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Abstract

In this paper we present a general scheme to create mecha-
nisms that approximate the social welfare in the presence of
selfish (but rational) behavior of agents. The usual approach
is to design truthful mechanisms in which an agent can only
lose by impersonating as another agent. In contrast, our ap-
proach is toallow an agent to impersonate several different
agents. We design the mechanisms such that only a limited
set of impersonations are reasonable to rational agents. Our
mechanisms make sure that foranychoice of such imperson-
ations by the agents, an approximation to the social welfare
is achieved. We demonstrate our results on the well studied
domain of Combinatorial Auctions (CA). Our mechanisms
are algorithmic implementations, a notion recently suggested
in (Babaioff, Lavi, & Pavlov 2006).

Introduction
In recent years we have seen a growing body of work on
distributed agent systems that tries to handle the selfish be-
havior of the agents with game-theoretic tools. Most of these
works use the game-theoretic solution concept of dominant
strategies. A dominant strategies truthful1 mechanism re-
quires that each agent can maximize his utility by reveal-
ing his private information (type) truthfully, independently
of any strategies the other agents choose. In particular this
implies that an agent is never better off if he impersonates
an agent of different type to the mechanism. However, we
see truthfulness as ameansof achieving an approximation
to the optimal welfare and not a goal in itself. In this paper
we show that it is possible, by a suitable construction of an
allocation rule (algorithm), to limit the types of imperson-
ation a rational agent will adopt. Such limitations allow us
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1By the revelation principle, any dominant strategies mecha-
nism can be converted to a truthful dominant strategies mechanism,
thus truthfulness is without loss of generality.

to achieve an approximation to the optimal social welfare,
for any rational impersonations by the agents.

We demonstrate our technique on the extensively studied
CA domain for discrete goods (see e.g. the textbook (Cram-
ton, Shoham, & Steinberg 2005)), as well as CA for axis-
parallel rectangles on the plane. In a combinatorial auction
we need to allocate a setΩ of goods (m items in the discrete
case, the plane in the other case) ton agents2, where agent
i has valuēvi(s) for every subset of itemss. We assume
monotonicity, i.ev̄i(s) ⊆ v̄i(t) for everys ⊆ t, and that
v̄i(∅) = 0. The goal is to maximize the sum of true val-
ues of agents for the subsets they receive. We focus an the
case that agents are single-minded (Lehmann, O’Callaghan,
& Shoham 2002): each agenti has one specific bundlēsi

that he desires; his value for this bundle and any superset of
it is v̄i, and any other bundle is worth 0 to him).

Two informational assumptions can be made: in the un-
known single-minded (USM) CA (Lehmann, O’Callaghan,
& Shoham 2002), both the desired bundle and the value
are assumed to be private information, while in the known
single-minded case (Mu’alem & Nisan 2002), the desired
bundle is publicly known, while the value is private infor-
mation. Truthfulness in the “known” case only requires that
the allocation rule is value monotonic (improving the bid
cannot make a winner into a loser), while truthfulness in the
“unknown” case is much harder to achieve. To ensure that
an agent will reveal his desired bundle truthfully, we have to
make sure that he never gains by bidding for a superset of
his desired bundle.

Several papers (Mu’alem & Nisan 2002; Archeret al.
2003; Babaioff & Blumrosen 2004) either provide results
only for the “known” case, or provide inferior results for
the “unknown” case. Their truthful mechanisms for the
“known” case arenot truthful for the “unknown” case, as
agents can sometimes gain by bidding for a superset of
their desired bundle. The main idea behind our results is to
solve this problem byallowing every agent to impersonate
a bounded number of single minded agents with thesame
value (the mechanism knows that all the impersonations are
from the same agent, unlike in (Yokoo, Sakurai, & Matsub-

2An allocation is a tuple of disjoint subsetss1, ..., sn of items,
where the meaning is that agenti gets the items insi. Some items
may be left unallocated.



ara 2001) which handles the case that one agent appears to
the mechanism in the guise of many agents).

We present a general framework that takes ac-
approximation algorithm (that satisfies several proper-
ties which we discuss below) and converts it to ac-
approximation mechanism. We show that for allocation
rules that satisfy these properties (we give two examples be-
low), in any rational strategic choice the agent will reveal
his true value and his true desired bundle, coupled with extra
false information (supersets of his desired bundle will be the
only reasonable lies). By using their true value and bundle
we can achieve the same approximation ratio as the original
approximation algorithm.

The formal game-theoretic framework for our mecha-
nisms is the framework of “algorithmic implementation”, a
notion recently suggested and justified in (Babaioff, Lavi,
& Pavlov 2006), and which we present below for complete-
ness of the presentation. The current work suggest an ad-
ditional method of achieving algorithmic implementation
beyond what was suggested in (Babaioff, Lavi, & Pavlov
2006). This suggests that the notion of algorithmic imple-
mentation is a general notion. Furthermore, the current work
has an improved approximation (by a log factor better than
what appeared in (Babaioff, Lavi, & Pavlov 2006).

Algorithmic Implementation

We briefly present the concept of “algorithmic implementa-
tion” (Babaioff, Lavi, & Pavlov 2006), and relate it to our
impersonation-based mechanisms.

In our impersonation-based mechanisms, an agent does
not have a dominant strategy3. The mechanism achieves
good approximation when we merely assume that each agent
does not choose adominatedstrategy4 if he can find a strat-
egy that dominates it. This is reasonable to assume as the
dominating strategyalwaysperforms at least as well, and
in at least one case performs better. Thus, it is rational
for an agent to move from a given strategy to another strat-
egy that dominates it, if such a dominating strategy can be
found. The formal notion of “algorithmic implementation”
(Babaioff, Lavi, & Pavlov 2006) captures this intuition, even
if agents are computationally bounded:

Definition 1 A mechanismM is analgorithmic implemen-
tation of ac-approximationif there exists a set of strategies,
D, with the following properties:

1. For any combination of strategies fromD, M obtains a
c-approximation of the welfare in polynomial time.

2. For any strategy that does not belong toD, there ex-
ists a strategy inD that dominates it. Furthermore, this
“improvement step” can be computed in polynomial time
(“algorithmic improvement property”).

3A dominant strategy is a strategy which always performs at
least as well as any other strategy.

4Formally, letui(si, s−i) denote the resulting utility of agenti
when he playssi and the others plays−i. A strategys′i of agent
i is (weakly)dominatedby another strategysi if, for every s−i,
ui(si, s−i) ≥ ui(s

′
i, s−i).

Our Results
The main idea behind our technique is to allow a single-
minded agenti that desires a bundlēsi, to impersonate and
claim that he might prefer to be considered by the mecha-
nism as desiring some superset of his desired bundle. By
allowing the agent to bid forseveralbundles, we make it
possible for him to impersonate to an agent with a superset
of s̄i and thus increase his utility, but also make sure it would
neverreduce his utility if his smallest reported bundle is his
true desired bundle (this is in contrast to previous work that
merely allows the agent to bid for a single bundle).

Our general framework, formally described in Figure 1,
takes an approximation algorithmG and a parameterK > 1,
and constructs a mechanismM(G, K) as follows. An agent
is allowed to submit a valuevi and a chain of at mostK bun-
dless1

i ⊂ s2
i ⊂ . . . ⊂ ski

i . We then decompose this chain
into ki single minded virtual players, each hasi’s value and
one of the bundles of the chain. We then feed this set of vir-
tual players to the algorithmG, and get as the output a set
of virtual winners, which corresponds to the real winners5.
A winner receives his minimal bundle in the chain,s1

i , and
pays the minimal value he needs to bid in order to win. This
is well defined if the mechanism is value monotonic. In this
case the framework ensures that a rational agent will bid his
true value and a chain of bundles, where the minimal bundle
in the chain contains his desired bundle. To ensure the ap-
proximation we actually need that the minimal bundle in the
chain will be exactly equal to the desired bundle. Thus we
need the mechanism to additionally satisfy the property of
encouraging minimal bundle bidding(all formal details are
given in the paper body).

We can now tie the ends with the definition of an algo-
rithmic implementation. The setD contains all strategies
in which a single-minded agent reveals his true value and a
chain of bundles where the minimal bundle in the chain is
the agent’s desired bundle. Our framework ensures that any
strategy is dominated by a computable strategy inD, and
each specific application will additionally ensure that this
transformation is computable in polynomial time. We get:

Theorem 1 Suppose that an allocation ruleG is a c-
approximation for single-minded agents. If theM(G, K)
mechanism is value monotonic and encourages minimal
bundle bidding, then it is an algorithmic implementation of
a c-approximation.

We give two applications to demonstrate the usefulness of
our technique.

Application 1: A CA of rectangles in the plane. In
an axis-parallel rectangles CA, the set of goods is the
set of points in the plane<2, and agents desire axis-
parallel rectangles. Babaioff & Blumrosen (2004) ex-
tended an algorithm by Khanna, Muthukrishnan, & Pater-
son (1998) to a truthfulO(log(R)) approximation mech-
anism, forknownsingle minded bidders, whereR is the
ratio between the smallest width and the largest height of

5At most one ofi’s virtual players can win as all their bundles
intersect.



Impersonation-Based Mechanism for USM CA
Given a direct revelation allocation ruleG for single minded CA
(each agenti bids a valuevi and a bundlesi),
and a positive integerK.

Strategy space:
Each agenti submits a valuevi and a sequence ofki ≤ K

bundles,s1
i ⊂ s2

i ⊂ . . . ⊂ ski
i .

Allocation:
Run the allocation ruleG on the input{(vi, s

k
i )}i∈N,k=1...,ki

and get a set of winnersW.
Each winneri ∈ W receivess1

i (the minimal bundle),
other agents lose, and get∅.

Payments(assuming the allocation is value monotonic):
Losers pay 0. Each winner,i, pays his critical value for winning,
i.e. the minimal valuev∗i that will causei to win.

Figure 1: The framework for building Impersonation-Based
Mechanisms for unknown single-minded CA.

any two of the given rectangles. However, for the “un-
known” case they were only able to give anO(R) approx-
imation. With the Impersonation-Based mechanism, we
achieve the originalO(log (R)) approximation ratio using
algorithmic implementation. We use theShifting algo-
rithm of Khanna, Muthukrishnan, & Paterson (which we
later define), to construct the Impersonation-Based mecha-
nismM(Shifting, log (R)) (theShifting algorithm is the
allocation algorithm andK = log (R)). By showing that
M(Shifting, log (R)) is value monotonic and encourages
minimal bundle bidding, we prove:

Theorem 2 M(Shifting, log (R)) is an algorithmic im-
plementation of anO(log (R))-approximation.

Application 2: A modified k-CA. The k-CA algorithm
of Mu’alem & Nisan (2002) provides anε ·

√
m approxi-

mation for anyε > 0, in time proportional to1/ε2. This
gives the ability to fine tune the trade-off between the run-
ning time and the approximation. It is truthful for known
single-minded agents, but is not truthful in the unknown
case. Closing the gap by plugging it into the imperson-
ation based mechanism will not help, as the result will
not be value monotonic. To fix this, we define the IA-k-
CA algorithm, which is based on thek-CA algorithm, and
suits the impersonation-based technique. The approxima-
tion ratio of the IA-k-CA algorithm slightly increases to be
(2 · ε ·

√
m · ln v̄max) for any fixedε > 0, still in time pro-

portional to1/ε2. For this case we get:

Theorem 3 For any fixedε > 0, M(IA-k-CA ,
√

m) is an
algorithmic implementation of a(2 · ε ·

√
m · ln v̄max)-

approximation.

Thus we get that for the “unknown” case we are also able
to fine tune the trade-off between the running time and the
approximation. In particular, if the valuēvmax is bounded
by a constant, we can getε′

√
m-approximation for any

ε′ (by the proper choice ofε). This improves upon the

best truthful mechanism for the “unknown” case (Lehmann,
O’Callaghan, & Shoham 2002), which achieves an approxi-
mation of

√
m.

The rest of the paper is organized as follows. First we
describe the general framework, then we describe the appli-
cation of our technique to selling rectangles in the plane, and
finally we describe the application to single minded CA with
discrete set of items.

The General Technique
The general technique to create an impersonation-based
mechanism from an approximation algorithm is described in
Figure 1. In this section we show that any strategy is domi-
nated by a strategy in which an agent bids his true value, and
a chain that contains his desired bundle. We also prove that
if in any played strategy the agent bids his desired bundle,
then the impersonation-based mechanism achieves the same
approximation as the original algorithm.

Proposition 1 Assume that theM(G, K) mechanism is
value monotonic (for any choice of impersonation). Then
for any agenti, any strategy is dominated by a strategy in
whichs1

i ⊇ s̄i andvi = v̄i. Additionally, the new strategy
can be calculated in polynomial time.

Proof: If it does not hold that̄si ⊆ s1
i , i’s utility is non

positive. If he loses his utility is 0, while if he wins, he gets
the bundles1

i which has 0 value, and he pays non negative
payment, thus has non positive utility. Thus any strategy for
which it does not hold that̄si ⊆ s1

i , is dominated by the
strategy of bidding the true value and true desired bundle (as
such strategy ensures non-negative utility).

Since the mechanism is value monotonic, and the pay-
ments are by critical values, any strategy withs̄i ⊆ s1

i and
vi 6= v̄i is clearly dominated by the strategy that declares the
same chain of bundles and the true valuevi (bidding differ-
ent value can only change the chances of winning, never the
payment. Bidding higher can only cause winning and paying
over the value instead of losing, bidding lower might cause
losing in case winning is desired). Finally, it is clear that in
both cases the improvement can be done in polynomial time.

To ensure the approximation, we actually need that the
minimal bundle in the declared chain will be equal to the true
desired bundle. We require this in the following definition:

Definition 2 The value-monotonic mechanismM(G, K)
encourages minimal bundle biddingif for any agenti, any
strategy is dominated by a strategy withs1

i = s̄i. Addition-
ally, the new strategy can be calculated in polynomial time.

Theorem 1 Suppose that an allocation ruleG is a c-
approximation for single-minded agents. If theM(G, K)
mechanism is value monotonic and encourages minimal
bundle bidding, then it is an algorithmic implementation of
a c-approximation.
Proof: Let D be the set of all strategies in which an agent
bids his true value and a chain with his true desired bundle as
the minimal element. By Proposition 1 and the definition of



The Shifting Algorithm for single-minded agents:
Input:
A vector of valuesvj and a vector of axis-parallel rectanglessj

(with one element for each agent).
Procedure:

1. Divide the given rectangles tolog (R) classes such that a
classc ∈ {1, . . . , log (R)} consists of all rectangles with
heights in
[W · 2c−1, W · 2c) (where the height of an axis-parallel rect-
angle is its projection on they-axis).a

2. For each classc ∈ {1, . . . , log (R)}, run the Class Shifting
Algorithm (Figure 3) on the classc, where the input is the
vector of valuesvj and a vector of axis-parallel rectangles
from sj with height in[W ·2c−1, W ·2c), to get an allocation
Wj(c).

Output:
Output the maximal value solutionWj(c) (with respect tovj),
over all classesc ∈ {1, . . . , log (R)}.

aAssume that the last class contains also the rectangles of
heightW · 2log (R).

Figure 2:The Shifting Algorithm.

“encourages minimal bundles bidding”, an agent can move
from any strategy to a strategy inD that dominates it, in
polynomial time. We next prove that the approximation is
achieved when all agents play strategies inD.

Let t be the true types of the agents, and lett′ be the
sequence of single-minded bidders constructed from the
agents’ bids. SinceM(G, K) is value monotonic, then, in
any strategy inD, each agent reports his true value. Since
M(G, K) encourages minimal bundle bidding,s1

i is the true
bundle of agenti for all i. Thereforet ⊆ t′, i.e. all the
actual agents oft exist in t′. Let v∗(t), v∗(t′) be the opti-
mal efficiency according tot, t′, respectively. We first claim
that v∗(t) = v∗(t′): Obviously, v∗(t) ≤ v∗(t′) as t′ in-
cludes all agents oft, and perhaps more. On the other hand,
v∗(t) ≥ v∗(t′), since we can convert any allocation int′

to an allocation int with the same value – choose the same
winners and allocate them their bundles int. This is still
a valid allocation as allocated bundles only decreased, and
it has the same value. Thusv∗(t) = v∗(t′). SinceG(t′)
produces an allocation with value at leastv∗(t′)/c, the ap-
proximation follows.

Finally, we note that sinceG runs in polynomial time,
then the mechanism runs in polynomial time: the allocation
is clearly polynomial time computable. The payment of each
agent can be calculated by running the allocation at most
log (v̄max) times using a binary search (v̄max is the maximal
value of any agent).

Application 1: Selling Rectangles on the Plane
In a CA of the plane, the set of goods is the set of points in
the plane<2, and agents desire axis-parallel rectangles in the
plane. With the Impersonation-Based mechanism technique,
we are able to achieve the originalO(log (R)) approxi-
mation ratio of the original shifting algorithm of (Khanna,

The Class Shifting Algorithm:
Input:
A class numberc.
A vector of valuesvj and a vector of axis-parallel rectangles,
each of height in[W · 2c−1, W · 2c).
Procedure:

1. Superimpose a collection of horizontal lines with a distance
of W · 2c+1 between consecutive lines. Each area between
two consecutive lines is called aslab. Later, we shift this
collection of lines downwards. Each location of these lines
is called ashift and is denoted byh.

2. For any slab created, and for all the rectangles in this slab
which do not intersect any horizontal line, project all the rect-
angles to thex-axis. Now, find the set of projections (inter-
vals) that maximizes the sum of valuations w.r.t.vj (this can
be done in polynomial time using a dynamic-programming
algorithm (Babaioff & Blumrosen 2004)). LetV (h, l) be the
value achieved in slabl of shift h.

3. Sum the efficiency achieved in all slabs in a shift to calculate
the welfare of this shift. Denote the welfare achieved in shift
h by V (h) =

∑
l∈h V (h, l).

4. Shift down the collection of horizontal lines byW , and re-
calculate the welfare. Repeat the process2c+1 times.

Output:
Output the set of agents winning in the shift with maximal value
of V (h), and their winning rectangles.

Figure 3:The Class Shifting Algorithm.

Muthukrishnan, & Paterson 1998) (see Figure 2) with algo-
rithm implementation. Throughout this section we assume
that the sub-procedure to find the optimal interval alloca-
tion breaks ties in favor of contained rectangles (if a rectan-
gle contains another rectangle, than the latter will be chosen
and not the former). LetShifting be the shifting alloca-
tion algorithm of Figure 2, andM(Shifting, log (R)) be
the Impersonation-Based mechanism based onShifting,
with K = log (R).

Theorem 2 M(Shifting, log (R)) is an algorithmic im-
plementation ofO(log (R))-approximation.
Proof: The claims below show thatM(Shifting, log (R))
is value monotonic and the mechanism encourages minimal
bundle bidding, hence the claim follows by theorem 1.

Claim 1 M(Shifting, log (R)) is value monotonic.

Proof: Suppose a winneri increases his value. Agenti
remains a winner in any shift in which he was winning pre-
viously (since the allocation in each shift is monotonic). The
only shifts whose value increases are those in whichi wins
(possibly after increasing his bid). The value of any shift
(in any class) in which he remains a loser does not change.
Thus, the shift with the maximal value (over all classes and
shifts in each class) must containi as a winner.

Claim 2 M(Shifting, log (R)) encourages minimal bun-
dle bidding.

Proof: Since the mechanism is value monotonic (Claim 1),
by Proposition 1, for any agenti, we only need to show how



to take a strategy with̄si ⊂ s1
i andvi = v̄i, and move to

another strategy that dominates the first, withs̄i = s1
i and

vi = v̄i. We show that the following polynomial time pro-
cedure achieves this goal: Given the chain of rectangles (all
with height at least the height of̄si), we take all rectangles
that belong to the classc, and replace them with a minimal
area rectangle that containss̄i and is contained in the mini-
mal of them (thus in all of them). We then adds̄i to the new
chain, if it is not already there.

We need to show that this transformation never decreases
i’s utility. It is sufficient to show that it will never changei
from winning to losing. In the given strategy,i never bids in
a classc for whichW · 2c−1 is smaller than the height of̄si,
as all rectangles contain̄si. Thus we look at some classc for
which s̄i can belong to (meaning thatW ·2c−1 is at least the
height ofs̄i). Let sq

i denotes the minimal area bundle agent
i bids for in a classc. We show that any strategy in whichi
bids forsq

i is dominated by a strategy in whichi replacessq
i

by some minimal area bundlesi ⊇ s̄i in classc.
If i wins with a bundle not in classc, replacing the bundles

in classc cannot makei a loser (since only allocations with
i as a winner are improved). Assume thati wins the bundle
sq

i which belongs to classc. Replacingsq
i by some minimal

area bundlesi in classc, such that̄si ⊆ si ⊆ sq
i , can never

causei to lose (in any shift from whichsq
i was not removed,

si will not be removed as well). The same shift hasi winning
and at least the same value as before, and the value of any
shift with i losing does not increase).

Agenti can remove any non minimal area bundles in any
class, since this will never change the outcome. Addition-
ally, adding bundles can never make him worse off. This
implies that sincei can bid for up tolog (R) bundles, an
agent can always bid a minimal area bundle, in any classc
such thatW · 2c−1 is at least the height of̄si. In particu-
lar, he can bid for a minimal area bundle in the class ofs̄i.
The only minimal size bundle in the class ofs̄i is the desired
bundle itself. Thus, agenti has a strategy withs1

i = s̄i that
dominates any strategy with̄si ⊂ s1

i .
This completes the proof of the theorem.

Application 2: Single-Minded Combinatorial
Auctions

In this section we present the mechanism for single-minded
CA with discrete goods. As we use a modification of the
k-CA Algorithm (Mu’alem & Nisan 2002), we first present
the algorithm. The k-CA Algorithm chooses the allocation
that is the maximal of the following allocations.

• The exhaustive-k: The maximal value allocation with at
mostk bundles (found by exhaustive search over all allo-
cations withk bundles).

• The greedy by value algorithm over bundles of size at
most

√
m/k.

For our mechanism, it is important to set the right tie break-
ing rules in order to encourage minimal bundle bidding. It
turn out (see Appendix) that if the greedy algorithm favors
large bundles (as we should in order to encourage minimal
bundle bidding), the 1-CA is not value monotonic. In order

to make it value monotonic, we use the technique of Fig-
ure 4, due to (Babaioff, Lavi, & Pavlov 2005). Briefly, given
an allocation ruleG, this method maintainsln v̄max classes,
where thei’th class “sees” only agents with value of at least
2i−1. Each class computes an allocation according to an
unweighted version ofG (i.e. all agents have values of1),
and the allocation of the class with maximal value is chosen.
Babaioff, Lavi, & Pavlov showed that the resulting approxi-
mation ratio is increased only by a factor ofO(log(v̄max)).
We use this in our “impersonation-adjustedk-CA”:

Definition 3 (The impersonation-adjustedk-CA) The
impersonation-adjustedk-CA allocation rule IA-k-CA is
defined to be the Bitonic Unweighted Allocation Rule of
Figure 4, on top of thek-CA allocation rule of (Mu’alem &
Nisan 2002) with the following tie breaking rules:

• The greedy algorithm favors larger bundles over smaller
bundles.

• The exhaustive-k algorithm favors smaller bundles over
larger bundles.

For a fixed ε, k is chosen to make thek-CA an ε
√

m-
approximation for the KSM CA model. By (Babaioff, Lavi,
& Pavlov 2005), the impersonation-adjustedk-CA is a thus
a (2 · ε ·

√
m · ln v̄max)-approximation for the known single-

minded agents.
We use the impersonation-adjustedk-CA as the allocation

rule for our Impersonation-Based mechanism. We set the
parameterK of the mechanism to be

√
m. Effectively, this

enables any agent to bid for any chain he might desire to bid
for, as we later show.

Theorem 3 For any fixedε > 0, M(IA-k-CA ,
√

m) is
an algorithmic implementation of a(2 · ε ·

√
m · ln v̄max)-

approximation.
Proof: The following claims show thatM(IA-k-CA ,

√
m)

is value monotonic and it encourages minimal bundle bid-
ding, hence the claim follows by theorem 1.

Claim 3 M(IA-k-CA,
√

m) is value monotonic.

Proof: We prove that if an agent enters a new class, and
becomes a loser in that class, then the value of the allocation
of that class does not increase. This immediately implies
monotonicity: let c be the class with highest value. Suppose
some winner in c increases his value. This may only affect
the allocation in classes he now joins because of the value
increment. All those classes had values lower than the value
of c. By the above claim, any class that now has value higher
than the value of c must havei as a winner, thusi is a winner
in the new winning class.

Suppose the agent joins a new class. There are two cases:
either the greedy wins or the exhaustive-k wins after the
agent joined. If the greedy wins buti loses, this means that
i loses in the greedy, thus the value of the greedy does not
change by addingi and was maximal before the change (the
value of the exhaustive-k can only increase by addingi). So
we conclude that the value of the allocation does not change.
If the exhaustive-k wins after i joins, sincei loses in the
exhaustive-k, the value of the exhaustive-k does not change.
If the exhaustive-k was maximal before the change, then the



A Mechanism for a Bitonic Unweighted Rule:
Input:
Each agenti reports a valuevi.

Allocation:

• Partition the given input tolog(v̄max) classes according to
their value. Agenti that bidsvi appears with value1 in any
classC such thatvi ≥ 2C−1, and with value0 in all other
classes.

• Compute the bitonic allocation ruleBR for each classC.
Denote the number of winners in classC by n(C).

• Output the classC∗ for which2C−1n(C) is maximal.

Payments:
Each winner pays his critical value for winning, losers pay 0.

Figure 4: Converting an unweighted bitonic allocation ruleBR
into a truthful mechanism.

value of the allocation does not change. If the greedy was
maximal before the change, it must be the case that its value
decreases (since the value of the exhaustive-k is fixed), so
the value of the allocation decreases.

Claim 4 M(IA-k-CA ,
√

m) encourages minimal bundle
bidding.

Proof: To prove the claim we present the following poly-
nomial time algorithm, that given a strategy in whichi
bids the valuev̄i and a sequence ofki ≤

√
m bundles

s1
i ⊂ s2

i ⊂ . . . ⊂ ski
i where s̄i ⊂ s1

i , outputs a strategy
that dominates it with̄si = s1

i . Given the strategy, we:

• remove all reported bundles different from̄si of size
larger than

√
m.

• adds̄i as the new minimal reported bundle.

First, note that the algorithm results with a chain of at
most

√
m bundles. This holds since for the original chain

s̄i ⊂ s1
i , thus there are at most

√
m− 1 bundles in any chain

of bundles, each of size at most
√

m, with s̄i ⊂ s1
i (the chain

does not includēsi). We need to show that this transforma-
tion never decreasesi’s utility. It is sufficient to show that it
will never changei from winning to losing. Thus, we show
that in any case thati wins with the original chain, he also
wins with the new chain.

In any class, in the exhaustive-k, if i wins with some bun-
dle that contains̄si before the change, he also wins withs̄i

after the change. Only agents with|s̄i| ≤
√

m might win in
the greedy algorithm before the change. In any class, in the
greedy algorithm, ifi wins with some bundle that contains
s̄i before the change, he also wins with the same bundle af-
ter the change (this bundle is not removed). Addings̄i might
only causei to win if he lost before the change.

The above shows that if|s̄i| >
√

m, the strategy of re-
porting v̄i ands1

i = s̄i (ki = 1) is a dominant strategy fori.

This completes the proof of the theorem.

Conclusions and future work
In this paper we expanded on the work begun in (Babaioff,
Lavi, & Pavlov 2006). We showed an alternative method
of achieving an algorithmic implementation which in some
special cases improves on the bound achieved in (Babaioff,
Lavi, & Pavlov 2006). This shows that the notion of al-
gorithmic implementation is indeed a general method. The
main challenge that remains is to characterize the family of
domains for which the notion of algorithmic implementation
is a useful solution concept.
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Impersonation-Based Mechanism with 1-CA is
Not Value-Monotonic

We remark that it does not suffice for the allocation rule it-
self to be value monotonic. E.g. the 1-CA of (Mu’alem &
Nisan 2002) will not do. This algorithm chooses the maxi-
mal allocation over giving all the goods to the highest bidder,
and running a greedy by value on agents with bundle of size
at most

√
m, with tie breaking in favor of larger bundles (to

encourage minimal bundle bidding). Suppose there are three
agents and 10 goods, agent 1 has value of 6 for the set{g1},
agent 2 has value of 5 for the sets{g2}, and agent 3 has
value of 10 for the set of all goods. In the impersonation-
based mechanism we allow each agent to bid for at most 3
bundles. Assume agent 1 bids 6 and the chain{g1}, agent
2 bids 5 for the chain{g2} ⊂ {g1, g2}, and agent 3 bids 10
for all the goods. In this case agent 1 wins{g1} and agent
2 wins {g2}. If agent 2 increases his reported value to 7,
then he becomes a loser, since agent 3 wins alone (the value
of greedy decreases from 11 to 7, and the maximal value
remains 10 ).


