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Abstract

We consider computationally-efficient incentive-compatible mechanisms that use the VCG pay-
ment scheme, and study how well they can approximate the social welfare in auction settings.
We present a novel technique for setting lower bounds on the approximation ratio of this type
of mechanisms. Specifically, for combinatorial auctions among submodular (and thus also sub-
additive) bidders we prove an Q(m%) lower bound, which is close to the known upper bound of
O(m%), and qualitatively higher than the constant factor approximation possible from a purely
computational point of view.

1 Introduction

1.1 Background

Algorithmic Mechanism design attempts to design protocols for distributed environments, such as
the Internet, where the different participants each have their own selfish goals and are assumed to
rationally attempt optimizing their own goals rather than just follow any prescribed protocol. The
key target in this area is the design of incentive-compatible mechanisms — also called truthful or
strategy-proof mechanisms — whose payment schemes motivate the participants to correctly report
their private information!. For a general introduction to the economic field of mechanism design see
[21] and for an introduction to algorithmic mechanism design and further motivation see [25].
Typical problems in this setting involve allocation of various resources and a paradigmatic abstrac-
tion is that of combinatorial auctions. In this problem m heterogenous “items” need to be allocated
between n “bidders”. Each bidder 7 holds a wvaluation function v; that specifies for each subset of the
items S C {1...m} the bidder’s value v;(S) from winning the “bundle” S. The challenge is to find
a partition Sj...S, of the items that maximizes the social welfare ¥;v;(S;). This problem presents
a combination of algorithmic difficulty (it is NP-complete), representational difficulty (the valuation
functions are exponential size objects) and strategic difficulty (ensuring incentive compatibility).
The key positive technique for achieving incentive compatibility is that of VCG mechanisms
[29, 6, 13]: if player i’s value from the chosen algorithmic outcome a is v;(a), then we charge player
i the quantity h;(v—;) — Xj2vj(a), where h; is an arbitrary fixed function that does not depend on
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v;. A powerful observation is that if the algorithmic outcome a always maximizes the social welfare,
Y;vi(a), then the VCG payment rule results in an incentive compatible mechanism. However, in
most interesting computational scenarios, including combinatorial auctions, achieving exact optima
is computationally intractable, and one must settle for heuristics or approximations. A key clash
between the strategic and algorithmic considerations is that once only approximations or heuristics
are chosen, the VCG payment rule no longer leads to incentive compatibility. See, e.g., [20, 24].

The heart of “algorithmic mechanism design” is trying to overcome this clash: design mechanisms
that are both computationally tractable (and thus only approximate the optimum) and strategically
incentive compatible. The key question is always to what extent do the strategic requirements
degrade the quality of the solution beyond the degradation implied by the purely computational
constraints. At this point one can summarize the state of the art as having clear characterizations
and many good upper bounds (approximation mechanisms) for various classes of “single parameter”
problems (e.g. [20, 22, 1]). On the other hand, for more general “multi-parameter” problems like
combinatorial auctions, one can safely say that — almost — no progress has been made in obtaining
upper bounds or lower bounds. In this paper we wish to address exactly this issue, attempting to
prove lower bounds — showing that the strategic constraints do impose an additional burden beyond
the computational ones.

1.2 VCG-based mechanisms

We are unable to prove general lower bounds, so we limit ourselves to a natural — and interesting in
itself — class of mechanisms: VCG-based ones. These are the ones that use the same payment idea
as in VCG: each bidder i pays h;(v—;) — ¥;2v;(a), where a is the algorithmic output). This is a
rather natural choice given the complete lack of other techniques for multi-parameter settings. This
class was studied in [24], who observed that the following family of allocation algorithms do yield
incentive-compatible VCG-based mechanisms:

Definition: An allocation algorithm (that produces an output a € A for each input v;...v,, where
A is the set of possible alternatives) is called “maximal-in-range” (henceforth MIR) if it completely
optimizes the social welfare over some subrange R C A. lL.e., for some R C A, we have that for all
V1..Up, @ € arg max,er L;0;(a).

Le., MIR algorithms use the following natural and simple strategy to find an approximately optimal
solution: they just optimally search within a pre-specified sub-range of feasible solutions — a subrange
over which optimal search is algorithmically feasible. An example for such a strategy, in a different
context, is approximating the optimal Steiner tree by taking the best spanning tree [28]. Another
example is Arora’s approximation for the traveling salesman problem [2].

The main result of [24] states that this is essentially it — no other VCG-based mechanisms are
incentive compatible.

Theorem [24]: The allocation algorithm of any incentive-compatible VCG-based mechanism for
combinatorial auctions is equivalent to a maximal-in-range algorithm.

“Equivalent” here means that the social utilities are identical for all inputs, i.e. if @ and b are the
outputs of the two allocation algorithms for input vy...v, then ¥;v;(a) = 3;v;(b). In particular,
the outputs must coincide generically — except perhaps in case of ties. In [24] this theorem was
presented for two specific types of mechanism design problems, but the result is more general. For
completeness, we spell this out in Section 3.

In this paper, we prove bounds on the power of such MIR algorithms, equivalently, for VCG-based
mechanisms. Let us explicitly justify why are lower bounds for this restricted class interesting:



1. Their power: Many incentive compatible mechanisms put forward do fall into this category.
This includes a slightly non-trivial O(m/+/log m)-approximation for general combinatorial auc-
tions [14], an O(y/m)-approximation for combinatorial auctions with complement-free bidders
[9], a 2-approximation for multi-unit auctions, which is improved to a PTAS for certain bidding
languages [7], welfare maximization in congestion games [5], and several auctions for “geometric
figures” on the plane [3].

2. Lack of alternatives: Not only are VCG mechanisms the only general method known for
constructing incentive compatible mechanisms in multi-parameter settings, there is just a single
additional example of any non-VCG incentive compatible mechanism in any multi-parameter
domain [4]. Moreover, Roberts’ classic theorem [27] states that in completely unrestricted
domains the only incentive compatible mechanisms are weighted versions of VCG-based mech-
anisms. In [17], it was suggested that Roberts’ theorem could be extended to many other
domains including combinatorial auctions and multi-unit auctions. In [17], they were only able
to prove this for special cases or under additional assumptions, and left the general question
open. If this line of attack reaches its conclusion, then our lower bounds would apply in general.

We should note that if randomization is allowed then the second point no longer holds with
such force, as several randomized incentive compatible mechanisms are known [8, 18, 11]. It is not
known, however, whether any of these can be de-randomized (even if P=BPP). The resolution of
this question relies, of course, on the successful characterization of deterministic incentive compatible
mechanisms.

1.3 Owur Main Result

Our main result provides a lower bound for the approximation factor that can be achieved by
incentive-compatible VCG-based mechanisms for combinatorial auctions. Our lower bound applies
to the subclass of submodular valuations (v;(SUT) + v;(SNT) < v;(S) + Vi(T) for all S,T) and
thus also to its superset class of complement-free valuations (v;(SUT) < v;(S) + v;(T) for all S,T)
— two classes of valuations which have been extensively studied [19, 9, 11, 10, 12, 15]. The best
deterministic mechanism for this case is the VCG-based O(y/m)-mechanism of [9]2. We note that
the technique we present is quite general, and we believe it will turn even more useful by extending
our results to other domains as well.

A word about the computational model is in place here: the “inputs” to the mechanism, the v;’s,
are exponential sized objects (in the number of items m), but the mechanisms should run in time
polynomial in n and m. Thus it is assumed that the mechanism repeatedly queries the bidders. The
upper bounds in the table always assume some specific natural type of query (usually a “demand
query”), while all lower bounds apply for every type of query and are in fact communication lower
bounds.

Theorem: Every VCG-based mechanism for approximating the welfare in combinatorial auctions
with submodular bidders that uses a sub-exponential number of queries to the bidders achieves an
approximation factor of Q(min(n, m'/%)).

The proof proceeds by combinatorially analyzing maximum in range allocation algorithms. The
analysis shows that if the range is “large” then optimizing over it requires exponential communication,
while if it is “small” then it can not achieve a good approximation ratio. It turns out that “large”

2This is also the best incentive-compatible mechanism for subadditive bidders in general, as the randomized
O(log? m)-approximation mechanism of [8] does not apply to the class of complement-free bidders.



and “small” in this sense cannot just be interpreted in terms of the size of the range. Instead we
define two ”complexity measures” of a set of partitions (which is what the range is). One of them,
termed the intersection number, is shown to bound from below the communication complexity of
optimization over the range. The other, termed the cover number, is shown to bound from above
the approximation ratio achieved by allocations in the range. Our main combinatorial lemma, which
may be of independent interest, shows that these two complexity measures are related to each other.

We stress that although communication complexity methods were already used in [23, 26] in
the context of combinatorial auctions, our methods are completely different and this difference is
inherent: [23, 26] did not consider incentives issues at all.

1.4 Open Problems

Open problems are left at various levels of generality. At the most specific level, the problem is to
close the gap between the m1/® lower bound and the m!'/2 upper bound. (We can only improve the
lower bound to m!'/5~€) At the next level, the question is how well can VCG-based mechanisms
approximate the social welfare in combinatorial auctions with general valuations? We only have a
slightly better lower bound than what we have for the submodular case, but the upper bound of [14]
is nearly linear.

Of course, the real questions are always how well can arbitrary computationally efficient incen-
tive compatible mechanism do — not just VCG-based ones — and obtaining any such lower bound
would be of great interest. This would likely require some advances in the “LMN-program” [17] of
characterizing incentive compatible mechanisms in multi-parameter domains.

1.5 Paper Structure

In Section 2 we prove the main theorem. Section 3 brings the characterization of VCG-based mech-
anisms of [24], generalized for our setting.

2 Combinatorial Auctions with Submodular Bidders

2.1 Combinatorial Auctions: Preliminaries

In a combinatorial auction we have a set M, |M| = m, of heterogeneous items and a set of NV bidders,
|N| = n. Each bidder i has a valuation function v; : 24 — R. We assume that each valuation v;
is normalized (i.e., v;(#) = 0) and monotone (for each S C T, v;(S) < v;(T)). An allocation is an
n-tuple S = (S1,...,.S,), where for each i, S; C M, and for each i # ', S; N Sy = (). Our goal is to
find an allocation S that maximizes the welfare ¥;v;(S;).

A valuation v is said to be submodular if it exhibits decreasing marginal utilities. ILe., for each
SCT CMandj¢S, we have that v;(T"U{j}) — vi(T) < v;(SU{j}) — vi(S). We will also use a
very simple subset of submodular valuations called additive valuations. A valuation v is said to be
additive if for each S C M, we have that v(S) = X,esv({j}).

2.2 The Main Result

In this section we analyze the power of MIR algorithms in the context of combinatorial auctions with
submodular bidders. For this setting, an O(y/m)-approximation MIR algorithm is known [9]. We will
show that this is (almost) the best approximation one can get using MIR algorithms. The theorem



is stated only for MIR algorithms but we will point out how it can be extended to algorithms that

are equivalent to MIR algorithms, and thus to all VCG-based mechanisms 3.

Theorem 2.1 FEvery MIR mechanism for approrimating the welfare in combinatorial auctions with
1

submodular bidders that uses O(e™') bits of communication achieves an approximation factor of

Q(min(n, m'/%)). This result also holds for the randomized and non-deterministic settings.

We define two complexity measures for the range R of an MIR algorithm A: the cover number,
and the intersection number. The cover number roughly corresponds to the size of the range R.
We will show, using the probabilistic method, that if the cover number is “small” then there exists
an instance such that A fails to provide a good approximation. Therefore, the range R must be
“large”. In this case we will show that the intersection number of A must be exponential. We will
see that the intersection number serves as a lower bound to the communication complexity of A, and
so we get that any MIR-approximation algorithm that provides a good approximation ratio must
have exponential communication complexity.

The proof of the theorem starts with Subsection 2.3, where the cover number is formally defined
and its relation to the approximation ratio is shown. In Subsection 2.4 we define and discuss the
second measure: the intersection number. The proof concludes in Subsection 2.5 by showing the
relationship between the measures.

2.3 Complexity Measure I: The Cover Number

Intuitively we wish to rely on the size of the range. Yet, naive counting will fail to provide good results,
since a single allocation in the range may contain many “degenerate allocations”. For example, if the
range contains an allocation that assigns all items to some bidder i, it also contains all allocations
such that ¢ is assigned any subset of the items, and the rest of the bidders get nothing. These
exponentially many allocations are degenerate in the sense that we can assume that they are not
in the range of the algorithm without changing the guaranteed approximation ratio of the A. We
therefore use an alternative measure for describing the “size” of the range.

Definition 2.2 A set C of allocations is said to be a cover set of another set of allocations R if for
each S € R there exists some C' € C such that for all i, S; C C;.

The cover number of a set of allocations R is defined to be the size of the minimum cardinality
cover set of R. The cover number is denoted by cover(R).

In the next lemma we prove that if cover(R) is small, then there exists some instance in which
A provides only Q(n)-approximation.

Lemma 2.3 Let A be an MIR-algorithm with range R. If cover(R) < e300n then there is an instance
in which A provides no more than %—fmction of the welfare.

Proof: We randomly construct an instance of a combinatorial auction with additive valuations.
Since the valuations are additive, we only need to specify the value of v;({j}) for each bidder ¢ and
item j. This is done in the following way: for each item j € M choose exactly one bidder, where
each bidder is selected with probability of exactly % Let ¢ be the selected bidder. We set the value
of v;({j}) to be 1. For each ¢’ # i we set the value of vy ({j}) to be 0.

3We note that extending our results to weighted VCG-based mechanisms is straightforward.



First, observe that the value of the optimal solution in the random instance is exactly m. Never-
theless we will see that with non-negative probability the welfare provided by the MIR-algorithm A
is only %m. Hence, the approximation ratio provided by A is no better than 15;. The following
version of the Chernoff bounds will be useful.

Claim 2.4 (Chernoff bound) Let X1,...X,, be independent random variables that take values in
{0,1}, such that for all i, Pr[X; = 1] = p for some p. Then for every 0 < § < 2e — 1 it holds that:

_ pm52

Pri¥;X; > (1+d)pm] <e” 3

Let C be the minimum cardinality cover set of R with |C| = cover(R). Fix some C' € C. The
probability that v;({j}) = 1, and that j € C; is exactly %, for any bidder i and item j. By the

2m
Chernoff bound, Pr[X;v;(C;) > 1%‘Sm] < e 5. We now claim, by using the union bound, that if

2m
cover(R) < e’ then there exists some instance such that no allocation in C provides a welfare of

%‘Sm. Therefore it is obvious that no allocation in R can provide a welfare of more than
)m for this instance. The lemma follows by choosing 6 = .01. L

more than
( 1+6

n

2.4 Complexity Measure II: The Intersection Number

The second complexity measure we consider is the intersection number. We will show that the inter-
section number of the range of an MIR algorithm is a lower bound to its communication complexity.
Before defining the intersection number, we need a structural definition of a set of allocations.

Definition 2.5 We say that a set of allocations R is regular if there exist constants si,..., Sy such
that for all S € R and for all 1 <i < n it holds that |S;| = s;.

We are now ready to define the complexity measure itself.

Definition 2.6 A set of allocations D is called an (i,j)-intersection set if for each D,D’' € D,
D # D', it holds that D; N D’ # 0.

Define the intersection number of a set of allocations R, denoted by intersect(R), to be the
mazimum cardinality regular (i, j)-intersecting set which is a subset of R, where the mazximum is
taken over all pairs of bidders i and j.

Notice that in the definition of the intersection number we require that the intersection set will
be regular.

The next lemma shows that we can use the intersection number as a lower bound to the commu-
nication complexity of the algorithm.

Lemma 2.7 Let A be an MIR-algorithm for combinatorial auctions with submodular bidders with
range R. Let intersect(R) = d. Then, the communication complexity of A is Q(d). This result holds
even for randomized protocols and for non-deterministic protocols.

Proof: = We reduce from the disjointness problem (see [16]). In this problem Alice holds a d-bit
string a1, ..., a4, and Bob holds a d-bit string bq,...,b5. The goal is to decide whether there exists
some index k such that ap = by = 1. It is known that solving the disjointness problem requires Q(d)
communication bits, even for nondeterministic and randomized protocols.



Let D = {D',..., D%} be an (i, j)-intersection set of R. D is regular, so for each bidder ¢ there
exists a constant s; such that |Dy| = s, for all D € D. Construct a combinatorial auction with m
items in the following way: Alice will play the role of bidder ¢, and Bob will play the role of the rest
of the bidders, in particular bidder j. We now define the valuations of the bidders. Let the valuation
of bidder i played by Alice be:

1S], |S] < s; — 1;
vi(S) =14 si, 3k s.t. DF C S and ay, = 1;
s; — 27 (Sl=si+1)  otherwise.

The valuation v; is defined in an analogous way. Let the valuations of the rest of the bidders be
zero on any bundle. The reader is encouraged to verify that all valuations are indeed submodular.

Observe that if there exists some index k such that the k’th input bit of both players is 1, then
the optimal welfare is s; +s;. Otherwise, the optimal welfare is strictly less than s; + s;. To see this
notice that if bidder i gains a value of s; from the bundle S7 he was assigned by A, then there must
be an index k such that DF C S; and a; = 1. In order of bidder j to gain a value of sj he must have
an index k' such that Dé‘?/ C S. However, D is an (i, j)-intersection set and so it must hold that
Df N Df/ # 0, and thus S; NSy # 0. Clearly, the optimal welfare in this case is less than s; + s;.

By construction, if the optimal welfare is s; 4+ s; then it can be achieved by an allocation in R. A
is a maximal-in-range algorithm, and so the value of the allocation returned by A in this case must
be s; + s;. Thus, we will be able to decide if there is a some index k such that a; = by, = 1. Hence,
the communication complexity of A is at least as that of the disjointness problem: Q(d). L]

Notice that our lower bound applies even for computing the value of the optimal allocation in R,
and thus applies not only to MIR algorithms but also to algorithms that are equivalent to MIR.
2.5 The Relationship between the Measures

It is easy to see that cover(R) > intersect(R). This subsection shows that the gap between the two
is not too large. Specifically, if intersect(R) is small, then cover(R) is small too.

Lemma 2.8 Let R be a set of allocations with intersect(R) < d. Then

gn 4m B n?
cover(R) < (8)™° -m*™m>"

a4

As a corollary?, let n = ms. If cover(R) > eFon then intersect(R) > €™ . Thus, proving the
lemma, together with Lemmas 2.3 and 2.7, derives Theorem 2.1.

Proof: (of Lemma 2.8) The lemma will follow from the following claim.

Claim 2.9 Fix some w, 1 <w < m. Let R be a reqular set of allocations. If intersect(ﬁ) < d then
there is a subset & of R where % > (8d)~™/v4="*  and cover(€) < wm™™’.

The lemma is proved by partitioning R to up to m'™ classes of regular allocations, Rq, ..., Rmn,
one for each possible choice of constants s1, ..., s, from Definition 2.5. Each s; is between 1 and m, so
there are at most m” classes. For each class R we will set an upper bound on cover(R;) separately:

Let &£ be the set obtained from the claim. Look at Ry \ £, and obtain from the claim another
set £5 C R, \ £ with small cover, and so on. After (8d) .47 . log |R,| steps Ry is completely

“The result is actually stronger: fix a constant € > 0, and let n < ms—c. If cover(R) > e300n then intersect(R) >
e™ . The statement of the theorem improves accordingly.



covered. Now cover(R) can be bounded from above by Yjcover(E). By bounding from above the

size of each class |Rs| by |R| < n™, we have that (by choosing w = m%)

mn 3 2
cover(R) < X" cover(R,) < XM S| €8] < m™ - (8d) v 4" omlogn - wmP" < (8d)™” - AT

Before proving Claim 2.9 itself, and thus Lemma 2.8, we will need some notation.

Definition 2.10 Let T1,....,T,, C M. We say that a set of allocations R is (11, ..., T, )-structured if
for all S € R it holds that S; C T;.

Definition 2.11 We will say that an allocation S is w-(i,j)-aligned in structure (T4,...,Tp), if
1S NT;| < w. We will omit w when it will be clear from the context.

The idea in proving Claim 2.9 will be to find a large subset £ C 75, which is “sufficiently” aligned.
Next we show that such subset has a small cover number.

Claim 2.12 Let £ be a T = (T4,...,T,,)-structured set of allocations. If for each pair of bidders i
and j either all allocations in € are w-(i,j)-aligned in T or all allocations in E are w-(j,1)-aligned
in T, then cover(E) < w™m™™.

Proof:  (of Claim 2.12) For each bidder i define a set of bidders I;, where bidder j is in I; if
all allocations in &£ are (4,j)-aligned in T. Clearly, for each ¢ and j, either j € I; or i € I;. Let
B; = T; \ (Ujer, T;). The construction guarantees that (Bi,...,B,) “almost” covers £ in the sense
that for bidder 7 and S € &, |S; \ B;| < nw. Also notice that by construction for each two different
bidders i and j, B; N B; = (). Define the cover C as follows:

C = {P|P is an allocation in the form ((B1 U Q1) \ U;j£1Qj, ..., (Bn U Qn) \ U;j£,Q;),
and for each i, |Q;| < nw}

Observe that since each |Q;| < nw we have that [C| < (Z_;7 ()" < (w(m)™)" = whm .
Also notice that C is a cover set of £. To see this, fix an allocation S € €. For each i, let Q; = S;\ B;.
Observe that each |Q;| < nw, and that the @;’s define an allocation that is in C and covers S.  [J

Now we are ready to prove the main claim, and thus finish the proof of Lemma 2.8.

Proof: (of Claim 2.9) The construction of & will be divided into several steps. During the
construction we maintain a sequence of subsets of R : Ro, R1, ... and structures T9, T, ..., such that
each R; is T'-structured. We start by setting Rg = R and T° = (M, ..., M).

In each step we look at a pair of bidders i and j such that either all allocations in R; are (3, j)-
aligned in T or all allocations in £ are (j,4)-aligned in T". If there is no such pair then let £ = R;
and the construction is over. Otherwise, look at all allocations in R; that are either (7, j)-aligned or
(4,1)-aligned in T". If there are at least |R|/2 such allocations then we set R;y1 to be the largest set
of the two: all allocations in R; that are (i, j)-aligned, or all allocations in R; that are (j,4)-aligned.
Set the structure 7! to be T*. Notice that |R;y1| > |R¢|/4, and that Ryyq is Tt -structured. We
call this step an alignment step, and proceed to the next step.

Otherwise, let R} be the set of allocations in R; that are neither (7, j)-aligned nor (j,1)-aligned.
Notice that [R} > Zt|. Take a maximal (4, j)-intersection set D C R} — of size at most d. Now
for every allocation S € R\ D there exists some D € D such that D; NS; = @ or D; N S; = 0.
Otherwise we have that S € D, contradicting the fact that D is a maximal intersection set. Thus,
for some D € D we have that for at least (|R;| — d)/(2d) allocations in R} either D; N'S; = 0 or



D;NS; = 0. Let us assume that for at least (|R}| —d)/(2d) allocations in R} the first option occurs.
Define R;+1 to be this set of (|R;| — d)/(2d) > |R¢|/(8d) allocations. Let T]Hl = T]? \ D;. Also let

T,i“ = T}, for each k # i. Now notice that since D is a set of allocations that are not (i, j)-aligned in
Ti, we have that D; N T} > w. We therefore have that ]T;H\ < |Tj| —w. (The other case is handled
similarly, but this time by shrinking Tf“ rather than T;H.) By construction we have that Ryyq is
T structured. Term this step a shrinkage step, and continue to the next step.

Denote by [ the number of steps the process went on. At most 2 steps are shrinkage steps,
since in each shrinkage step ;|77 | loses an additive of at least w. In addition, there are at most (g)

alignment steps, one for each pair of bidders. Therefore |£] = |R;| > (Sd)mlz%'

in the end of the process for each pair of bidders ¢ and j either all allocations in &£ are (i, j)-aligned
in T' or all allocations in £ are (j,4)-aligned in 7! (observe that an allocation that became properly
aligned after an alignment step will remain so during the rest of the process.) By Claim 2.12 we have
that cover(E) < w™m™*, and thus Claim 2.9 is proved. U

This concludes the proof of Lemma 2.8. ]

Also note that

3 A Characterization of VCG-Based Algorithms

In [24] it was proved that any VCG-based mechanism for general combinatorial auctions is equivalent
to MIR algorithm. We slightly generalize this proof to hold for more settings, including the one
considered in this paper.

Let A be a set of alternatives (in our application, A will be the set of allocations). For all i let
V; C R be a set of valuations on A and denote V = V; X ... x V;,. A mechanism is composed of an
allocation rule f : V' — A and payment rules p = (p1,...,pn), where p; : V. — R.

Definition 3.1 A mechanism (f,p) is called VCG-based if for every i and some h; : V_; — R we
have that for all v, p;(v) = hi(v—;) — X;2v;(f(v)).

Definition 3.2 A mechanism (f,p) is called incentive compatible if for every v;, v, v_; we have that
vi(f(vi,v—i) — pi(vi,v—i) = vi(f (v, v—i) — Pi(Vj,v—4).

Definition 3.3 An allocation rule f is called maximal in its range (MIR) if for every v, f(v) €
arg max,cg 2;(r), where R = {f(v)|lv € V'} is the range of f.

Definition 3.4 An allocation rule f is equivalent to an allocation rule g if for all v, Xv;(f(v)) =
vi(g(v)).

Theorem 3.5 (slight extension of [24]) : Assume that V satisfies Condition 1 and Condition 2
below. If a mechanism (f,p) is VCG-based and incentive compatible then f is equivalent to a MIR
allocation rule.

For Condition 1 and Condition 2 we will need notations:
Definition 3.6 V' ={v e V|Va#be A, X;v(a) # Z;v;(b)}.
Condition 1 V' is dense in V (in the usual metric in RA).

Definition 3.7 For a € A and v;,z; € V;, We say that z; is a-above v; if for every b € A, z;(a) —
vi(a) > z(b) — vi(b).



Condition 2 For every v;,w; € V; there exists z; € V; that is a-above v; and a-above w;.

Before we prove the theorem, let us just look at the two applications, one considered in this paper,
and one in [7]:

1. Multi-unit auctions: (see [7] for an exact definition) A = {(ay...a,)|X;a; < m}, V; is all

weakly monotone functions from 1...m to R. Condition 1 is met since V' has measure 0.
Condition 2 is met by giving a sufficiently high value ¢ to getting at least a; items.

2. Combinatorial auctions with submodular bidders: A is the set of all allocations (51, ..., Sp),
and v; is the set of submodular valuations. Condition 1 is met since again V' has zero measure
while V' is fully dimensional. Condition 2 is met by defining an additive valuation (which in
particular is submodular) that gives a sufficiently high value for each element in S;.

Proof: Let us denote R’ = {f(v)|v € V'}. Notice that by definition X;v;(a) # 3;v;(b) for every
ve V' and a # b € R and in particular the argmax is unique. We will follow [24] and first show that
over V', f is exactly maximal in the range R'. T.e. that for all v € V', f(v) = argmax,crs Zv;(r).
Let us assume wlog that all h; = 0. Before proceeding with the proof let us note two simple claims:

Claim 3.8 If f(w) = a and z; is a-above w; then f(z;,w_;) = a.

Proof:  Assume to the contrary f(z;,w—_;) = b # a. Since the VCG mechanism based on f is
incentive compatible, we get by looking at a player with valuation w; that w;(a)+X4w;(a) > w;(b)+
¥j2wj(b) while by looking at a player with valuation z; we get z;(a)+ X 2w;j(a) < z;(b) + X jw;(b).
Subtracting the two inequalities we get w;(a) — z;(a) > w;(b) — z;(b) but notice that the fact that z;
is a-above w; gives the opposite inequality which means that in fact w;(a) — z;(a) = w;(b) — 2;(b).
Adding this equality to the second inequality above gives w;(a) + X;w;(a) < w;(b) 4+ Xjzw;(b),
and thus equality holds in contradiction to w being in V. ]

Claim 3.9 If f(vi,v—;) # a = argmaxcers %ivi(c) and z; is a-above v; then f(z,v—;) # a =
arg maxcer’ zi(c) + Xjzv;(c).

Proof: The fact that a = arg max.cr’ 2i(c) + 3;v;(c) is simply since in moving from v; to z;, the
value of the argument to the argmax increased more for a than for any other ¢ € A. The fact that
f(zi,v—;) # a is since otherwise a bidder with valuation v; will benifit from reporting z;. ]

We are now ready to prove that f is exactly maximal in the range R'. Assume towards con-
tradiction that for v,w € V', f(v) = b # a = argmax.cr L;vi(c), and f(w) = a. For every i
fix z; that is a-above both v; and w; (using Condition 2). Using Claim 3.8 repeatedly, for all i,
we get that f(z) = a (at every stage i we look at 21...2i—1, Wi, Wit1...Wp, VS 21...2i—1, Ziy Wit1...Wp,.)
On the other hand, using Claim 3.9 repeatedly we get that f(y) # a (at every stage ¢ we look at
21e0aZim1, Vg Vit 1eUn VS 21...2i—1, Zi, Vit1..-Un ). Contradiction.

We now need to handle V' — V’. Due to Condition 2, for every v € V — V' we can find an infinite
sequence of points v/ € V' such that v/ — v and for all j, f(v7) = a for some fixed a € R/. Our
equivalent MIR allocation rule f will define f'(v) = a (using e.g. the lexicographic first possible a).
It remains to see that 3;v;(a) = X;v;(f(v)). This follows since (1) X;v;(a) = lim;_ins ;0] (a) (simply
since v/ — v) and (2) S;v;(f(v)) = limj_ins Zivg(f(vj)). This last equality just means the continuity
of the function ¥;v;(f(v)) in v and can be established by looking at |3;v;(f(v)) — X;w;(f(w))| which
can be bounded by a telescopic sum of n elements of a similar form but with only a single index ¢
with v; # w;, ie. [(vi(a) + X;2v5(a)) — (wi(b) + X;2v;(b))|, where a = f(v;,v—;) and b = f(w;,v_;).

10



This last difference can be bounded by max(v;(a) — w;(a),v;(b) — w;(b)) since otherwise a player
with valuation v; would rather declare w; (in case the LHS of the difference is smaller), or vice versa
(otherwise). ]
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