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ABSTRACT

It is widely believed that the value of acquiring a slot in a sponsored
search list (that comes along with the organic links in a search en-
gine’s result page) highly depends on who else is shown in the other
sponsored positions. To capture such externality effects, we con-
sider a model of keyword advertising where bidders participate in a
Generalized Second Price (GSP) auction and users perform ordered
search (they browse from the top to the bottom of the sponsored list
and make their clicking decisions slot by slot). Our contribution is
twofold: first, we use impression and click data from Microsoft
Live to estimate the ordered search model. With these estimates in
hand, we are able to assess how the click-through rate of an ad is af-
fected by the user’s click history and by the other competing links.
Further, we compare the clicking predictions of our ordered search
model to those of the most widely used model of user behavior: the
separable click-through rate model. Second, we study complete in-
formation Nash equilibria of the GSP under different scoring rules.
First, we characterize the efficient and revenue-maximizing com-
plete information Nash equilibrium (under any scoring rule) and
show that such an equilibrium can be implemented with any set of
advertisers if and only if a particular weighting rule that combines
click-through rates and continuation probabilities is used. Interest-
ingly, this is the same ranking rule derived in [11] for solving the
efficient allocation problem. On the negative side, we show that
there is no scoring rule that implements an efficient equilibrium
with VCG payments (VCG equilibrium) for all profiles of valua-
tions and search parameters. This result extends [8], who argue that
the rank-by-revenue GSP does not possess a VCG equilibrium.

1. INTRODUCTION

Sponsored search advertising is a booming industry that accounts
for a significant part of the revenue made by search engines. For
queries with most commercial interest, Google, Yahoo! and MSN
Live make available to advertisers up to three links above the or-
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ganic results (these are the mainline slots), up to eight links besides
the organic results (sidebar slots) and, more recently, MSN Live
even sells links below the organic results (bottom slots).

As such, an advertiser that bids for a sponsored position is sel-
dom alone; and is usually joined by his fiercest competitors. In-
deed, it is widely believed that the value of acquiring a sponsored
slot highly depends on the identity and position of the other ad-
vertisers. Putting it differently, advertisers impose externalities on
each other, which affect their click-through rates and might have
consequences on their bidding behavior.

The literature on sponsored search auctions mostly assumes click-
through rates are separable, i.e., the click through rate of a bidder
is a product of two quantities, the first expressing the quality of the
bidder and the second the quality of the slot she occupies. Such
models cannot capture the externalities that one advertiser imposes
on the others. To capture these externality effects, we depart from
the separable model and study a model that integrates the users’
search behavior and the advertiser’s bidding behavior in the Gen-
eralized Second Price (GSP) auction run by search engines. We
will assume that users perform ordered search, which means that
(i) they browse the sponsored links from top to bottom and (ii) they
take clicking decisions slot by slot. After reading each ad, users de-
cide whether to click on it or not and, subsequently, decide whether
to continue browsing the sponsored list or to simply skip it alto-
gether (for a formal definition and motivation for this model, see
Section 2). With this formulation, we are able to estimate continu-
ation probabilities for each ad (which are simply the probabilities
of continuing searching the sponsored list after clicking or not on
some ad) and conditional click-though rates for each ad (which tell
the probability of a click conditional on the user’s previous clicking
history). Continuation probabilities capture position externalities,
that is, they capture the negative impact that top links impose on
the click-through rates of bottom links (as users stop browsing ei-
ther because their search needs were already fulfilled or because
they got tired of previous bad matches). In turn, conditional click-
through rates capture information externalities, as we can assess
how the information collected by the user by clicking on one given
link impacts the click-through rates of the other links he eventually
reads.

On the auction side of the model, advertisers submit their bids
taking click-through rates as implied by ordered search. As pre-
scribed by the rules of the GSP, search engines then multiply each
bid by a weight defined by a scoring rule (which solely depends on
each advertiser’s characteristics), producing a score for each adver-
tiser. Advertisers are then ranked by their score; slots are assigned
in decreasing order of scores and each advertiser pays per click the
minimum bid necessary to keep his position.

We use the model described above to make both empirical and



theoretical contributions. On the empirical side, we used three
months of impression and clicking data from Microsoft Live to
estimate the ordered search model. In this version we report our
findings from three selected search terms: ipod, diet pill and avg
antivirus. We plan to substantiate further our findings in a longer
version of this work. For each of the selected keywords, we se-
lected the logs in which the most clicked advertisers occupied the
mainline slots. Our main empirical findings can be summarized
as follows: first, our dataset suggests that both position and infor-
mation externalities are economically and statistically significant -
and the returns to keyword advertising (in terms of clicks) strongly
depend on the identity of the other advertisers. Secondly, our es-
timates suggest that users roughly divide in two groups: the first
group has a low clicking probability and usually drops the spon-
sored list without going through all the mainline slots. In contrast,
the second group of users clicks more often and tends to read most
of the sponsored links (price research behavior). Thirdly, we made
a non-parametric comparison of the clicking predictions of our or-
dered search model to those of the separable click-through rate
model (the most popular model of user’s behavior). We found that
the ordered search model performs as well, and often better, than
the separable click-through rate model for all keywords considered.
However, this was to some extent expected as the ordered search
model has more parameters than the separable one and hence this
makes it easier to fit the data.

On the theoretical side, we investigate the complete information
equilibria of the GSP (with click-through rates implied by ordered
search) under different scoring rules. First, we characterize the effi-
cient and revenue-maximizing complete information Nash equilib-
rium (under any scoring rule). We then show that this equilibrium
can be implemented under any valuation profiles and advertiser’s
search parameters if and only if the search engine ranks bids using
a particular weighting rule that combines click-through rates and
continuation probabilities. Interestingly, this is the same ranking
rule derived in [11] for solving the efficient allocation problem (in
a non-strategic environment).

We season this positive result with an impossibility theorem: we
show there is no scoring rule that implements an efficient equilib-
rium where advertisers pay their VCG payments for all valuations
and search parameters (this is by far the most analyzed equilibrium
of the separable click-through rate model). This extends an obser-
vation first made by [8], who argue that such an equilibrium does
not exist in the rank by revenue GSP.

1.1 Comparisons with Related Work

Ad auctions became an active area of research in the past few
years due to their important role as a revenue source for search
engines. The initial theoretical literature [2, 6, 16] studied the equi-
libria of these auctions under a model of separable click-through-
rates. In these models, there are slot-dependent and advertiser-
dependent click-through-rates, and the click-through-rate of an ad-
vertiser in a given slot is simply the product of these two base click-
through-rates. As such, these models can not account for the exter-
nalities that advertisers impose on each other.

The issue of externalities in ad auctions has recently attracted
quite a bit of attention from the research community [3, 1, 11, 8,
7]. Initial studies were largely theoretical, and involved proposing
models for user-search behavior that would explain externalities.
Athey and Ellison [3] proposed one of the first such models. In their
work, they assume that users search in a top-down manner and that
clicking is costly. They then derive the resulting equilibria. Closely
related are the cascade models of Aggarwal et al [1] and Kempe
and Mahdian [11]. These models associate with each ad a click-

through-rate as well as a continuation probability representing the
probability that a user continues the search after viewing the given
ad. They then proceed to solve the winner determination problem in
their models. Recently Giotis and Karlin [8] studied the equilibria
of the cascade model in GSP auctions.'

Our model of ordered search generalizes these previous models
slightly by allowing click-through-rates and continuation probabil-
ities to depend on the clicking history of the user. This enables us
to model both position externalities as well as information exter-
nalities. Our empirical work shows that both effects are significant

Our contribution to the existing literature is two-fold: we use
our model to document externalities empirically and then proceed
to study equilibria of various auction types analytically (using the
simplified cascade model to keep the problem tractable). This is
the first paper to empirically document externalities in sponsored
search. In a subsequent work, [9] estimated a model of unordered
search in which users read all advertisements before choosing a
subset of them to click on. We believe this is a valid and worth-
exploring model of users’ behavior. We nevertheless think that or-
dered search is a more natural starting point. Indeed, it is hard to
reconcile the assumption that users perform unordered search with
advertisers’ competition to obtain the top positions (why to pay
more to get a top slot if users read the whole list anyway?). More-
over, unlike [9], we allow click-through rates to depend on the click
history of users (this captures users’ learning by browsing).

An interesting counterpart of this work is [5], which provides ex-
perimental evidence of position bias in organic search. In this pa-
per, the authors deliberately flip result positions of a major search
engine to compare four different models of users’ browsing behav-
ior. They conclude that a cascade model, in which users browse
from top to bottom and drop the search after any click, offers better
fit than the separable click-through rate model.

On the theoretical side, this work advances the equilibrium anal-
ysis of the GSP in the presence of externalities. The previous the-
oretical literature to study GSP equilibria [2, 6, 14, 16, 12] mostly
focused on the separable click-through-rate model. The only ex-
ceptions are Athey and Elison [3] and Giotis and Karlin [8], men-
tioned above. Our work differs from these papers as, instead of
studying equilibria of particular weighing rules, we analyze what
weighing rules can implement particular equilibria. As such, this
work also pioneers the analysis of scoring rules in the presence of
externalities. In the context of the separable model, [2, 12] and [13]
compared various bid weighing procedures regarding their revenue
properties.

2. THE ORDERED SEARCH MODEL

In our model, we are given a set N = {1,...,n} of advertisers
who must be placed on up to K slots. Throughout the remainder
of this empirical section, we will investigate scenarios with n = 3
advertisers and K = 3 slots, returning to the general model in the
theoretical section.

In order to study externalities in sponsored advertising, we de-
velop a model of users’ behavior that assumes ordered search. The
main elements of this model are, first, that users make their choices
about clicking on sponsored links by analyzing one link at a time
and, secondly, that they browse sponsored results from top to bot-
tom. Our focus on such an ordered search model is motivated by

!Cascade (or sequential search) models had been previously stud-
ied in the labor economics and industrial organization literatures:
[4] and [15] are excellent surveys. Unlike the applications con-
sidered in these literatures, where firms choose prices and wages
respectively, we assume that advertisers have no strategic options
(qualities in sponsored search are exogenous).



various reasons. First, as the work of [5] demonstrates, position
bias is present in organic search. In particular [5] compares a se-
quential search model with four other models (including the sep-
arable model) and concludes that sequential search provides the
best fit to the click logs they have considered. Secondly, sequential
search is further substantiated as a natural way to browse through a
list of ads by the eye-tracking experiments of Joachims et al. [10],
where it is observed that users search and click in a top down man-
ner. Moreover, as the value per click of each advertiser tends to be
correlated with its relevance, ordered search is a good heuristic for
users (see [3]).

Given such a model, the users will typically not click on all
the ads of the list, as it is costly both in terms of time and cog-
nitive effort to go through a website and assimilate its content.
For this reason, users only click on a link if it looks good enough
to compensate for its browsing cost. Moreover, users typically
change their willingness to incur this browsing cost as they col-
lect new information through their search, and hence the decision
about whether to continue reading ads naturally depends on the
click history of the user. To formalize these ideas, we denote the
click history of users as they browse through the sponsored links
by H = {j : link j received a click}.? Here we will focus on two
types of externalities:

Information Externalities. An ad imposes information exter-
nalities on others by providing a user who has clicked on his link
with information regarding the search — e.g., prices or product re-
views. This, in turn, affects the user’s willingness to click on all
links displayed below in the sponsored search list. To make these
points formally, let’s denote the expected quality of slot j by u;.
In order to save on browsing costs, a searcher with click history H
clicks on link j only if its perceived quality exceeds some optimal
threshold, which we denote by Tx. We set H = {0} if no links
were previously clicked (no extra information gathered through
search), H = {j} if only link j was clicked and H = {j, k} if
links 5 and k were clicked in this order. We let the clicking thresh-
old TH on the ad’s perceived quality depend on the information
gathered by the searcher in his previous clicks, but assume that T
is not affected by the precise order of clicks. That is, we impose
that T{j’k} = T{k’j}.

In addition, we summarize any user specific bias towards a link
by the random term . Hence, a user with click history H that
reaches the slot occupied by advertiser j clicks on it if and only if

uj —e¥ >Ty.

We assume that the idiossincractic preference parameters €%/ are
independetly and identically distributed accross bidders and adver-
tisers, with a cumulative distribution function F'. Thus, the proba-
bility that a searcher ¢ with click history H gives a click on link j
is given by:

Fj(H) =Prob{e' <u; —Tu} = F(u; — Tx).

By virtue of browsing from the top, users have no previous clicks
when they analyze the first slot. Hence, if advertiser j occupies the
first position, his chance of getting a click, which we call click-
through rate, is F; = F;({0}).

The difference between advertiser j’s baseline click-through rate,
F}, and his conditional click-through rate, F;(H), H # 0, indi-
cates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities
on other ads by virtue of its position in the ordered search list. This

2Note we abstract away order information; i.e., we assume a user’s
behavior depends on past clicks, but not on the order in which the
clicks were made.

can happen in one of two manners: first, the user may tire of the
search if the ads he has read appear to be poorly related to the search
term; second, the user may leave the search if an ad he has read and
clicked on has satisfied his search need. We capture the first effect
with a parameter, );, that indicates the probability a user keeps
browsing the sponsored links after reading ad j and choosing not
to click on it. We capture the second effect with a parameter, y;,
that indicates the probability a user keeps browsing the sponsored
links after clicking link j. The parameters \; and ~y; are referred
to as the continuation probabilities of ad j and jointly capture its
position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model
the position externalities may depend on both the advertiser and
clicking behavior of the user.

We model the user behavior for a given sponsored list using the
above parameters as follows. She reads the first ad A; in the list
and clicks on it with probability F'4,. Conditional on clicking on
A1, she reads the second ad Az with probability 4, and clicks
on it with probability Fa,({A1}). Conditional on not clicking on
Aj, she reads the second ad with probability A4, and clicks on it
with probability Fa,. Thus, the probability she clicks on ad A; is
simply F'a, while the probability she clicks on ad A» is

(1= Fa;)Aa, Fay 4 Fayva, Fa, ({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Identification

We will now describe the structure of our data and discuss the
identification of the model described above. In this version we
have included in our data set all the impression logs in which users
searched for ipods, diet pills or antivirus. We will incorporate
more keywords in a future version of this work. Within each of
these queries, we selected the impressions in which the three most
clicked advertisers are displayed in the mainline slots (which are
the three top positions in a search results page).

A few observations are in order: first, the appeal of an adver-
tiser (which translates into her click-through rate) fundamentally
depends on the search objective of the user (for example, the pur-
chase of an ipod). As a consequence, a model of user behav-
ior makes most sense when restricted to a single search objective.
Accordingly, our data set only contains clicking logs of advertis-
ers displayed along the results of some specific search objective.
The same search objective may be expressed by different queries,
though: ipod, buy ipod, ipod purchase, apple ipod, cheap ipod are
all different ways of expressing the same search objective. Hence,
we include in our data set all click logs with our target keyword in
the search query.

Second, we only analyzed, within each query, the three most ef-
fective advertisers. The reason for this is two-fold. First, in order
to identify the model described above we need some variation on
clicking histories that only the most popular advertisers jointly ex-
hibit (we will formalize this observation in Lemma 1 below). There
was an insufficient number of observations with variation for the
four most popular advertisers. Second, the number of parameters
in our model grows exponentially with the number of advertisers,
and so it becomes more difficult, experimentally, to track and main-
tain the parameters.

Third, our ordered model makes the implicit assumption that all
users read the first sponsored link before dropping the sponsored
search results. In fact, as the eye tracking experiments in [10] at-
test, these are the most visible links to the users. Even if this were
not the case, our model would still capture negative externalities,
as baseline click-through rates would be underestimated, while the



estimates for conditional click-through rates would still be consis-
tent.

Let the three most effective sponsored search advertisers for a
given keyword be denoted by j, k£ and [. In our database, when
a user submits a query, he sees a sponsored list displaying ads of
at least two advertisers among j, k and [ in some specific order.
The user may click none, one or more of these links, also in some
specific order. We denote such an event by a pair of tuples, each
of three elements from the set {4, k,,0}. The first tuple denotes
the advertisers that were displayed and the second tuple denotes
the advertisers that were clicked. If a slot is left empty, or an ad-
vertiser is not clicked, we use the symbol ) to mark this in the
tuple. If, for example, only advertisers j and k£ were displayed (in
the first two slots) and only k was clicked, we denote this event by
0, k, sk, 0, 0},

We will now derive the distribution of observables in our model.
As an example, consider the event {4, k,l;7,0,0}. Such an ob-
servation is consistent with three search paths: first, the user may
have clicked on j and then decided to stop searching. Second, the
user may have clicked on j, continued searching, felt that slot k
was not appealing and then decided to stop searching. Finally, the
user may have clicked on j, continued searching, felt that slot k
was not worth-clicking, still decided to keep searching and finally
considered [ unappealing as well. As such, the probability of the
observable {j, k,1;7,0,0} is:

Prob ({j,k,1;7,0,0}) = F'(l—’Yj)+
FJ’YJ( {J})) 1—X) +

Fivi(1 = Fe({7})M(1 = Fi({5}))-

One can analogously compute that:

Prob ({7,k,0;0,0,0}) = (1—F;)(1—Xj)+
(1= F)A\ (1= Fo),

Prob ({4, k,0;5,0,0}) = F;(1—;)+ Fjv;(1— Fe({7}),
Prob ({j,k,0;k,0,0}) = (1 — F})v;Fx,
Prob ({4, k,0;4,k,0}) = FyviFr({5}),
Prob ({j,k,;k,0,0}) = (1 — Fj)NjFe(1—v)+

(1= F)AFreve(1 = Fi({k})),
Prob ({4, k,1;1,0,0}) = (1— Fj)N(1— Fo)Ael,
Prob ({j, k,1; 4, k,0}) = FjvFre({7}H(1 — )+

FiviFe ({33} (1 = Fi({4, k})),

Prob ({Jvkvl’.%l?@}) = FJ’YJ(l 7Fk({.7})AkF‘l({]})7
Prob ({j,k,l;k,l,@}) = (1 —Fj)A]'Fk’)/kFl({k}),
Prob ({J7k7l7]7k7l}) = FJ’YJFK({J})’YkF‘l({J’k})

The above equations fully describe the distribution of observ-
ables of our model when the the mainline slots display at least 2 of
the 3 advertisers we consider for each keyword. The lemma below
proves that our ordered search model is fully identified, that is, it
shows that different vectors of parameters are never observationally
equivalent. To simplify exposition, let’s denote for all j:

F; = (Fy, F;({k}), F5({1}), Fi({k,1}), F = (F;,Fy, Fy);
and:
05 = (75, M), 0= (05,0k,0).

LEMMA 1. The ordered search model with Sponsored Search
lists of size 2 and 3 is identified, that is, for any two vector of pa-
rameters (F,0) and (F',0"), if the above equations take the same
values, then (F,0) = (F',6").

keyword advertisers # of obs.

(A): store.apple.com
ipod (B): cellphoneshop.net 8,398
(C): nextag.com
(A): pricesexposed.net
(B): dietpillvalueguide.com 4,652
(C): certiphene.com
(A): Avg-Hgq.com
(B): avg-for-free.com 1,336
(C): free-avg-download.com

diet pill

avg antivirus

Table 1: Keywords and Advertisers

2.2 Data Description

Our data consists of impression and clicking records associated
to queries that contained the keywords ipods, diet pills and avg
antivirus in Microsoft’s Live Search. We chose these keywords be-
cause, first, a user that searches for any of them has a well defined
objective and, second, because they are highly advertised. Within
each of these keywords, we selected the three most popular adver-
tisers (in number of clicks) and considered all impressions in which
at least two of these advertisers are displayed.?

For the keyword ipod, the Apple Store (www.store.apple.com)
is the most important advertiser, followed by the online retailer
of electronics Cell Phone Shop (www.cellphoneshop.net) and by
the price research website Nextag (www.nextag.com). All the 8398
ipod observations in our sample refer to impressions that happened
between August 1st and November 1st of 2007.

The most popular advertisers for diet pills are, first, the meta-
search website Price Exposed (pricesexposed.net), followed by the
diet pills retailer dietpillvalueguide.com and then by certiphene.com
(which only sells the diet pill certiphene). All 4,652 impressions
considered happened between August 1st and October 1st of 2007.

For avg antivirus, the most popular advertiser is the official AVG
website, followed by the unofficial distributers of the AVG antivirus
avg-for-free.com and free-avg-download.com. The 1,336 observa-
tions range from September 1st to November 1st of 2007. The
sample provided by Microsoft AdWords displays impressions asso-
ciated to different keywords with varying intensities through time.
This is why ranges differ across the selected keywords; and we have
no reason to expect such differences might affect the estimates of
our model.

All keywords possess a leading advertiser that occupies the first
position in most of the observations. For ipod, the Apple Store
occupies the first slot in roughly 77% of the cases, while the Cell
Phone Shop appears in 22% of the observations. The situation is
reversed when we look at the second slot: the Cell Phone Shop
is there in almost 70% of the observations, while the Apple Store
and Nextag appear respectively in 17% and 13% of the cases. As
table 2 below makes clear, advertising for diet pills or avg antivirus
display a similar pattern.

For all the keywords considered, approximately one out of four
impressions got at least one click (25.26% for ipods, 24.24% for
diet pills and 35.55% for avg antivirus). As one should expect,
click-through rates are decreasing for most of the queries: among
the clicks associated to diet pill, 56.73% occurred in the first slot,
34.04% in the second and 9.21% in the third. For ipod, the concen-

Regarding the impressions that contain only two of the three se-
lected advertisers in the mainline slots, we only kept those logs
which display our selected advertisers in the first two positions. By
doing this, we can disregard the advertisers on slot 3 and below
without biasing our estimates.



slot

ipod

diet pill

(A): 6,460 (76.92%)

(A): 1,912 (41.10%)

first (B): 1,864 (22.20%) (B): 908 (19.52%)
(C): 74 (0.88%) (C): 1,832 (39.38%)
(A): 1,438 (17.12%) (A): 1,848 (39.72%)

second (B): 5,826 (69.37%) (B): 1,988 (42.73%)
(©): 1,134 (13.50%) (C): 816 (17.54%)
(A): 26 (0.31%) (A): 472 (10.15%)

third (B): 22 (0.26%) (B): 692 (14.88%)
(C): 950 (11.31%) (C): 668 (14.36%)
(other): 7,400 (88.12%) (other): 2,820 (60.62%)

antivirus

(A): 1,233 (92.29%)

first B): 71 (5.31%)

(C): 32 (2.40%)

(A): 88 (6.59%)
second (B): 674 (50.45%)
(C): 574 (42.96%)
(A): 9 (0.67%)
(B): 21 (1.57%)
(C): 355 (26.57%)
(other): 951 (71.18%)

third

Table 2: Distribution of Advertisers per Slot

slot ipod diet pill antivirus
first 1,572 (74.08%) 640 (56.73%) 205 (43.15%)
second 524 (24.69%) 384 (34.04%) 259 (54.52%)
third 30 (1.41%) 104 (9.21%) 11 (2.31%)
total 2,122 (100%) 1,128 (100%) 475 (100%)

Table 3: Distribution of Clicks per Slot

tration of clicks in the first slot is even higher, as one can see from
table 3. The keyword avg antivirus is an interesting exception, as
most of the clicks happened in the second slot (54.5%).

2.3 [Estimation Results

At this stage, it is not possible to tell whether a high click-through
rate in the first slot is simply due to users’ behavior or is the effect
of very high quality advertisers. In the same vein, what explains the
very low click-through rate in the third slot for ipod? Is it because
advertisers are bad matches for the users’ search or is it the result
of search externalities imposed by the links in the first two slots?

In order to evaluate externalities, we must estimate the param-
eters of our model. We do this with the well-established maxi-
mum likelihood method, which selects values for the parameters
that maximize the probability of the sample. First we must derive
an expression, called the log-likelihood, for the (log of) probabil-
ity of the sample given the parameters of the model.* Our log-
likelihood function is:

log L = Zlog [PI‘Ob ({]n,krwlna C'}zacivci})] )

n

where the probability of observations {4, kn, In; ch, c2, c3 } is given

by the equations in Section 2.1.
Next we estimate the parameters to be those that maximize the
log-likelihood. Before discussing our estimation results, we need

*It is common to use the log of the probability as opposed to the
probability itself to simplify the algebra. As log is a monotone
function, maximizing the log-likelihood corresponds to maximiz-
ing the likelihood.

to make one important observation. The conditional click-through
rate of some advertiser j, F;({k}), is the probability that a random
user clicks on ad j given that this user clicked on advertiser k’s
link and kept searching until he read j’s link. Note that F;({k})
abstracts from position externalities, as this is the probability that a
user that read the ad gives a click on it. We have three reasons to
think that conditional click-through rates should differ from base-
line click-through rates. First, link £ may offer low prices for ipods,
in which case, even if the user keeps browsing the sponsored list af-
ter clicking on k (an event of probability ~yx), he will be less likely
to click on j or on any other link. This is the negative externality
effect, which pushes, let’s say F;({k}), to be less than Fj. Sec-
ond, link k£ may increase the users’ willingness to click on 7, which
may happen if, for example, link & is a meta-search website. In this
case, F;({k}) is greater than F};, which corresponds to a positive
externality effect.

These first two reasons for F; to depart from F;({k}) relate to
information externalities. There is a third reason, though, not re-
lated to externalities but to the structure of our data, that may ex-
plain why F; # F;({k}): the group of users that make at least one
click may be fundamentally different from the total pool of users
that perform searches on Microsoft Live. As such, the conditional
click-through rate F;({k}) reflects the probability of j getting a
click among a quite selected group of users. It is natural to think
that these users click more often on sponsored links than a common
user; and this should push F;({k}) to be higher than F;. We call
this the selection effect.

As a consequence, we can safely interpret estimates such that
F; > F;({k}) as evidence that advertiser k imposes a negative
externality on advertiser j. Nevertheless, if F; < F;({k}), as we
don’t observe any users’ characteristics, we can’t tell apart positive
externalities from purely selection effect. We need to keep this is
mind in order to interpret the estimation results.

One can directly test whether the selection effect is driving our
estimates by looking at the continuation probabilities A; and ;.
Clearly, absent any selection effect and granted j is not a meta-
search website, \;, the probability that a user keeps browsing after
not clicking on j, is expected to be higher than +y;, the probability
that a user keeps browsing after clicking on j. The reason for this
is that users may only fulfill their search needs if they do click on
7, in which case they are not expected to return to the results page.
As a consequence, having \; significantly lower than ~y; is strong
evidence in favor of the selection effect, as the subgroup of users
that indeed make clicks is much more likely to patronize sponsored
search.

We are now able to discuss our estimation results, which are dis-
played at Table 3. We find that for the three search terms we investi-
gated, selection effects were ubiquitous. Nonetheless, we observed
significant negative externalities in two of them (ipod and avg an-
tivirus). For the third keyword (diet pills), we observed that con-
ditional click-through-rates were higher than the base-line click-
through-rates, although it is not possible to determine whether to
attribute this to the selection effect or to positive externalities. In
the following subsections, we discuss the results for each keyword
in detail.

2.3.1 ipod Results

For this keyword, the lead advertiser (the Apple Store) has a
very high click-through rate: 21%. Its competitors, the Cell Phone
Shop and Nextag, have 8.7% and 10.4%, respectively. These es-
timates can be interpreted as the probability that the first slot gets
a click when it is occupied by one of these three advertisers. The
difference between the Apple Store click-through rate and that of



its competitors is significant at the 1% level. As such, in the ipod
case, the lead advertiser (who occupies the top position in 76% of
the observations — see Table 2) is also the most effective in attract-
ing clicks.

Our estimates detect that Apple Store imposes a negative exter-
nality on the Cell Phone Shop (as Fg = 0.08 > 0.04 = Fp({A}),
and the difference is significant at 5%) and on Nextag (as Fc =
0.10 > 0.04 = Fo({A}), and the difference is significant at 5%).
This means that the information provided by the Apple Store web-
site reduced by half the appeal to a random user of the links to the
Cell Phone Shop or the Nextag. The lack of observations in which
users click on Nextag and then click on Apple Store or the Cell
Phone Shop prevents us from being able to estimate yc,Fa({C}),
Fa({B,C}), Fp({C}) and F5({A, C}).

The selection effect indeed seems to play a role in our estimates.
Looking at the ipod results, one can see that v’s are higher than
A’s for at least two advertisers: for the Apple Store, y4 = 0.94 >
0.76 = A4 (although the difference is not significant) and for the
Cell Phone Shop, vy = 1 > 0.62 = Ap (significant at 15%). This
suggests that users that make one click in a sponsored link are more
likely to keep browsing the sponsored list. As the results presented
above point out, though, the selection effect wasn’t strong enough
to shadow the negative externalities that the Apple Store imposes
on its competitors.

2.3.2  diet pill Results

Alike the ipod case, the leading advertiser for diet pill is also the
most effective in terms of attracting users: the click-through rate
of pricesexposed.net, roughly 21%, is significantly (at 1% level)
higher than that of its competitors (15% for dietpillvalueguide.com
and 5% for certiphene.com).

We didn’t find evidence of negative information externalities among
diet pill advertisers. For pricesexposed.net, the click-through rate
jumps from roughly 21% to 31% if certiphene.com was previously
clicked; and the difference is significant at 10%. The same happens
with dietpillvalueguide.com: its click-through rate goes from 15%
to either 66% (in case certiphene.com got a click) or to 33% (in
case certiphene.com and pricesexposed.net had clicks); and both
differences are significant at 5%.

Interestingly, the click-through rate of certiphene.com jumps from
5% to 8% (difference significant at 5%) if dietpillvalueguide.com
was previously clicked by the user. Since dietpillvalueguide.com
is a website specialized in comparing diet products, one can think
that positive reviews of the Certiphene pills might explain this dif-
ference (positive externality).

As discussed above, we cannot rule out that the selection effect
explains this difference, though. Indeed, our estimates imply that
users are more likely to keep browsing the sponsored links if they
clicked on certiphene.com: v¢ = 1 > 0.57 = A¢ (significant at
5%).

2.3.3  avg antivirus Results

Unlike the previous keywords, the leading advertiser for avg
antivirus is not the one with highest CTR. In fact, Avg-Hq.com
has the lowest CTR (15%), while avg-for-free.com and free-avg-
download.com have a 20% and 21% CTRs, respectively (higher
than Avg-Hg.com’s CTR at a 15% confidence level).

Our estimates detect that avg-for-free.com imposes a negative
externality on Avg-Hg.com, as Fa = 0.15 > 0 = Fa({B})
(significant at 5%). As in the ipod case, the lack of observations
in which users click on free-avg-download.com and then click on
Avg-Hg.com or avg-for-free.com makes it impossible to estimate

Vo, Fa({C}), Fa({B,C}), Fp({C}) and Fs({A, C}).

keyword ipod diet pill antivirus
” 0.210 0.210 0.151
A (0.005) (0.008) (0.010)
0.250 0.232 0.00
Fa({B}) (0.038) (0.032) (0.074)
0.317
Fa({C}) - (0.065) -
0.664
FA({B,C}) - 0.075) -
P 0.087 0.150 0.206
B (0.006) (0.009) (0.038)
0.030 0.146 0.364
Fs({A}) (0.022) (0.034) (0.050)
0.663
Fs({C}) - (0.080) -
0.334
FB({Aa C}) - (0.083) -
P 0.104 0.051 0.215
¢ 0.012) (0.004) (0.042)
0.040 0.052 0.242
Fo({A}) (0.032) 0.017) (0.042)
0.095 0.088 0.121
Fo({B}) (0.032) (0.029) (0.889)
0.327 0.664 0.125
Fe({4, B}) (0.190) (0.089) (0.699)
N 0.676 0.760 1.0
A (0.056) (0.064) 0.217)
\ 0.627 0.673 0.183
B (0.042) (0.057) (0.049)
\ 1.00 0.579 0.424
¢ (0.057) (0.037) (0.201)
1.00 0.940 1.00
A (0.777) (0.195) 0.231)
1.00 1.00 0.686
B (0.820) (0.743) (0.902)
1.00
e — (0.892) -

Table 4: Estimates of the Ordered Search Model

keyword ipod diet pill antivirus
0216 0.205 0.144
fa (0.005) (0.008) (0.009)
0.085 0.164 0.256
f5 (0.004) (0.009) (0.036)
0.107 0.057 0.253
fo (0.011) (0.004) (0.038)
g 1.00 1.00 1.00
) 0.676 0.671 0.961
s (0.036) (0.037) (0.136)
5 0.400 0.699 0.144
s (0.072) (0.056) (0.043)

Table 5: Estimates of the Separable CTR Model



2.3.4 Addressing Endogeneity

One might question the consistency of our estimates by arguing
that the variation on slot allocations may be endogeneous, that is,
advertisers may change their bids (to alter their positions) as a re-
sponse to different groups of users (that browse the web in different
time periods). We believe on the contrary that a significant source
of variation is due to the allocation procedure itself. Microsoft Ad-
Center applies a randomization procedure that perturbs submitted
bids and (non-deterministically) changes the slot allocations. This
makes the variation exogenous.

2.4 Model Validation

It’s commonly assumed, by both the search engines and the lit-
erature on keyword auctions, that the users’ clicking behavior fol-
lows a separable click-through rate model. According to this sim-
ple model, the probability that advertiser j gets a click when she
occupies slot k is given by:

Prob(advertiser j gets a click on slot k) = s* - f;,

where s is the slot-specific click-through rate and f; is the advertiser-

specific click-through rate. It then follows that, according to this
model, the probability of any clicking log {4, k,1;c*, ¢, ¢*} is
given by:

Prob ({j, k, lic',c?,c®}) = (s'f;) 9 (1 — s £;) 71 (2 f) '™
(=) RS =St

where I is an indicator function that equals 1 if and only if link j
was clicked.

We applied the separable click-through rate model to the same
data base used to estimate the ordered search model. After normal-
izing s' = 1 (which is necessary for identification), we obtained
the results shown in Table 5. Note that, as one would expect, the
estimates of advertiser-specific click-through rates in the separable
model, fa, fp and fc, are roughly equal to the baseline click-
through rates of the ordered search model.

This subsection is devoted to comparing the ordered search model
(to simplify, ordered model) from this paper with the widely used
separable click-through rate model (separable model from now on).
Although having less parameters, the separable model cannot be
written as a constrained version of the ordered model. This is
because the separable model specifies a slot-specific term s* into
click-though rates that does not depend on who occupies the previ-
ous slots. As such, unlike the ordered model, the separable model
disregards externalities between advertisers, but, on the other hand,
allows for slot-specific effects not contemplated by the ordered
model.

To compare these models, we contrasted the probabilities of click-
ing logs implied by each model to raw moments computed from
our data base. The ordered model has more parameters than the
separable model, and so it should come as no surprise that it pro-
vides a better fit for the data. This is a drawback from purely
non-parametrical comparisons; and in future work we shall ad-
dress these concerns by applying non-nested hypotheses testing
techniques (as in [17]).

Table 6 below present our results. To save space, the event ‘user
clicks on advertiser J occupying the first slot’ is denoted simply
by J and the event ‘user clicks on advertiser .J occupying the sec-
ond slot given that he also clicked on advertiser K occupying the
first slot” is denoted by J| K. Finally, the event ‘user clicks on ad-
vertiser J occupying the second slot given that he did not click on
advertiser K occupying the first slot’ is denoted by J| ~ K. The
columm labeled ‘realized CTR’ gives the empirical distribution of

these events, while the columms ‘ordered’ and ‘separable’ present
the probabilities predicted by the ordered and the separable models,
respectively.

Let’s analyze table 6, whose left side is constructed based on
clicking logs associated to the keyword ipod. Among the events
considered, the ordered model predictions are at least as good as
the separable models predictions (as measured by their deviations
to the empirical distribution) in 14 out of 15 events (as indicated by
*). More importantly, the only event in which the separable model
performs better than the ordered model (B| ~ C') may be found
in less than 1% of the sample (as C' occupies the first slot in only
0.88% of the observations - see table 2).

The same pattern is observed for the keywords diet pills and avg
antivirus. As table 6 shows, the ordered model provides better pre-
dictions for 14 out of the 15 events considered. Further, the cases in
which the separable model performs better (C| ~ B and B| ~ C,
respectively) occur in less than 2% of the observations for both
keywords.

The 15 events considered span all possible clicking histories for
the first 2 slots. As a consequence, by applying Bayes rule to the
predictions displayed on table 6 and 7, one can derive the implied
probabilities for any clicking log involving only slots 1 and 2. Thus,
from the discussion above, we can safely conclude that the predic-
tions of the ordered model outperform those of the separable model
for all keywords considered.

3. EQUILIBRIUM ANALYSIS

We’ll now analyze how advertisers bid given that users do or-
dered search. We return to a model with a set of N advertisers de-
noted by A;,j € {1, ...,n} and K. Each advertiser A; has a value
of va; per click. Search engines use the following generalization
of the second-price auction to sell sponsored links: first, each ad-
vertiser A; submits a single bid b, representing his willingness to
pay per click. Then each advertiser’s bid is mulitplied by a weight
wa, that solely depends on his characteristics, producing a score
sa; = wa; - ba,. Next, advertisers are ranked in decreasing order
of their scores and the ;" highest ranked advertiser gets the j"
highest slot. When an advertiser receives a click, he is charged a
price equal to the smallest bid he could have submitted that would
have allowed him to maintain his position in the sponsored list. La-
beling advertisers such that A; denotes the advertiser ranked in the
i’th slot, we see that advertiser A; pays pa; where:

ba,

j+1

WA;

= ; hich gi = TWAj
PA; - wA; =ba;y, - wjy1r whichgives pa; = .

The total payment of advertiser A; is then pa; - ¢’, where ¢/
is the total number of clicks of slot j.° To simplify the analysis,
we’ll take the ordered search model of the previous section and as-
sume that baseline and conditional click-through rates are the same
for each advertiser, that is, we assume that Fia; = Fa,(H) for
any click history H. Although our empirical exercise suggests that
baseline and conditional click-through rates indeed differ, this as-
sumption is necessary to bring tractability to our theoretical model
of bidding. Further, as we will argue later, our main theoretical con-
clusions remain valid under the more general ordered search model
of the previous section.

With this assumption in hand, the total number of clicks of the

>Note ¢’ is actually a function of the entire assignment of advertis-
ers to slots preceeding j; we denote it by ¢’ to simplify notation.



ipod diet pills avg antivirus
realized realized realized

Prob. CTR ordered separable CTR ordered separable CTR ordered separable

A 0.21 021* 022 0.23 021* 021 0.15 0.15*  0.14

B 0.09 0.09* 0.09 0.15 0.15* 0.16 0.17 0.21% 0.26

C 0.05 0.10* 0.11 0.03 0.05* 0.06 0.22 0.22% 0.25

A|B 0.26 0.25% 0.15 0.22 0.23* 0.14 0.00 0.00* 0.14

Al ~ B | 0.13 0.13* 0.15 0.10 0.14%* 0.14 0.04 0.03* 0.14

AlC 0.00 0.00* 0.15 0.36 0.32% 0.14 0.00 0.00* 0.14

Al ~C | 033 0.21* 0.15 0.11 0.12* 0.14 0.06 0.06* 0.14

B|A 0.04 0.03* 0.06 0.21 0.14%* 0.11 0.04 0.03* 0.06

B~ A | 0.06 0.06* 0.06 0.10 0.11%* 0.11 0.06 0.06* 0.06

B|C 0.00 0.00* 0.06 0.60 0.66* 0.11 0.00 0.00* 0.06

B|~C | 0.05 0.09 0.06* 0.10 0.09%* 0.11 0.05 0.09 0.06*

C|A 0.05 0.04*  0.07 0.07 0.05*  0.04 0.05 0.04%  0.07

Cl~A 007 0.07*  0.07 0.06 0.04*  0.04 0.07 0.07%  0.07

C|B 0.19 0.09* 0.07 0.11 0.09%* 0.04 0.19 0.09%* 0.07

C|~ B | 0.08 0.07*  0.07 0.07 0.03 0.04* 0.08 0.07*  0.07
Table 6: Model Validation
J th slot is given by: ploring different scoring rules within the GSP format. In this sub-

i1 section, we make this claim formally by studying how the choice

i— o, . H c where ca — F F (1= Fa)A of a scoring rule affects the set of complete information Nash equi-

= ray Pt Ak A T FARTA A/ Ak librium of the GSP.

Each term c4,, accounts for the fraction of users that continue brows-
ing the sponsored list after coming across advertiser Ax. As such,
the total number of clicks of slot j is the product of advertiser
Aj’s click-through rate (Fa;) and the total number of users that
reach that position (Hf;ll ca,). Advertiser A;’s payoff is then
(UAJ' — PA; g

We are interested in analyzing the complete information Nash
equilibria and resulting efficiency of various scoring rules. A com-
plete information Nash equilibrium is a vector of bids such that no
advertiser can unilaterally change his bid and improve his payoff.
The efficiency of an equilibrium is simply the sum of all advertisers’
value per click times total number of clicks. The optimum social
welfare is the assignment of advertisers to slots with maximum effi-
ciency. Given our labeling scheme in which the 5™ slot is occupied
by advertiser A; € N, the optimum social welfare can be written
as:

N
_ J
W(N) = Al,.?i’ziewz:lq va, (1)
=

3.1 Can Scoring Rules Help?

Search engines have often changed their auction rules for key-
word advertising in order to increase revenue. Yahoo! first dropped
a generalized first-price auction and adopted the rank-by-bid GSP
in early 1997. Ten years later, and with a much wider base of ad-
vertisers, Yahoo! opted for a less drastic change and simply altered
its scoring rule from rank-by-bid to rank-by revenue (in which case
wa; = Fa ; ). Microsoft’s Live Search followed the same path and
also in 2007 moved from the rank-by-bid to the rank-by-revenue
GSP. Recently, Google also changed its scoring rule, although its
precise functional form was not made public.

Search engines are very reluctant to make bold changes in their
auction rules for mostly two reasons: first, advertisers are hardly
willing to learn a completely new auction format; and may switch
to a competitor if that happens. Second, it is believed that much
may be achieved in terms of revenue and efficiency by simply ex-

We will focus on a very interesting, but so far neglected, equi-
librium of the GSP: the one that maximizes the search engine’s
revenue among all pure strategy Nash equilibria. The next lemma
derives the bid profile that maximizes revenue for the search en-
gine:

LEMMA 2. Consider the GSP with scoring rule wa;, selling
K slots to N > K advertisers. Let advertisers Ax, ..., AN be the
efficient assignees of slots 1 to N and assume advertisers submit
bids according to:

WA+

WA; 4 1
ba;, = (1 —ca;)———wa,_, +ca; ba
wa; wa;

. w
for j € {27"'7K}7bAK+1 = Ax VAg, ba; >ba, )

j+1

WAK 1
and bAj < bAK+1 for j > K+ 1. 3)
If this bid profile constitutes a Nash equilibrium, than it maximizes

the search engine’s revenue among all pure strategy complete in-
formation Nash equilibria. We call it the greedy bid profile.

Proof. Consider the efficient allocation, that is, let advertisers A1, ...

receive slots 1 to NV in this order. The Nash equilibrium candidate
that extracts most rents from advertisers has clearly two properties:

first, the last advertiser to obtain a slot (who is Ax) enjoys a zero
WAK+1
w

payoff. This implies that his payment per click, bag,qs

A
has to be equal to his value per click, va,., what givelg equation
(3). Second, all advertisers above Ax should be indifferent be-
tween following equilibrium strategies and undercutting the adver-
tiser immediately below them. To see why this is true, imagine
some advertiser A; strictly prefers slot j to slot j + 1 (given this
bid profile). In this case, if advertiser A; 1 slightly increases his
bid, A; has to pay more but still finds all deviations unprofitable
(and the search engine’s total revenue is higher). As a consequence,
ba;, has to satisfy:

j—1 wa

.
H cay | Fay - (va; — —=ba;,
k=1 w4,

An



J—1
wa,
= j+2
= <| | CAk) Caja Fay (UAJ‘ T wa bAj+2) )
k=1 j

J

what, after switching indexes, gives equation (2).l
As the next proposition shows, such a bid profile is an equilib-
rium for all {(vA], s Fa; 745, A4 )}f:1 if and only if weights are
given by:
__Fa
11— ca,

Fa,

— J

B 1_(FA]’7A]‘ +(1_FA]‘))‘A]‘).

Although at first awkward, the scoring rule above is a quite natural
one. Indeed, as first proved by [11], advertiser j comes on top of
advertiser £ in the efficient allocation if and only if v ;WA >
Vg =W Ay -

WA,

PROPOSITION 1. Consider the GSP with scoring rule WA, sell-
ing K slots to N > K advertisers. The greedy bid profile consti-
tutes a complete information Nash equilibrium for all valuations
and search parameters {(va,;, Fa;,v4a;, )\Aj)}j-vzl if and only if

A T . .
wa; = 74 (uptoa multiplicative constant). In this case, the

equilibrium allocation is efficient and the search engines’s revenue
is maximal.

Proof. Let advertisers bid according to (2) and (3). By construc-
tion, no advertiser wants to undercut someone else’s bid and get
a slot below his own. Further, no bidders want to deviate up-
wards. To see why, let’s first assume (for later confirmation) that
wa; -bAj > WA 44 -bAj+1 for all j. To get a contradiction, imag-
ine some advertiser A;41 strictly prefers slot j to slot j + 1 (under
this bid profile). In this case:

i—1
] F DAy
H CAp | H 541\ VA — 4;
k=1 Ajt1
Jj—1
WA ;
it2
> (H CAk) ca;Fajp (UAj+1 T w bAj+2) ;

k1 Aj+1

what simplifies to:
Wa; VA (1= cag) > wasba; —cajwa; b, 4)

Since wa, bAj > wa,,, - ba for all j, we have that:

J+1 Jt+1

Wa;ba; = Ca;WA; 5ba;4 > WA ba; —cajwa by, (O

By the choice of the scoring rule, and the fact the allocation is effi-

cient, we know that wa; - va; > wa; , - va;,,. Thus:

wa;va; (1 —ca;) > wa;yva,,,(1—ca;). (6)
Plugging (5) and (6) into (4), we obtain that:

wa;va; (1= ca;) > wazba; —caywa;,bag,.

Using the definition of b4 ; from equation (2), the inequality above
becomes:

WA;VA; > WA; VA,

contradicting efficiency. We conclude that if wa; - ba; > wa,

+1°
ba; , holds for all j, then the greedy bid profile is a Nash eqliilib-

rium.
It only remains to be shown that the bids described by (2) and

(3) are indeed such that wa; - ba; > wa,,, - ba,,, forall A;.

The proof is by induction. First, it is a matter of algebra to see that

WA, ~ba, . > wa;,, - ba;,, implies wa; - ba, > wa,,, -

ba a1 Second, this induction hypothesis is true for advertiser A,
as WAy ~bap > way,, -bag,, if and only if:

(1- CAK)wAK—lvAK—l + wAK+1cAKbAK+1 2 WAy bAK+1
S (1—cag)wag vag , > (1—cag)wa,cva,

S WA VA | 2 WAL VAK-
By [11], the last inequality is true for all {(va;, Fa,,va,, Aa; )} o1

Fa, L
Toca, (up to a multiplicative constant). ll

Our next proposition brings a pessimistic message about what
scoring can achieve in the GSP. It shows that there is no scoring
rule for which an efficient equilibrium where each advertiser pays
his Vickrey-Clark-Groves payments exists for all profiles of valu-
ations and search parameters. This extends a result by [8], who
shows that the GSP equipped with the "rank-by-revenue" scoring
function (wa, = Fa,) does not possess an efficient equilibrium
that implements VCG payments.

Recall the Vickrey-Clark-Groves (VCG from now on) payments
charge each advertiser the welfare difference imposed on the oth-
ers:

if and only if wa, =

pia; = W(N = {4;}) = (W(N) — ¢’va,)
where W (N) is the welfare as defined by equation (1).

PROPOSITION 2. Consider the GSP selling K slots to N > K
advertisers. There is no scoring rule wa; which depends solely
on advertiser A;’s search parameters (FA_7 s YA /\Aj) that imple-
ments an efficient equilibrium with VCG payments for all valua-

tions and search parameters {(”UAj vFa;,va;,Ma; )}évzl.

Proof. By the payment rule of the GSP, bids that implement
VCG payments have to be such that:

wa;ba, v

J—1 —
’ =DA;_4-

wa;_,
This implies that advertisers have to bid according to:
WA, _q pXH
wa, g1
ba, > ba, and ba; <ba,, , forj>K+1. (8)

ba, = forje€{2,...K+1}, (7)

J

With these bids in hand, we have to pick a scoring rule wa,
such that the order of scores corresponds to the efficient ranking of
advertisers, that is,

“ba ©)

if and only if A; is assigned a slot above Aj4; in the efficient
allocation.

The idea of the proof is to show that there is no scoring rule
depending only on Fa;,7va;,Aa; that preserves the inequality (9)

wa; -ba; 2 wa;,

for all profiles {(vAj v Fa;, 4, )\Aj)}év:l.

To see why this is true, let’s plug the bids (7) in the inequality (9)
to obtain that any scoring rule that implements a VCG equilibrium
has to satisfy:

WA; 1 v WA,
>
Fa, , Pa; , 2

pV
CAj—lFAJ !

To make the argument, let’s take a profile of primitives
{(UAJ' ) FAj y VAj )‘A]‘ )}é\rzl

such that the efficient assignees of slots A; and A;_; have identi-
cal click-through rates and continuation probabilities, that is, let
(Faj,va;,2a;) = (Fa;_y,7¥4;_1,Aa;_,). Since the scoring



rule is anonymous and can only depend on this quantities, it fol-
lows that WA; = WA; . Condition (10) then becomes:

v
Pa; 1 Z P
The VCG payments pXj _, and pXJ are clearly bounded by the total
welfare obtained by advertisers other than A; and A;_;. As a con-
sequence, one can pick continuation probabilities ya;_,,Aa;_,
small enough (and consequently c4; , small enough) to violate
the inequality above. The strategy of this proof generalizes and
closely follows the argument given by [8] for why the rank-by-
revenue GSP may not possess a VCG equilibrium.l

4. CONCLUSION

This work contributes in two fronts: in the empirical side, we
document information and position externalities among sponsored
search advertisers. Our results bring suggestive evidence that part
of the population of users perform price research through the spon-
sored list (as a user that clicks in a sponsored link is more likely to
keep browsing the sponsored list than users that don’t make clicks
at all). Finally, our empirical model of search behavior is shown
to have more predictive power than the widely popular separable
click-through rate model.

On the theoretical side, we take click-through rates as produced
by ordered search and study the GSP equilibrium properties un-
der different scoring rules. We derive the unique scoring rule that
implements the revenue-maximizing complete information Nash
equilibrium of the GSP (under any scoring rule). We temper this
positive claim with a strong inexistence result: extending the anal-
ysis of [8], we show that no scoring rule implements an efficient
equilibrium with VCG payments for all profiles of valuations and
search parameters.

These results fundamentally rely on the assumption that users
browse from the top to the bottom of the sponsored list and take
clicking decisions link by link (what we call ordered search). It
would be interesting to extend the analysis (both empirical and the-
oretical) to allow users to (optimally) perform other search proce-
dures.
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