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Overview

ricing and Revenue Maximization

Software Pricing

Digital Music
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Pricing Problems

One Seller, Multiple Buyers with Complex Preferences.

Seller's Goal: maximize profit.

Algorithm Design Incentive Compatible
Problem (AD) Auction (IC)
Version 1: Seller knows Version 2: values given by
the true values. selfish agents.

X7

BBHM'O5: Generic Reduction based
on ML techniques




Reduce IC to AD

Generic Framework for reducing problems of incentive-
compatible mechanism design to standard algorithmic
questions.
[Balcan-Blum-Hartline-Mansour, FOCS 2005, JCSS 2007]
* Focus on revenue-maximization, unlimited supply.

- Digital Good Auction

- Attribute Auctions

- Combinatorial Auctions

¢ Use ideas from Machine Learning.
% -Sample Complexity techniques in ML both for design

and analysis .



Outline

Part I: Generic Framework for reducing problems of
incentive-compatible mechanism design to standard
algorithmic questions.

[Balcan-Blum-Hartline-Mansour, FOCS 2005, JCSS 2007]
Part IT: Approximation Algorithms for Item Pricing.
[Balcan-Blum, EC 2006, TCS 2007]

Revenue maximization in combinatorial auctions with
single-minded consumers.




MP3 Selling Problem

+ Seller of some digital good (or any item of fixed
marginal cost), e.g. MP3 files.

Goal: Profit Maximization
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MP3 Selling Problem

+ Seller/producer of some digital good, e.g. MP3 files.

-

Goal: Profit Maximization

Digital Good Auction (e.g., [GHWO01])

+ Compete with fixed price.

or...
- Use bidders’ attributes:
- country, language, ZIP code,etc [

+ Compete with best "simple” function.
Attribute Auctions [BHO5]



Example 2, Boutique Selling Problem
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Example 2, Boutique Selling Problem
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Combinatorial Auctions ‘}

$100

Goal: Profit Maximization

+ Compete with best item pricing [GHO1].
(unit demand consumers)



Generic Setting (I)

» S set of n bidders. O outcome space.

- Bidder i:

- priv; (e.g., how much i is willing to pay for the MP3 file)
- pub; (e.g., ZIP code)
- bid; ( reported priv;)

Incentive Compatible: bid; =priv;

+ Space of legal offers/pricing functions.
* g maps the pub; to pricing over the outcome space.
* g(i) - profit obtained from making offer g to bidder i

Digital Good g=" take the good for p, or leave it"

g(i)= p if p < bid,
g(i)= O if p>bid,



Generic Setting (I)
-+ S set of n bidders.

» Bidder i: priv;, pub,, bid,
+ Space of legal offers/pricing functions.

- g maps the pub; to pricing over the outcome space.
* g(i) - profit obtained from making offer g to bidder i

Goal: Profit Maximization

* G - pricing functions.
* Goal: Incentive Compatible mechanism to do nearly as well
as the best g € G.

Unlimited supply | Profit of g: >.g(i)




Attribute Auctions

* one item for sale in unlimited supply (e.g. MP3 files).

» bidder i has public attribute q; € @
A

* G - a class of "natural” pricing functions.

Example:  X=R2, G - linear functions over X

valuations
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Generic Setting (IT)

- Qur results: reduce IC to AD.

» Algorithm Design: given (priv; pub;), forall i € S, find
pricing function g € G of highest total profit.

* Incentive Compatible mechanism: bid=priv;

- offer for bidder i based on the public information of S
and reported private info of S \{i}.

» Focus on one-shot mechanisms, of f-line setting.



Main Results [BBHMO05]

Generic Reductions, unified analysis.

General Analysis of Attribute Auctions:
- not just 1-dimensional

Combinatorial Auctions:

- First results for competing against opt item-pricing in
general case (prev results only for "unit-demand”[GHO1])
- Unit demand case: improve prev bound by a factor of m.



Basic Reduction: Random Sampling Auction

RSOPF ; 4y Reduction
» Bidders submit bids.
* Randomly split the bidders into S; and S..
* Run A on S, to get (nearly optimal) g, € G w.r.t. S.
* Apply g; over S, and g, over S;.

g,=OPT(S,)




Basic AHG'YSiS, RSOPF(G A)

h - maximum valuation, G - finite

Theorem 1

Given a g-approximation algorithm A for optimizing over &, so long as

OPTg > n and

183h
2

then whp 1 — 6, the profit is at least (1 —e€)OPT/f3 .

n >

In(2|G/9),

Proof sketch
1) Fixed g and profit level p. Use a tail ineq. show:

Lemma 1

Randomly partition S into S71 and S5, then the probility that
1g(S1) — g(S2)| > emax[g(S),p] is at most De—€°p/(2h)



Basic Analysis, RSOPF ¢ 4, cont

2) Let g; be the best over S;. Know g,(S;) > 9oPT(Si)/B'

Apply union bound, get whp (1 —9) , every g € G satisfies
19(S1) — g(S2)| < 5max[g(S),n].

In particular,
€

91(S2) 2 91(S1) — 5 max[g91(S), n]
92(S1) > 92(S2) — 5 Max[g2(S), n|

Using also OPT, > B n, get that our profit g,(S,) +9,(S;)
is at least (1-¢)OPT,./p.



Attribute Auctions, RSOPF(Gk, A)

G, : k markets defined by Voronoi cells around k
bidders & fixed price within each market.
Discretize prices to powers of (1+¢).

attributes



Attribute Auctions, RSOPF g

G, : k markets defined by Voronoi cells around k bidders
& fixed price within each market.

Discretize prices to powers of (1+¢).

Corollary (roughly)

So long as OPTGk > OBn and n > ’z—glog (%hlog h,), then whp the profit
is at least (1 —€)OP1Tg, /8.



Structural Risk Minimization Reduction

What if different functions at different levels of complexity?
Don't know best complexity level in advance.

SRM Reduction

Let G CGxCGzC...
* Randomly split the bidders intfo S; and S,.
* Compute g; to maximize max max [9(Si) — pen(Gy)]
* Apply g; over S, and g, over S;.

Theorem
Let pen(Gy) = %|n(8k2|csk\/5). Whp 1 — §, the profit is:

mgx ((1 —e)OPTy — 2pen(Gy)).



Attribute Auctions, Linear Pricing Functions

Assume X=R9, N= (n+1)(1/¢) In h.
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Covering Arguments

What if G is infinite w.r.t S? valuation

Use covering arguments: Z , -
- find G' that covers G, = t; T
- show that all func’rlons in G' behave weﬂrI Hres

Definition:
G' y-covers Gwrt to S if forvVgig € G s.t.
Vi lg(i)-g'()l < v g(i).

Analysis Technique

Theorem (roughly)

If G'is y-cover of G, then the previous theorems hold
with |G| replaced by |G'|.



Summary [BBHMO5]

- Explicit connection between machine learning and
mechanism design.

+ Use MLT both for design and analysis in auction/pricing
problems.

» Unique challenges & particularities:

* Loss function discontinuous and asymmetric.
* Range of valuations large.

+ See also upcoming paper of [Morgenstern, Roughgarden, NIPS'15]
for other settings (e.g., limited supply)!



Outline

Part I. Generic Framework for reducing problems of
incentive-compatible mechanism design to standard
algorithmic questions.

Part IT: Approximation Algorithms for Item Pricing.

[Balcan-Blum, EC 2006, TCS 2007]

Revenue maximization in combinatorial auctions with
single-minded consumers



Algorithmic Problem, Single-minded Bidders [BB'06]

* m item types with unlimited supply of each.

* n single-minded customers.

* Customer i: shopping list L;, will only shop if the total cost
of items in L. is at most w,

» All marginal costs are O, and we know all the (L;, w;).

What prices on the items will make you the most money?

* Easy if adll L; are of size 1.
* What happens if all L; are of size 2?



Algorithmic Problem, Single-minded Bidders [BB'06]

A multigraph G with values w, on edges e. 0

15
. . . 10 10
Goal: assign prices on vertices py >0
30 C ~ 20

to maximize total profit, where:
5

Profit(p) = > (Pu-+pv) Unlimited supply

e=(u,v)
Pu + Pv < We

« APX hard [GHKKKM'O5].



A Simple 2-Approx. in the Bipartite Case

» Given a multigraph G with values w, on edges e.

* Goal: assign prices on vertices py > 0 to maximize total profift,

where: Profit(p) = > (Pu+pv)

e = (u,v)

Pu + Pv < We

Algorithm
+ Set prices in R o O and separately fix
prices for each node on L.

Set prices in L o O and separately fix
prices for each node on R.

Take the best of both options.

Proof

OPT=OPT,+OPT,



A 4-Approx. for Graph Vertex Prlcmg
» Given a multigraph G with values w, on edges e.

» Goal: assigh prices on vertices p, >0 to
maximize total profit, where:

Profit(p) = > (Pu-+pv)

e=(u,v) 5
Pu+ Pv < We

Algorithm

* Randomly partition the vertices into two sets L and R.

» Ignore the edges whose endpoints are on the same side
and run the alg. for the bipartite case.

Proof

l n expectation half of OPT's profit

is from edges with one endpoint in L

o
Y- and one endpoint in R.




Algorithmic Pricing, Single-minded Bidders,
k-hypergraph Problem

List of size < k.

\ <
Algorithm Qa

- Put each node in L with prob. 1/k, in R with prob. 1-1/k.

- Let GOOD = set of edges with exactly one endpoint in L.
Set prices in R to O and optimize L wrt GOOD.

+ Let OPT,, be revenue OPT makes selling item j to customer
e. Let X . be indicator RV for j € L & e € GOOD.

* Our expected profit at least:
E |3 XeOPTje| =3 E [Xje| OPTje = Q2 (1/k) OPT



Summary [BBO6]:

* 4 approx for graph case.
» O(k) approx for k-hypergraph case.

Improves the O(k?) approximation of Briest and
Krysta, SODA'06.

- Also simpler and
can be naturally adapted to the online setting.

Other known results:

O(log mn) approx. by picking the best single price
[6GHKKKMO5].

* Q(log? n) hardness for general case [DFHS06].



Overall Summary

Revenue Maximization in a wide range of settings.

» Both Algorithmic and Incentive Compatible Aspects.

* Natural Connections to Machine Learning.
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