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Abstract

The problem of market clearing in an economy is
that of finding prices such that supply meets de-
mand. In this work, we propose a kernel method
to compute nonlinear clearing prices for instances
where linear prices do not suffice. We first present
a procedure that, given a sample of values and costs
for a set of bundles, implicitly computes nonlinear
clearing prices by solving an appropriately formu-
lated quadratic program. We then use this as a sub-
routine in an elicitation procedure that queries de-
mand and supply incrementally over rounds, only
as much as needed to reach clearing prices. An em-
pirical evaluation demonstrates that, with a proper
choice of kernel function, the method is able to
find sparse nonlinear clearing prices with much less
than full revelation of values and costs. When the
kernel function is not suitable to clear the market,
the method can be tuned to achieve approximate
clearing.

Introduction

agents would correspond tepresentativduyers and sellers
that enact the aggregate demand and supply behavior of each
side of the economy. Thus there is little loss of generatity i
considering just a buyer and a seller in this setting, and we
opt for this simpler two-agent model for this initial work.

The problem at hand is that of finding prices such that
the bundle that maximizes the buyer’s utility simultandgpus
maximizes the seller’'s profit; it is in this sense that supply
meets demand. We make no convexity assumptions on the
value and cost functions of the buyer and seller. Now, no
single clearing method can hope to perform universally well
under such general conditions. A kernel method has the mod-
ularity to adopt an appropriate kernel function to clear any
particular instance of value and cost functions.

We first provide a quadratic program that, given a sample
of values and costs for a set of bundles, computes nonlinear
clearing prices using only inner-products of high-dimensil
bundle representations; this is the usual notion of a kernel
method. Unlike typical machine learning scenarios, howeve
a sample of values and costs is not just given to us, it must
be elicited. Thus we embed our quadratic program as a sub-
routine in an elicitation procedure that queries demand and
supply incrementally over rounds.

Kernel methods have been appliedstogle-agenprefer-

ities are concave and costs convex. These assumptiongense@nce elicitation, where the goal is to recover or approxénat

thatlinear prices exist that balance demand and supply, wher@n agent's preferences in order to act on its behalf or assist

one price is assigned to each item and the price of a bundlié on some tasks (i.e., for decision support). Domshlak and

is simply the sum of item prices. But there are many realisticJoachims[200€ provide a method for generating an ordi-

conditions under which such assumptions may fail to holdpal utility function given qualitative preference statertse

such as complementary items or economies of scale. In sudBhappelle and Harchao[2005 and Evgeniou et a[2009

casesionlinearprices might be needed to clear the market. apply support vector machines to conjoint analysis (prefer
The problem of finding nonlinear clearing prices is chal-ence elicitation for marketing purposes).

lenging because such prices may be difficult to succincly de We are not aware of any applications of kernel methods in

scribe, let alone efficiently compute. In this work, we prepo the context ofmutli-agentpreference elicitation, where the

a kernel method for market clearing to address both of thesgoal is not to recover preferences in any complete way, but

issues. We view nonlinear prices as linear prices with retspe rather to solve some ulterior problem involving all the aigen

to some high-dimensional representation of bundles. Thigsuch as market clearing). Our elicitation procedure islaim

perspective is drawn directly from the field of kernel method to the work of Lahaie and Parkg2004, who give an auction-

in machine learning, in particular support vector machjnesstyle protocol that leads to clearing prices. They fit valrat

where nonlinear classifiers are construed as linear clessifi functionsto the agent’s reported values using techniques f

in high-dimensional feature spa¢8hawe-Taylor and Cris- computational learning theory, and ultimately reach dregr

tianini, 2004. prices on the basis of these valuations. Our method bypasses
We consider a simple model with one buyer and one selletthe step of fitting functions and directly computes clearing

In an environment with multiple buyers and sellers, our twoprices based on sample information of values and costs.



2 The Model of cost queryande-supply quenare defined analogously for
There is one buyer, one seller, anditems. Abundleis a the seller. Because prices_ are communicated to the agents in
subset of the items. We associate each bundle with its inddeémand and supply queries, we must ensure that they have
cator vector, and denote the set of bundlestby= {0, 1}™. succinct encodings for such queries to be practical. This is
We writez < 2/ to denote that bundle is contained in bun- another goal of our work, for which we draw on techniques
dle 2/ (the inequality is understood component-wise). Theffom kernel methods.
buyer has a value functian: X — R, denoting how much
it is willing to pay for each bundle. The seller has a cost3 Kernels
functionc : X — R denoting how much it would cost to To compute nonlinear clearing prices, we view these astinea
produce each bundle. We assume that each function is monprices in a higher-dimensional space to which we map the
tone:v(x) < v(z') whenever: < z/, and the same far. We  bundles via a mapping : X — RM, whereM > m. Entry
also assume(0) = ¢(0) = 0. i in the vectorg(x) defines the value of thih “feature” of

A bundle isefficientif it maximizes the gains from trade: bundlex, fori = 1,..., M. Now, givenp € R, the price
value created minus cost of production. Formally: X is  of bundlex is (p, ¢(x)). The mappings therefore indirectly
efficientifz € arg max, cx v(z') — ¢(2’). Together with an  describes how each bundle is priced.

efficient bundle, we wish to find prices: X — R such that We mightneed\/ >> m to ensure that clearing prices exist,
at these prices, supply meets demand. Let but with largeM we cannot explicitly exhibit vectors(x) or
pricesp drawn fromRM. The key insight of kernel meth-
D(p) = argmax{v(z) - p(z)} ods is known as the “kernel trick”. Instead of working with

vectors inR, which may be impractical or even infeasible,
one formulates the relevant problem (e.g., classificatien,
gression) as a mathematical program that relies only on the
inner products¢(xz;), ¢(z;)). What makes this practical is
that, for many kinds of mappings, the inner products can be
efficiently evaluated in time that does not dependién

A kernel functiorx computes the inner product of the im-
ages of two bundles under a mapping R™ — RM, so
that k(x1,x2) = (p(x1), d(x2)). A fundamental result on
H<erne|s states that if a functien: X x X — R with a count-
able domain is the kernel function of some mapthen for

S() = argmax{p(z) - c(z)}

In words, D(p) is the set of bundles that maximizes the
buyer’s utility—value minus price—and similarlg (p) are
those bundles that maximize the sellgyisfit—revenue mi-
nus cost. Pricep areclearing pricesif D(p) N S(p) # 0.
At clearing prices, there is some bundle that simultangousl
maximizes the buyer’s utility and the seller’'s profit; inghi
sense, supply meets demand and the market clears.
Clearing prices are important because they decentraleze t
problem of efficient trade. I£* € D(p) N S(p), then for any

any finite samplg 1, ...,z } from X, thek x k kernel ma-
other bundler we have trix K with entriesK;; = k(z;,x;) is positive semi-definite
v(z*) — p(z*) v(z) — p(x) (see, e.g[Shawe-Taylor and Cristianini, 200)4

p(z*) — c(z*) p(z) — c(z) ~ Instances of useful kernel functions for various classifica
) ) - tion and regression tasks abound in the machine learning lit
and adding these two inequalities shows that') —c(z*) > erature. By way of example, we list here those kernels that
v(z) — c(z). Thusz* is efficient. In our modehonlinear e use later for the empirical evaluation of our method.
clearing prices always exist because observe that we can siMinaar At one extreme we have the kernelz;,z;) =

— — i i i - . . A
ply takep = v orp = c. As mentioned in the introduc- ., * .y \hich simply corresponds to the identity map
tion, convexity assumptions would imply thétear clear- — .+ We would use this kernel in the method devel-
ing prices exist; formally, these can be described by a vectoy e |ater if we were to try to find linear clearing prices.

e . ) .
p € R™ sothatthe price of a bundiec X is the usual inner Identity At the other extreme, we have the kernel function

product(p, z) = 37—, p;;. . - k(x,x;) = 1if 2; = x;, and0 otherwise. List all the pos-
We need to explain how value and cost information will be " *"" 7 ’ 7 . gm
ible bundles ag1, zo,...,zom. If we definee; € R to

provided to our algorithms. Because the domain of bundlesii h X hat h 1 X q i th
exponentially large, passing an encoded descriptionarid € the unit vector that has a 1 in entryand zeroes in the
remaining), then the implied map is simplyz;) = e;. This

would be infeasible in general for even moderatésuch as )= -
¢ 9 & ¢ corresponds to the case were each bundle is priced exylicitl

m = 30). In fact, one main goal of our work is to try to fin d theref leari _ d ;
clearing prices by eliciting as little value and costinfation ~ and therefore clearing prices are guaranteed to exist.

as possible. Thus we will just assume that our algorithmdll-subsets Theall-subsetskernel maps bundles into vec-
have oracle access to the value and cost functions through twiors in R*". The range has a dimension for each bundle
kinds of queries. We assume that agents respond truthfully tz € X. We haveg,(2’) = 1if z < 2’ and O other-
queries, and leave the question of incentive-compattitit ~ Wise. Thus the price of a bundle is the aggregate of the prices
future work. On avalue querythe buyer is presented a bundle on all its subsets. The actugl kernel function is (jefllned as
2 and replies withy(z). On ane-demand querythe buyer  #(z,2') = [[;Z, (1 + @;z}), which can be evaluated in linear

is presented a bundle, pricesp, and ane > 0; the buyer time. With the ability to implicitly price subsets of commied
returns any bundle that maximizes its utility at prigesithin ~ ties, this kernel seems well suited to market clearing.

an additive error ok, breaking ties however it wishes, with Gaussian  This is one of the most widely used ker-
the exception that if: applies then it is returned. The notions nels in machine learning. It is defined asx,2’) =

>
2



exp(— ||z — 2/||* /202). (Here and everywhere elsd;||  Observe that this quadratic program solves the problem of
refers to the Euclidean norm.) The parametarontrols the finding an efficient bundle with respecttandc, except that
flexibility of the kernel. With smallew, it is better able to  we have writtenw(z;) instead ofv(y;) and¢(z;) explicitly

fit arbitrary functions, and the kernel matrix approaches th instead ofy;. The dual of this program is as follows.

identity matrix (i.e., the kernel matrix of the identity kexl).

It is difficult to glean any economic motivation for this ker- ~ min 7 47 + & [[&8||7 + & [le*||*

nel, but its success with classification and regressionesstgg " " P¢

it should be worth trying for market clearing as well. st 7 >o(w) = (p,¢(e:) —€ i=1,....r
> (p,p(x;)) —clxy) —ed i=1,....r

4  Formulation

In this section, we formulate the market clearing problem adi€ré # = 1/A. At an optlimal SOIUt'?”' we have’ =
a quadratic program. To do this, we need to work with con-2a%; {v(z:) = (p, ¢(x;)) — € }. Thusz" reflects the max-
tinuous approximations of the value and cost functions. Letmum utility that the buyer can derive from any bundlen
r = |X|. LetY = ¢(X), whereg is the mapping under at pricesp, to within a certain slack. The variabie’ has an
consideration, and lef; = ¢(z;) for eachz; € X. With a  analogous interpretation in terms of profit. _
slight abuse of notation, the value functionan be written as ~_ !deally, the program would find a discrete solution, mean-
a function overy” rather thanX (assumings is one-to-one, ing that the coefficients: and 5 would generate g; < Y,
but this can be dispensed with in the developments that folthus identifying a specific bundie < X'. However, itis pos-
low). Let Y be the convex closure af, namely the set of all  Sible (in fact typical) that the optimal convex combinason
convex combinations of elements¥n We introduce a func- d0 not result in a discrete solution. The following proposi-
tion v overY, parametrized by, > 0, with o(y) fory € ¥ tiongives away to extractan (approximately) efficient bend
defined as from a solution to the primal. Its proof consists of a straigh
r A\ r forward appeal to complementary slackness.
max {Z aiv(yi) — 5 HOéHQ Z QY = y} 1) Proposition 1 Let (o, 3) and (7%, 7%, p, ¢) be optimal pri-
Yimia=l =1 i=1 mal and dual solutions. Assume there is an indswch that
a€RY a; > 0andpB; > 0. Then, lettingé® = max; ez’- — e,

We will refer to v as the buyersxtendedvalue function.  5s _ max; € — €, ands = §° + 6%, we have that
When A = 0, v is theconcave extensioaf v overY: the oo . .
smallest concave function such they;) > v(y;) for each (a) Bundler; is efficient to within an additive error of.
yi € Y. When )\ is large, the second term in the objective (b) Bundlex; maximizes the buyer’s utility (seller’s profit)
dominates. It is maximized whenis uniform: «; = 1/k for at pricesp to within an additive error of® (5°).
eachi. Thus itinduces the function to consider more points inTp;s result also clarifies the purpose of the paramat&up-
the neighborhood of when imputing a value. The extended g6 that we set = 0 (equivalently,u = o) and solve the
cost functiore of ¢ is defined similarly: abovemp replace_s quadratic program, but that at the solutias, 3*) there is
max, c(y;) replacesu(y;), and the second term in the objec- n jngex; such thata? > 0 and 3 > 0. This indicates
tive is added rather than subtracted. Wher= 0, ¢is the 5 clearing prices have not been found, and necessarily oc
convex extensioof c overY’. o curs if they do not exist for our choice of kernel. In this case
Lemma 1 The extended value (cost) function is concaveye can increase—equivalently, decrease—to allow for
(convex) for allx > 0. approximate clearing prices in the dual. As— ~ the opti-
We stress that for any givex) even) = 0, it is not necessar- mal solution tends ta; = 3 = 1/k for all 4, and thus we
ily the case that(y;) = v(y;) for all y; € Y, and the same will reach a point where the conditions of Proposition 1 are
for ¢ andc. The point ofv andc is to approximate andc by satisfied. Therefore, increasirigincreases the chances that
concave and convex functions ov€r because we know that the quadratic program will identify a discrete solution &y
with such functions linear clearing prices existin given kernel function, with the caveat that the discreteisol

We now formulate the clearing problem with respect to thetion might only be approximately efficient; correspondingl
extended value and cost functions. Explicitly, our quadrat the prices obtained in the dual will only approximately clea
program only tries to identify an efficient bundle, but welwil the market.
see that the dual of the program gives the desired clearing
prices. Note that (2) below correspondsitb different con- 5 Algorithms
straints.

r r As formulated, our quadratic program is problematic in two
max Zaiv(zi) _ ZﬂiC(Zi) _A HOéHQ _A ||5||2 respects. F_irst, it has too many _constrain_ts. Recall Mat
0,520  — P 2 2 the dimension of the range af, is potentially very large
” ” because clearing prices may only exist in high-dimensional

1. () = (s space. The number of variables is also too large: there is a
s.t ;O‘z¢(xz) ;ﬁz(b(xz) (2) variablea; and a variabled; for eachz; € X, andX is of

” ” size2™. We deal with the first concern by using a kernel
Z =1, Z B =1 (3)  method, and then propose an elicitation procedure to agldres
| | the second concern.



5.1 Method of Multipliers leads to a kernel method when applied to our quadratic pro-
ram. At iterationk, the objective of our quadratic program

The usual approach in kernel methods is to formulate th
ecomes

given problem as a mathematical program that only use

inner-product information (i.e., the kernel matrix), arm r r A s A 9

solve the optimization problem using general or speciai pur max Zafv(:ﬁi) - ZﬂfC(Ii) 3 HakH -3 ||5k||
= =1

pose algorithms. Our quadratic program is not formulated i 9" =0 1
terms of inner products. Instead, it is the procedure we use —(@* — B*YK (aF — %)
to solve the program that only uses information in the kernel v . . N
matrix. —5(04 =)' K(a" = 3%)
The procedure is known as theethod of multipliers(For
an extensive treatment of this method, B@ertsekas, 19969  wherea® = 5:11 vial and gk = zj:ll V3¢, The con-

Despite its name, it was not originally conceived as a kernektraints remain (3). One finds that the Hessian of the objecti
method, but simply as a way to solve equality-constraineds negative-semidefinite from the fact thatis positive semi-
quadratic programs. That it only requires kernel matrix in-definite, so we now have a straightforward quadratic maxi-
formation when applied to our quadratic program was a crumization problem with concave objective function, for whic
cial insight in this work. The procedure eliminates the prob there is a wide selection of commercial and non-commercial
lematic constraints (2) and replaces them with multiplied @ solvers.

penalty terms in the objective, which becomes At the final roundk’, we use the multiplier as the clearing
- - \ \ prices given the method of multipliers’ convergence preper
() N_ A 2_ A 2 ties. Assuming clearing prices have been found (i.e., time co
b0 ; aiv(w:) ; fe(w:) 2 e 2 151 ditions of Proposition 1 hold), the price of a bundie X is
B given by

—(p g aip(x;) — g ﬁi¢(1’i)> (4) , T,
< ; ; Mom) = Z(df — B )(zi, ). (6)
Zaifb(ﬂfi) - Zﬁisb(xi)

2 =1
Let us ignore the multiplier term (4) for the moment. Evaluat o
ing the penalty term, one finds that it only involves the kérne 5.2 Elicitation Procedure

matrix K. Asv — oo, the penalty term ensures that at an The kernel method of the previous section addresses the ques
optimal solution, the constraints (2) are satisfied. Infic&  tjon of computing nonlinear clearing prices given a kermel a
one chooses a sufficiently largeso that the constraints are fy|| information of the value and cost functions, namely:; )
satisfied to within an acceptable tolerance. There is a d_ravvamdc(xi) forall x; € X. If, instead of this full information,
back, however: as grows large the problem becomes in- e only know the values and costs of bundles in some lim-
creasingly ill-conditioned, making it inherently moreftitilt  jted samples, it is still possible apply the algorithm of the
to solve with standard quadratic programming algorithms previous section with respect 1 rather thanX. To check
Thus one typically starts with a small initial and increases whether the resulting bundig is efficient, and whether the
it over sev_eral iterations until the constraints are swfhd:ly resulting price are clearing, we can perform demand and
satisfied, in an attempt to avoid ill-conditioning. A t_yp!lca supply queries with these as inputs.ylfs returned in both
update rule '9/k+% = Tv* for somer € [4,10], and thisis  cases, then it maximizes both the buyer's utility and seller
the rule we used in our experimeriBertsekas, 1996 profit at pricesp, and we are done, following the arguments
To speed up convergence and further alleviate ill-of Section 2. Otherwise, we can grow our samgléy in-
conditioning, one can introduce a multiplier term as in (4).cluding the buyer and seller’s replies.
For simplicity, leth(e, ) = >/ aid(xi) = 32;_; Bid(wi). The elicitation procedure based on these ideas is given
The original methoq of r_‘nultipliers (there are several vari-formally as Algorithm 1. It begins with an empty sample.
ants) uses at each iteratiénthe update rulg* ™' = p* +  Throughout, prices are represented by the multiplier3),
vER (o, 5%), where(a®, 5¥) is the optimal solution at the it which is zero in the first round, leading to zero prices. The
eratlon_. Under this update rule, the ltera;éscqnverge to buyer’s demand query rep|y at each round is recordeﬁjn
the optimal dual solutiofBertsekas, 1996-in this case the jnjtialized to 1, the bundle containing all items; the seller’s
clearing prices, which is why we used the suggestive natatioreply at each round is*, initialized to0, the empty bundle.
p for the multiplier. In theory and practice, using a multésli  The bundley refers to the optimal bundle at each round, and
speeds up convergence. This was borne out in our exper§? ands® are the slacks at each round.
ments. The multiplier is also essential for us because we see The elicitation proceeds as long as no bundle common to
to compute clearing prices, not just an efficient bundle. the demand and supply sets is found. At each round, the sam-
If we usep' = 0 as the initial multiplier, them* ™" = ple is updated with the latest replies. We write valtfe
Sk vfh(af, %), and substituting this into (4) yields a term rather thanu(z?) to indicate that an explicit value query is
that uses only inner-products. Thus the method of multiplie performed, and similarly for cost queries; when we write

5 e ) o
(5) If the vectorsa® and/3* are sparse, this gives us a sparse
representation of nonlinear clearing prices.

v
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Input: «, \, query access to andc. 6 Empirical Evaluation
Output: whether clearing prices were found.

S=0,p=(0,0),y=0; In this section we report on experiments run to evaluate
2 =1,2°=0: the clearing, elicitation, and efficiency performance of ou
5 =0,8 =0; method. We used the CATS suite of distributions to gener-
while 2 # y or z° # y do ate value and cost functions for the buyer and sélleyton-
S — Su{zb, x°}; Brown et al, 200d. CATS generates instances in the XOR
record valuéz®), cos(z"), valugz*), costz*); languageNisan, 2000. An XOR representation of a value
(a, B, @&, B) « multipliers-methodsS, «, \); function consists of a subset of bundlésC X together with
if thzr?_isza_n index wherea; > 0 and3; > 0 then their values, in the form cdtomic bidg z, v(z)) forall z € Z.

p— (& B); The value of a bundle € X according to an XOR represen-

8" = maxa, csv(z;) — p(z3)] — [v(ws) — plas)]; tation isv(z) = maxy.<,|.cz} v(2). For cost functions, we

§* = maxy, cslp(z;) — c(x;)] — [p(a:) — cla:)]; used the semantie§z) = ming.>,.cz) ¢(2) to interpret
else the XOR instance. CATS allows one to specify the number of
| returnf al se; atomic bids desired in an XOR representation, as well as the
end number of items; in all our experiments, we used= 30.
z* = demandy, p, s, 6°); CATS was originally designed to generate valuation func-
z® = supply(y, p, k, 0%); tions for the purpose of testing winner-determination algo
end rithms for combinatorial auctions, not to generate pairs of
returnt r ue; value and cost functions, so ours is an unconventional use
Algorithm 1: Elicitation procedure to compute an efficient of the test suite. Nevertheless, this scheme generated non-
bundle and sparse clearing prices. trivial test instances. In fact, the relative difficulty doear-

ing the market under different CATS distributions (in terms

of runtime) agreed with the relative difficulty of the diswi-
b_tions for winner determination in combinatorial auctions,
reported by Leyton-Brown and Shohd2004.

Algorithm 1 was coded in C. To solve the quadratic pro-
grams within the method of multipliers, we used a non-
commercial C implementation of the LOQO interior-point
code[Vanderbei, 199p* We used default parameters for
LOQO, except for a margin of 0.25 rather than 0.95 (this

v(x;) or e(x;), it is because the algorithm has already o
tained the value or cost of bundie.

At each round, the method of multipliers is run with re-
spect toS to find a candidate efficient bundle and clearing
prices using the kernel. Specifically, the method returns the
primal solution(c, 3), from which we can deduce whether

an efficient bundle was found, and the final multipliat 3), amounts to a more aggressive stepsize). We usedt for
which represents the prices according to (6). If the citeri ; 99 ep: :
the updates in the method of multipliers.

of Proposition 1 do_es not hold at this point, then the proce- CATS provides five different distributions: arbitrary, pat
dure halts with a failure flag. . . . : I F

In the d 4 and | . he ke d matching, regions, and scheduling. The matching distiobut

n the demand and supply queries, the kemes passe 4 generated exceedingly easy instances where linear afearin

along with the coefﬂuentp = (a, ) because it is neede rices almost always existed, so we do not report on this dis-
to evaluate the price of bundles—recall (6). To ensure th ribution

the procedure makes progress at each round, we must have ) N )
* ¢ Soraz* ¢ S for at least one of the replies. This is Clearing. To evaluate the clearing ability of our method with

the essence of the following result. (Below= §° + ¢* as  differentkernels, we ran it on each of the four CATS distribu
before.) tions, varying the total number of atomic bids. Lettifigand
7% be the bundles in the XOR representations of the value and

Proposition 2 Algorithm 1 converges in a finite number of cost functions, the total number of bids refer§ 3| + [Z°|.
rounds. Upon convergencg,is a d-optimal bundle, and it  The average number of instances cleared are reported in Ta-

maximizes the buyer’s utility (seller's profit) at pricesto ~ ble 1. As expected, the identity kernel cleared 100% of the
within an additive error oB® (5*). instances for all distributions. The fact that the lineamiat
regularly failed to clear the market indicates that the CATS
If v = ¢, then observe that the only possible clearing pricesdistributions often generate interesting instances foictvh
arep = v = c. In this case, any procedure that finds clearinglinear clearing prices do not exist. For the paths and sdhedu
prices must elicit the complete information of one agent. Ining distributions, the all-subsets kernel generated adtena-
the worst-case, this requires an exponential number ofggier trix with such large entries that the penalty term (5) swathpe
(in m), so there is no hope for our procedure or any other tathe linear terms in the objective, leading LOQO to ignore
always run in polynomial-time. (For formal communication the latter and reach suboptimal solutions. This revealed an
complexity results to this effect, sédisan and Segal, 200§  unanticipated limitation of the all-subsets kernel and of o
Nevertheless, none of this discounts the possibility that o method. We believe this could be remedied to an extent with
method could perform well in practice, especially giventtha proper scaling and more conservative LOQO settings.
the modularity of the method allows one to choose a kernel
function appropriate for the clearing task at hand. Thaefo The implementation, due to Alex Smola, was retrieved at
we now turn to an empirical evaluation. www. ker nel - machi nes. or g/ code/ prl oqo. tar. gz



arbitrary  paths  regions scheduling 100

100

K bids «cIr. elc. cIr. elc. clr. elc. clr. elc.
100 61 16 8 32 61 17 18 15 80F 799
linear 300 17 6 6 14 33 6 16 8
500 5 4 6 10 38 4 20 9 g o 08 g
100 100 25 59 45 95 24 61 31 ;:13407 [
Gaussian 30089 18 66 26 78 13 43 19 . o
500 78 15 79 22 73 8 50 15 sl - - sl
100 100 33 n/a n/a 100 39 n/a nla - gaussian, eff. — gaussian, cr. "
all-subsets 300 109 43 n/a n/fa 100 28 nia nia % o5 ‘ 15 95

1
A

500 100 43 n/a n/a 100 21 n/a nla . . - .
Figure 1: Clearing and efficiency performance of the linear
o 100 100 43 100 32 100 45 100 46 and Gaussian kernels  30) on the paths distribution with
identity 350 100 44 100 22 100 41 100 43 250 bids, varying the approximation parameterEach data

500 100 44 100 20 100 38 100 43 point is averaged over 200 instances.

Table 1: Average clearing and elicitation performance af ou References

method over 200 instances usiig= 0 ando = 30. Elicita-  [gersekas, 1996 Dimitri P. Bertsekas.Constrained Optimization
tion figures are averages over those instances that cleared. = 3nd Lagrange Multiplier MethodsAthena Scientific, 1996.

L L . . b [Chapelle and Harchaoui, 200®livier Chapelle and Zaid Har-
Elicitation. The elicitation metric is defined aS|/|Z°UZ*|, chaoui. A machine learning approach to conjoint analysis. |

whereS is the sample upon termination of Algorithm 1. The  agvances in Neural Information Processing Systelits MIT
motivation for this definition is that at mogt® U Z*| bundles Press, 2005.

can be el.'C'ted when the value and Co?t functlons are Ifeprﬁbomshlak and Joachims, 2d0€armel Domshlak and Thorsten
sented with XOR. Tablel shows that with all choices of ker-"~ 35, cnims Unstructuring user preferences:  Efficient non-
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