremental mech-
anisms for FLPs, the English and bisection protocols. To-
gether with the sealed-bid protocol, we have provided up-
per and lower bounds on worst and average case par, show-
ing, as with SPAs, that the bisection protocol offers rela-
tively strong privacy guarantees compared to the other two
protocols (polynomial in k and exponential in n). With ε-
approximation, even stronger privacy savings are possible
(exponential in ε as n→∞).

6 Concluding Remarks
We have presented a framework for analyzing the natural
tradeoff between efficiency and privacy in mechanism de-
sign. Within this model, we have analyzed second-price auc-
tions and facility location problems, and for each investi-
gated the extent to which privacy is preserved for a variety
of different protocols. We have shown that the bisection pro-
tocol offers significant privacy advantages over other proto-
cols, and also demonstrated the degree to which additional
privacy preservation can be gained through ε-approximation
of these protocols over their exact implementations, using
both worst and average case analyses.

Our framework can be generalized in several ways. While
we have presented our work in the context of mechanism
design, it can be applied to any form of distributed function
computation. One might also consider other forms of ap-
proximate privacy that account for, say, different sensitivity
to the reports of different agents, or from different regions
of type space. Our analysis can also be extended in several
ways, including deriving average case results for more real-
istic distributions of valuations; and broadening the class of
mechanisms and social choice functions.

We view this work as simply a first step in the deeper ex-
ploration of a complicated four-way tradeoff between com-
munication, efficiency, incentives and privacy in the design

of mechanisms. Developing optimization models that ex-
plicitly trade off these criteria against one another will be im-
portant in the automated design of privacy-preserving mech-
anisms. Finally, a critical extension will be the analysis of
multi-attribute and combinatorial domains, where sophisti-
cated preference elicitation strategies are required (Hyafil
and Boutilier 2007). Incremental mechanisms such as those
discussed here should have even greater potential to offer
practical—if not (worst-case) theoretical—privacy and com-
munications savings. In such domains, there will also be a
general need to take advantage of AI techniques for prefer-
ence assessment.
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