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Overview 

Software Pricing 

Digital Music 

Pricing and Revenue Maximization 



Pricing Problems 

Version 1: Seller knows 

the true values. 
Version 2: values given by 

selfish agents. 

One Seller, Multiple Buyers with Complex Preferences. 

Algorithm Design 
Problem (AD) 

Incentive Compatible 
Auction (IC) 

Seller’s Goal: maximize profit. 

BBHM’05: Generic Reduction based 
on ML techniques   



Reduce IC to AD 

Generic Framework for reducing problems of incentive-

compatible mechanism design to standard algorithmic 

questions. 
[Balcan-Blum-Hartline-Mansour, FOCS 2005, JCSS 2007] 

•  Focus on revenue-maximization, unlimited supply. 

- Digital Good Auction 

- Attribute Auctions 

- Combinatorial Auctions 

•  Use ideas from Machine Learning.  

–Sample Complexity techniques in ML both for design 

and analysis . 



Outline 

Part I: Generic Framework for reducing problems of 
incentive-compatible mechanism design to standard 
algorithmic questions. 

[Balcan-Blum-Hartline-Mansour, FOCS 2005, JCSS 2007] 

 Part II: Approximation Algorithms for Item Pricing. 

[Balcan-Blum, EC 2006, TCS 2007] 

Revenue maximization in combinatorial auctions with 

single-minded consumers. 



MP3 Selling Problem 

• Seller of some digital good (or any item of fixed 
marginal cost), e.g. MP3 files. 

 Goal: Profit Maximization 



MP3 Selling Problem 
• Seller/producer of some digital good, e.g. MP3 files. 

• Compete with fixed price. 

or… 

• Use bidders’ attributes:  

• country, language, ZIP code, etc. 

 Goal: Profit Maximization 

Digital Good Auction (e.g., [GHW01]) 

Attribute Auctions [BH05] 

• Compete with best “simple” function. 



Example 2, Boutique Selling Problem 
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Example 2, Boutique Selling Problem 

 Goal: Profit Maximization 

Combinatorial Auctions 

• Compete with best item pricing [GH01]. 
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(unit demand consumers) 



Generic Setting (I) 
• S set of n bidders. 

•  Space of legal offers/pricing functions. 

• g(i) – profit obtained from making offer g to bidder i 

• g maps the pubi to pricing over the outcome space. 

• Bidder i:  

– privi (e.g., how much i is willing to pay for the MP3 file)  

– pubi (e.g., ZIP code) 

– bidi ( reported privi)  

 

Digital Good g=“ take the good for p, or leave it” 

g(i)= p if p ·  bidi 

g(i)= 0 if p>bidi 

O outcome space. 

Incentive Compatible: bidi =privi  



Generic Setting (I) 
• S set of n bidders. 

•  Space of legal offers/pricing functions. 

•  g(i) – profit obtained from making offer g to bidder i 

•  g maps the pubi to pricing over the outcome space. 

• Bidder i:  privi , pubi , bidi 

 Goal: Profit Maximization 

•  G - pricing functions. 

•  Goal: Incentive Compatible mechanism to do nearly as well 

as the  best g 2 G. 

Unlimited supply  Profit of g:  ig(i) 



Attribute Auctions 
• one item for sale in unlimited supply (e.g. MP3 files). 

• bidder i has public attribute ai 2 X 

Example: X=R2, G - linear functions over X 

• G - a class of ‘’natural’’ pricing functions. 

Attr. space 

attributes 

valuations 



Generic Setting (II) 

• Focus on one-shot mechanisms, off-line setting. 

• Our results: reduce IC to AD. 

• Algorithm Design: given (privi, pubi), for all i 2 S, find 
pricing function g 2  G of highest total profit. 

• Incentive Compatible mechanism: bidi=privi 
– offer for bidder i based on the public information of S 

and reported private info of S n{i}. 



Main Results [BBHM05]  

 

• Generic Reductions, unified analysis. 
 

• General Analysis of Attribute Auctions: 

– not just 1-dimensional  
 

• Combinatorial Auctions:  
– First results for competing against opt item-pricing in 

general case (prev results only for “unit-demand”[GH01]) 

– Unit demand case: improve prev bound by a factor of m. 



Basic Reduction: Random Sampling Auction 

 RSOPF(G,A) Reduction 

• Bidders submit bids. 

• Randomly split the bidders into S1 and S2. 

• Run A on Si to get (nearly optimal) gi 2 G w.r.t. Si. 

• Apply g1 over S2 and g2 over S1. 

S 

S1 

S2 

g1=OPT(S1) 

g2=OPT(S2) 



Basic Analysis, RSOPF(G, A) 

 

 

 

 

 
 

Theorem 1 

Proof sketch 

Lemma 1 

1) Fixed g and profit level p. Use a tail ineq. show: 

h - maximum valuation, G - finite 



Basic Analysis, RSOPF(G,A), cont 

2) Let gi be the best over Si. Know gi(Si) ¸ g
OPT

(Si)/. 

In particular, 

   Using also OPTG ¸  n, get that our profit g1(S2) +g2(S1) 

is at least (1-)OPTG/. 



Attribute Auctions, RSOPF(Gk, A) 

 

 

 

 

 
 

Gk : k markets defined by Voronoi cells around k 

bidders & fixed price within each market.  

Discretize prices to powers of (1+). 

attributes 



Attribute Auctions, RSOPF(Gk, A) 

 

 

 

 

 
 

Gk : k markets defined by Voronoi cells around k bidders 

& fixed price within each market.  

Corollary (roughly) 

Discretize prices to powers of (1+). 



Structural Risk Minimization Reduction 

 

 
 SRM Reduction  

Let  
• Randomly split the bidders into S1 and S2. 

• Compute gi to maximize  

• Apply g1 over S2 and g2 over S1. 

What if different functions at different levels of complexity? 

Don’t know best complexity level in advance. 

Theorem 



Attribute Auctions, Linear Pricing Functions 

Assume X=Rd.  N= (n+1)(1/) ln h. 
|G’| · N

d+1 

attributes 

valuations 
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Covering Arguments        

Definition: 

G’ -covers G wrt to S if for 8 g 9 g’ 2 G’ s.t.  

8 i |g(i)-g’(i)| ·  g(i).  

What if G is infinite w.r.t S? 

Use covering arguments:  

• find G’ that covers G ,  

• show that all functions in G’ behave well 

Theorem (roughly) 

If G’ is -cover of G, then the previous theorems hold  
with |G| replaced by |G’|. 

attributes 

valuations 

Analysis Technique 



Summary [BBHM05]  

• Explicit connection between machine learning and 

mechanism design. 

• Use MLT both for  design and analysis in auction/pricing 

problems. 

• Unique challenges &  particularities: 

• Loss function discontinuous and asymmetric. 

• Range of valuations large. 

• See also upcoming paper of [Morgenstern, Roughgarden, NIPS’15] 

for other settings (e.g., limited supply)! 



Outline 

Part I: Generic Framework for reducing problems of 
incentive-compatible mechanism design to standard 
algorithmic questions. 

 Part II: Approximation Algorithms for Item Pricing. 

[Balcan-Blum, EC 2006, TCS 2007] 

Revenue maximization in combinatorial auctions with 

single-minded consumers  



Algorithmic Problem, Single-minded Bidders [BB’06] 

• m item types with unlimited supply of each.   

• All marginal costs are 0, and we know all the (Li, wi). 

• Customer i: shopping list Li, will only shop if the total cost 
of items in Li is at most wi 

What prices on the items will make you the most money?  

• Easy if all Li are of size 1.   

• What happens if all Li are of size 2? 

• n  single-minded customers. 



• A multigraph G with values we on edges e. 

• Goal: assign prices on vertices          

      to maximize total profit, where: 

• APX hard [GHKKKM’05]. 
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Algorithmic Problem, Single-minded Bidders [BB’06] 

Unlimited supply  



A Simple 2-Approx. in the Bipartite Case 

• Goal: assign prices on vertices            to maximize total profit, 
where:  

• Set prices in R to 0 and separately fix 
prices for each node on L. 

• Set prices in L to 0 and separately fix 
prices for each node on R. 

• Take the best of both options. 

Algorithm 

• Given a multigraph G with values we on edges e. 

Proof simple
! 

OPT=OPTL+OPTR 

40 

15 

25 
35 

15 25 

5 

L R 



A 4-Approx. for Graph Vertex Pricing 

• Goal: assign prices on vertices             to 
maximize total profit, where: 

• Randomly partition the vertices into two sets L and R. 

• Ignore the edges whose endpoints are on the same side 
and run the alg. for the bipartite case. 

Algorithm 

Proof 
    In expectation half of OPT’s profit 

is from edges with one endpoint in L 
and one endpoint in R. 

• Given a multigraph G with values we on edges e. 

simple
! 
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Algorithmic Pricing, Single-minded Bidders, 
k-hypergraph Problem 

List of size  · k. 

– Put each node in L with prob. 1/k, in R with prob.  1 – 1/k. 

– Let GOOD = set of edges with exactly one endpoint in L.  

Set prices in R to 0 and optimize L wrt GOOD. 

• Let OPTj,e be revenue OPT makes selling item j to customer 
e.  Let Xj,e be indicator RV for j 2 L & e 2 GOOD. 

• Our expected profit at least: 

Algorithm 
10 

15 

20 



Summary [BB06]: 
• 4 approx for graph case. 

• O(k) approx for k-hypergraph case. 

   Improves the O(k2) approximation of  Briest and 
Krysta, SODA’06.  

– Also simpler and 
can be naturally adapted to the online setting. 

•  O(log mn) approx. by picking the best single price 
[GHKKKM05]. 

Other known results: 

• (log n) hardness for general case [DFHS06]. 



Overall Summary 

Revenue Maximization in a wide range of settings. 

• Both Algorithmic and Incentive Compatible Aspects. 

• Natural Connections to Machine Learning. 




