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ABSTRACT
We exhibit incentive compatible multi-unit auctions that are
not affine maximizers (i.e., are not of the VCG family) and
yet approximate the social welfare to within a factor of 1+ε.
For the case of two-item two-bidder auctions we show that
these auctions, termed Triage auctions, are the only scal-
able ones that give an approximation factor better than 2.
“Scalable” means that the allocation does not depend on
the units in which the valuations are measured. We de-
duce from this that any scalable computationally-efficient
incentive-compatible auction for m items and n ≥ 2 bidders
cannot approximate the social welfare to within a factor
better than 2. This is in contrast to arbitrarily good ap-
proximations that can be reached under computational con-
straints alone, and in contrast to the existence of incentive-
compatible mechanisms that achieve the optimal allocation.

Categories and Subject Descriptors
F.2.8 [Analysis of Algorithms and Problem complex-
ity]: Miscellaneous

General Terms
Theory

Keywords
Multi-Unit Auctions, Incentive Compatibility

∗Supported by an Alfred P. Sloan Foundation Fellowship
and a Microsoft Research New Faculty Fellowship.
†Supported by a grant from the Israeli Science Founda-
tion, and by the Google Inter-university center for Electronic
Markets and Auctions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’11, June 5–9, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0261-6/11/06 ...$10.00.

1. INTRODUCTION

Background
The field of Algorithmic Mechanism Design [27] designs mech-
anisms for achieving various computational goals, under the
assumption of rational selfishness of the involved parties.
The notions used are taken from the economic field of Mech-
anism Design, and a basic notion is that of incentive com-
patibility – where rational players are motivated to act truth-
fully. For background and survey see part II of [28]. This pa-
per will consider only the simplest and most robust notion of
incentive compatibility, that of dominant strategies in quasi-
linear settings with independent private values. The typi-
cal question in the field asks for a computationally-efficient
incentive compatible mechanism that implements a certain
type of outcome, usually the approximate optimization of
some target “social” goal. There are two variants of this
challenge, the first considers situations where incentive com-
patibility itself is hard to achieve and the computational
efficiency is just an additional burden, with the prime ex-
ample being approximate minimization of the makespan in
scheduling problems [27]. The second variant focuses on
cases where each of the two constraints of incentive compat-
ibility and computational efficiency can be achieved sepa-
rately, and the challenge is to get them simultaneously, with
the prime example being approximate welfare maximization
in various types of combinatorial auctions [24].

While there has been much work and some progress on
these types of challenges, with particular emphasis on the
problems mentioned above of combinatorial auctions (e.g.,
[22, 20, 3, 15, 23, 16, 13, 6]) and scheduling (e.g., [7, 21, 2]),
the basic challenge remains mostly unanswered. As noted
in [22], the main issue turns out to be the richness of the
domain of player’s valuations, i.e., of their private informa-
tion. On one extreme are single-dimensional domains where
the private information of each participant is captured by a
scalar (or domains very close to it, e.g., [24]). For these types
of problems, incentive-compatible mechanisms are well char-
acterized by a certain monotonicity condition and, in most
cases, the challenge of reconciling incentives with computa-
tional efficiency has been met [24, 1, 5, 9, 8]. On the other
extreme are problems which are “fully dimensional” (or close
to fully dimensional, e.g., [29, 17]) where there is no struc-
ture on valuations, in which case a key theorem of Roberts
[30] characterizes incentive compatible mechanisms as“affine
maximizers”“on a sub-range” – simple generalizations of the
VCG mechanism. While such affine maximizers on a sub-
range are not completely powerless in polynomial time, in
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most cases this characterization implies impossibility of good
computationally efficient truthful mechanisms. Most inter-
esting problems, including those mentioned above, lie in an
intermediate range where the valuation spaces are neither
single dimensional nor fully dimensional, a range for which
very little is known. The main problem seems to be the
lack of a good characterization of incentive compatibility in
these intermediate ranges1. In particular, the key unknown
is whether any useful truthful non-VCG mechanisms exist
in the intermediate range2.

Multi-unit Auctions
As mentioned, the paradigmatic problems for the reconcilia-
tion of computational constraints with incentive constraints
are the various subclasses of combinatorial auctions. In this
paper we consider the simplest variant which exhibits this
tension: multi-unit auctions. In this problem there are m
identical items for sale among n bidders, where each bidder
i has a valuation function vi : {0...m} → <, where vi(k) de-
notes player i’s value for receiving k items. The valuations vi

are assumed to be monotone non-decreasing (free disposal)
with vi(0) = 0 (normalization). Key and implicit here is
that there are no externalities: the value of bidder i depends
only on what he gets rather than also on the allocation to
the others. The optimization goal is to find an allocation
of items to the bidders, where bidder i gets si items, with∑

i si ≤ m, that maximizes social welfare
∑

i vi(si).
The problem becomes computationally challenging when

the number of items m is “large”, i.e., when the running time
of the mechanism is not allowed to be polynomial in m but
rather just in log m. There are two variant models in this
case, the first assumes that the valuation functions are given
as“black boxes” that the algorithm may query3, and the sec-
ond assumes that the valuation functions are given in some
succinct bidding language. Finding the optimal allocation is
essentially a knapsack problem and is computationally hard
in both models: in the black-box model it requires expo-
nentially many queries, and in the succinct representation
model, it is NP-hard. Just like Knapsack, the optimal social
welfare can be approximated arbitrarily well (in both mod-
els) and has an FPTAS: approximation ratio of 1+ε obtained
in time that is polynomial in n, log m, and ε−1. This FP-
TAS does not imply any incentive compatible approximation
though, and the question boils down to what degree of ap-
proximation can be obtained in an incentive compatible way
in polynomial time.

Already in Vickrey’s seminal paper [32] multi-unit auc-
tions were considered, restricted to the case of downward
sloping valuations, i.e., vi(k + 1)− vi(k) ≤ vi(k)− vi(k− 1)
for all 0 < k < m. For this case the optimal allocation can be
found efficiently, as an “equilibrium price” exists, which can
be found by binary search (together with the optimal allo-
cation it implies), and attaching the Vickrey payments – the
point of his paper – gives incentive compatibility. For gen-
eral valuations the exact optimum is computationally hard

1The “weak monotonicity” [4, 31] characterization is from
the point of view of a single player and is not specific enough
to be useful in this regard.
2With a single positive exception for certain multi-unit com-
binatorial auctions [3].
3The usual query assumed is a“value query”, asking for vi(k)
for some k, but most lower bounds hold for any queries, as
they apply in the communication complexity model.

to achieve, so further work considered approximations. The
single-dimensional “single minded” case was shown to have
a truthful FPTAS [5], improving an earlier 2-approximation
[25]. In addition, a PTAS exists for somewhat richer valua-
tions that can be described using certain“bidding languages”
(e.g., k-minded bidders for a fixed k) [14]. The general case
was studied in [14] where a truthful 2-approximation was ob-
tained using a maximal-in-range VCG mechanism4. It was
also shown there that no computationally-efficient maximal
in range VCG mechanism can achieve a better approxima-
tion ratio.

The main open problem was whether there exist non-
VCG truthful mechanisms with a better approximation ra-
tio. Some evidence [22, 17] supported the conjecture that
that there are no such mechanisms: truthful mechanisms
for two players that always allocate all items must be affine
maximizers5. It should be emphasized that the question re-
gards deterministic mechanisms, as a randomized FPTAS
was obtained by [12]6.

Our Results
Given the evidences and our own intuition, we were surprised
to find that there are non-VCG mechanisms that provide
arbitrarily good approximation ratios:

Theorem: For every ε > 0, there exists a truthful (1 + ε)-
approximation mechanism for multi-unit auctions of m items
between two players which is not an affine maximizer.

We call these mechanisms Triage mechanisms as they split
the valuation domain into three sub-domains, depending on
the ratios v(1)/v(m) and v(m − 1)/v(m). Their payment
structure mimics VCG prices with two exceptions: in the
“low sub-domain”, the price for a single item is decreased
to a specific fraction of the value of all items, and in the
“high sub-domain”, the payments of all non-empty bundles
are increased, by the same amount, in a specific linear way.
This family of mechanisms is parameterized by three param-
eters (specifying a weight and the “high thresholds” for both
players), with all other parameters uniquely determined by
them. We also exhibit two other families of finitely approxi-
mating incentive compatible mechanisms, but their approx-
imation factor is worse.

Our next, and main, result shows that these Triage mecha-
nisms are the only scalable incentive compatible mechanisms
with a good approximation ratio for the case of two items
and two players. Scalability means that the auction’s al-
location rule does not depend on the “units” in which the
valuations are given: multiplying all valuations by the same

4The situation in multi-unit auctions mirrors, with different
parameters, that of other types of combinatorial auctions
where there is a gap between the computationally achievable
approximation ratio and the best known computationally ef-
ficient truthful mechanism known for the multi-parameter
case, which is a maximal-in-range VCG mechanism (see,
e.g., [15, 18, 14]).
5The driving force of these and similar characterization re-
sults is the annulment of the no-externalities condition as
everything not won by one player must be given to the other
player.
6This again mirrors the situation in other types of combina-
torial auctions where randomized mechanisms obtain better
approximation ratios than those obtained by the known de-
terministic ones [11, 12].
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positive constant does not change the allocation7. Triage
mechanisms and the other mechanisms mentioned above are
all scalable.

Theorem: A scalable truthful c-approximation mechanism,
for c < 2, in a multi-unit auction of two items among two
bidders must be a Triage mechanism for some choice of pa-
rameters.

This is the first characterization of truthfulness in an auc-
tion domain or, more generally, in a domain with no ex-
ternalities. Our novel approach is radically different than
previous characterization results (e.g., [30]): we analyze the
payment functions of the players, rather than the allocation
rule directly. The proof is quite involved and reveals the
properties of the payment functions (monotonicity, continu-
ity, invertibility, linearity, etc.) gradually, one property after
the other. The proof also makes repeated use of the approxi-
mation guarantee of the mechanism, in contrast to previous
results that characterized all mechanisms in a certain do-
main, and were not conditioned on the approximation ratio.

Triage mechanisms are affine maximizers on the “middle
sub-domain” and we show that this extends to auctions of
an arbitrary number of items among two players.

Theorem: A scalable truthful c-approximation mechanism,
for c < 2, in a multi-unit auction of m > 2 items among
two bidders, must be identical to an affine maximizer with
VCG payments on the sub-domain where vi(1) = 0 and
vi(m− 1) = vi(m− 2) for every player i.

Adopting the point of view of economics, our theorem can be
interpreted as follows: Green and Laffont [19] characterize
efficient (read: welfare-maximizing) mechanisms and show
that VCG is the unique efficient mechanism. We relax the
efficiency requirement to “approximate efficiency” and (al-
most completely) characterize all truthful (scalable) mecha-
nisms in the multi-unit auction domain.

Interestingly, the theorem is not proved by direct charac-
terization, but rather by reducing the characterization prob-
lem to the two-item case. We achieve this by introducing
a new technical tool that enables us to use our two-item
characterization as a black box: induced mechanisms. The
technique might be of independent interest: it hints that in
general characterizing truthful mechanisms may require only
the characterization of small instances. The theorem im-
mediately implies computational hardness, a first-of-a-kind
result for an auction domain:

Theorem: Fix a model of computation in which finding the
exact social-welfare maximizing allocation of m items be-
tween two players is computationally hard, even with valua-
tions restricted to vi(1) = 0 and vi(m−1) = vi(m−2). Then,
getting a scalable truthful c-approximation, for c < 2, of the
social welfare in a multi-unit auction of m items among any
n ≥ 2 bidders, is also computationally hard.

This implies an exponential lower bound on communication
in the black-box model [14] and implies NP-hardness in the
succinct representation model, with, e.g., the bidding lan-

7In terms of pure computation, scalability comes for free as
one can always scale all inputs by the largest value. We also
note that the truthful randomized FPTAS of [12] is scalable.

guage allowing valuations to be specified by boolean circuits
[22]8.

Very recently a different approach was introduced for prov-
ing the impossibility of polynomial-time truthful mechanisms
for combinatorial auctions with submodular bidders that use
only value queries [10]. However, we do not know how to
apply the technique of [10] to multi-unit auctions. Also note
that, unlike [10], the results in this paper are not restricted
to a specific type of query. Furthermore, we believe that ob-
taining characterizations of truthful mechanisms, whenever
possible, is of interest regardless of computational consider-
ations.

The main open problem is to get rid of the scalability as-
sumption which we believe is not really necessary for all our
theorems. We note that our reduction to the two-item case
from an arbitrary number of items does not require scalabil-
ity, so the hurdle is really just in characterizing the two-item
two-bidder case. The fixed small size would perhaps suggest
a direct attack, perhaps even a computer-assisted one, but
obviously we were not able to do so.

Organization
In Section 2 the setting and basic definitions are given.
Triage auctions (and two additional families of auctions) are
discussed in Section 3. Section 4 characterizes two-item two-
bidder truthful and scalable mechanisms. Finally, Section 5
provides a characterization of mechanisms for any number
of items.

2. PRELIMINARIES

The Setting
In a multi-unit auction there is a set of m identical items,
and a set N = {1, 2, . . . , n} of bidders. Each bidder i has
a valuation function vi : [m] → R+, which is normalized
(vi(0) = 0) and non-decreasing. Denote by V the set of all
normalized an non-decreasing valuations. An allocation of
the items ~s = (s1, . . . , sn) is a vector of non-negative integers
such that Σisi ≤ m (we say that an allocation (s1, . . . , sn) is
infeasible if Σisi > m). Denote the set of allocations by S.
The goal is to find an allocation that maximizes the welfare:
Σivi(si).

In most of this paper we concentrate in the case where
n = 2. For convenience, we name the bidders Alice and Bob.
We usually denote Alice’s valuation by v, and Bob’s by u.
When m = 2 we sometimes use the notation (v(1), v(2)) to
denote Alice’s valuation and (u(1), u(2)) to denote’s Bob.

Truthfulness
The reader is referred to [26] for the (standard) proofs miss-
ing in this subsection. An n-bidder mechanism for multi-
unit auctions is a pair (A, p) where A : V n → S and p =

(p(1), · · · , p(n)), where for each i, p(i) : V n → R.

Definition 2.1. Let (A, p) be a mechanism. (A, p) is
truthful if for all i, all vi, v

′
i and all v−i we have that:

vi(A(vi, v−i)i)− p(i)(vi, v−i) ≥ vi(A(v′i, v−i)i)− p(i)(v′i, v−i)

8As expected, the theorem does not imply hardness for, say,
single minded bidders, since finding the welfare-maximizing
allocation among two single-minded bidders is computation-
ally easy.
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It is well known that an algorithm (for multi-unit auc-
tions) is truthful if and only if each bidder is presented with
a payment for each bundle t that does not depend on bidder
i’s valuation (i.e., p(i) : V n−1 → R). Denote this payment by

p
(i)
t (v−i). Each bidder is allocated a bundle that maximizes

his profit: vi(t)− p
(i)
t (v−i) (this is called the “taxation prin-

ciple” – we will sometimes say that these payments are in-
duced by v−i). We note that we may assume without loss of

generality that for t > t′, p
(1)
t (v) ≥ p

(1)

t′ (v) (“payment mono-
tonicity”): otherwise, we have a mechanism with the same

allocation rule by using p
(1)
t (v) = p

(1)

t′ (v) and the appropri-
ate tie-breaking between bundles t and t′ when u(t) = u(t′).

We assume that the mechanisms are individually rational :
the payment of a bidder with an identically zero valuation
is 0. Every mechanism can be made individually rational as
follows: let x be the number of items a bidder receives when
his valuation is identically zero and subtract p

(i)
x (v−i) from

all prices induced by v−i. Notice that the relative prefer-
ence of bundles by i has not changed (since we subtract the
same constant from all prices), thus the allocation rule of
the mechanism may remain the same. This normalization
implies, together with the price uniqueness theorem (e.g.,
[26]) that in our setting there is exactly one set of prices
that implement each truthful mechanism.

The following definition and proposition are standard:

Definition 2.2. A is an affine maximizer if there exist a
set of allocations R, a constant αi ≥ 0 for each i ∈ N , and
a constant β~s ∈ < for each ~s ∈ S, such that A(v1, ..., vn) ∈
arg max~s=(s1,...,sn)∈R(Σi(αivi(si))+βs). A is called welfare

maximizer9 if β~s = 0 for each ~s ∈ S.

Proposition 2.3. Let A be an affine maximizer (in par-
ticular, welfare maximizer). There are payments p such that
(A, p) is a truthful mechanism.

Notice that when A is a two-bidder welfare maximizer, the
payments are as follows: there is a constant w > 0 such that
for each t, a valuation v of Alice and a valuation u of Bob,

p
(2)
t (v) = w(v(m)− v(m− t)) and p

(1)
t (u) = (u(m)− u(m−

t))/w. We sometimes use a table notation to denote a 2-item
instance. This notation is illustrated below for the 2-bidder
welfare maximizer case (notice that each bidder’s pavements
depend only on the valuation of the other bidder):

Number Alice’s Alice’s
of items value payment

One v(1) (u(2)− u(1))/w
Two v(2) u(2)/w

Number Bob’s Bob’s
of items value payment

One u(1) w(v(2)− v(1))
Two u(2) w · v(2)

Scalability
This paper considers two definitions of scalability.
9Some papers reserve the term“welfare maximizer” for affine
maximizers in which all αi’s are equal, and use the term
“weighted welfare maximizer” if they are not. For simplicity,
we use a slightly different terminology in this paper.

Definition 2.4. An auction is allocation scalable if mul-
tiplying the valuations of all bidders by the same positive
factor does not change the allocation.

Definition 2.5. An auction is payment scalable if for
each bidder i, valuations of the other bidders v−i, and α > 0,
α · p(i)(v−i) = p(i)(α · v−i).

We now show that every allocation scalable mechanism is
also payment scalable, and thus in this paper we use the term
scalable to denote the less restrictive notion of scalability –
payment scalability.

Proposition 2.6. Let A be an allocation scalable mech-
anism. Then, A is also payment scalable.

Proof. We prove the proposition for the case of n =
2 but the proof easily extends to n > 2 bidders. Fix a
valuation u of Bob. Let Bt(u) be the set of all valuations v
that assign Alice t items in input (v, u). Formally, Bt(u) =
{v|A1(v, u) = t}. We say that t is in the range of u if Bt 6= ∅.

We claim that t is in the range of u if and only if t is
in the range of α · u. To see that, consider t that is in the
range of u. We have that t is also in the range of α · u since
A(v, u) = A(α ·v, α ·u). The ’only if’ direction is symmetric.

We now show that for every t, t′ in the range of u and α >

0, α(p
(i)
t (u)−p

(i)

t′ (u)) = p
(i)
t (α·u)−p

(i)

t′ (α·u) (for bundles not
in the range we set the payment to be equal to the payment
of the next bigger bundle that is in the range, and use the
appropriate tie-breaking rule). Fix some t in the range of
u such that there exists v ∈ Bt(u) that is on the border of
Bt(u) (in the usual topological sense). If there is no such
point, Alice is always assigned t and we are done by letting

p
(i)
i (α · u) = 0 for every α 6= 0. Assume otherwise. There

exists at least one t′ 6= t which is in every ε-neighborhood
of v and in Bt′ , since v is on the border. Thus we have

p
(i)
t (u) − p

(i)

t′ (u) = v(t) − v(t′). From scalability, we have
that α · v is on the border of Bt(u) with t′ playing the same

role. We have that p
(i)
t (α · u)− p

(i)

α·t′(u) = α(v(t)− v(t′)) =

α(p
(i)
t (u)− p

(i)

t′ (u)).
We continue similarly. Fix t′′ 6= t, t′′ where there exists

v ∈ Bt′′(u), and v is on the border of Bt∪Bt′ . Thus, in every
ε-neighborhood of v there exists a valuation v′ for which
v′ ∈ Bt or v′ ∈ Bt′′ . Without loss of generality assume that
u′ ∈ Bt (otherwise, switch the roles of t and t′). By using
scalability similarly to the arguments above, we get that

v(t)−v(t′′) = p
(i)
t (u)−p

(i)

t′′ (u), and consequently we also have

α(v(t)−v(t′′)) = p
(i)
t (α ·u)−p

(i)

t′′ (α ·u) = α(p
(i)
t (u)−p

(i)

t′ (u)).
The proof continues similarly until all bundles in the range
are considered.

3. THE TRIAGE AUCTION
We present three families of truthful mechanisms for multi-

unit auctions that provide a bounded approximation ratio
for multi-unit auctions with two bidders. Each of the fami-
lies contain mechanisms that are not affine maximizers. The
first family, the Triage auction, includes mechanism that
guarantee an approximation ratio of 1+ ε, and the next sec-
tions show that triage auctions are the only two-item truth-
ful and scalable mechanisms that provide an approximation
ratio better than 2. The other two families – shifted welfare
maximizers and fractions auctions – provide an approxima-
tion of almost 2. We postpone their description to the full

236



version. To the best of our knowledge all previously known
finitely-approximating mechanisms are either affine maxi-
mizers or are essentially single-parameter mechanisms (i.e.,
each bidder either receives all items, or no items at all).

We describe the mechanisms by specifying the payment
functions of the bidders (recall that each function depends
only on the other bidder’s valuation). Truthfulness is obvi-
ous since each bidder is allocated a bundle that maximizes
his profit, and we are left only with proving feasibility and
analyzing the approximation ratio.

Definition 3.1. The Triage auction is parameterized by
three parameters, w, θA, θB , for w > 0, 0 ≤ θA, θB ≤ 1, and
θA ≥ 1− θB. The payment functions are:

• p
(2)
m (v) = wv(m) if v(1) < θAv(m), and p

(2)
m (v) =

wv(1)
θA

otherwise.

• For 2 ≤ k ≤ m− 1, p
(2)
k (v) = p

(2)
m (v)− w · v(m− k).

• p
(2)
1 (v) = p

(2)
m (v) − wv(m − 1) if v(m − 1) > (1 −

θB)v(m), and p
(2)
1 (v) = p

(2)
m (v) − w(1 − θB)v(m) oth-

erwise (notice that in the latter case we have in fact

p
(2)
m (v) = wv(m)).

and

• p
(1)
m (u) = w−1u(m) if u(1) < θBu(m), and p

(1)
m (u) =

w−1u(1)
θB

otherwise.

• For 2 ≤ k ≤ m− 1, p
(1)
k (u) = p

(1)
m (u)−w−1 ·u(m−k).

• p
(1)
1 (u) = p

(1)
m (u) − w−1u(m − 1) if u(m − 1) > (1 −

θA)u(m), and p
(1)
1 (u) = p

(1)
m (u)−w−1(1−θA)u(m) oth-

erwise (again, in the latter case p
(1)
m (u) = w−1u(m)).

Theorem 3.2. The (w, θA, θB)-Triage auction is feasible.
The (1, θA, θB)-Triage auction provides an approximation
ratio of max( 1

θA
, 1

θB
).

We remark that when w = θA = θB = 1 we get the VCG
mechanism. We also note that Section 5 gives a proof that
that Triage auctions require exponential time to run.

Before proving the theorem we introduce an important
definition:

Definition 3.3. Fixing the other bidder’s valuation, we
say that a bundle of s items is in the winning set of a bidder,
if this bundle maximizes his profit.

For the algorithms we present in this paper, we assume
that the algorithm chooses an allocation (s, t) with the max-
imal value such that s is in the winning set of Alice and t is
in the winning set of Bob.

Proof. We will use the following claim several times:

Claim 3.4. For triage auctions with w = 1, for each op-
timal allocation (k, m − k), Alice’s winning set contains at
least one of the following bundles: k items, one item, or no
items. Similarly, Bob’s winning set contains at least one of
the following bundles: m− k items, one item, or no items.

Proof. We will show that the equation v(k)− p
(1)
k (u) ≥

v(t) − p
(1)
t (u) holds for t 6= 0, 1. The equation implies that

Alice prefers k items over t items, thus if t is in the winning
set so does k, as needed. To see that the equation holds,

observe that for each t 6= 1, 0 we have that p
(1)
k (u)−p

(1)
t (u) ≥

u(m−k)−u(m−t). Since (k, m−k) is an optimal allocation,
we also have that v(k)+u(m−k) ≥ v(t)+u(m−t). Together

we have that v(k)− p
(1)
k (u) ≥ v(t)− p

(1)
t (u), for t 6= 0, 1.

Lemma 3.5. The (w, θA, θB)-Triage auction is feasible.

Proof. We first note that without loss of generality we
may assume that w = 1 (since multiplying one bidder’s pay-
ments by w and dividing the other’s by the same w maintains
feasibility).

Consider first an optimal allocation (k, m− k) where k 6=
0, m. We claim that in this case the mechanism is feasible:
by Claim 3.4, Alice’s winning set contains at least one of the
following bundles: 0, 1, or k items. Similarly, Bob’s winning
set contains at least one of the following bundles: 0, 1, m−k.
Thus there is a feasible allocation (s, t) such that s is in the
winning set of Alice and t is in the winning set of Bob.

Thus from now on it suffices to assume that in all optimal
allocations at least one bidder is assigned the empty bundle.
We therefore assume that (m, 0) is an optimal allocation (the
case where (0, m) is an optimal allocation is symmetric).
By Claim 3.4 Bob’s winning set contains at least one of the
following: the empty bundle or the bundle of one item (the
optimality of (m, 0) implies that v(m) ≥ u(m), therefore if
the bundle of m items is in the winning set, so is the empty
bundle). Thus, we only have to show that if Bob’s winning
set contains only the bundle of 1 item, then Alice’s winning
set contains bundles that have less than m items.

If Bob’s winning set contains only the bundle of one item,

this implies that u(1) > p
(2)
1 (v). The definition of triage

auction implies that u(1) > v(m) − v(m − 1) or u(1) >
v(m)θB , depending on the ratio between v(m−1) and v(m).
The first case cannot happen since it implies that u(1) +
v(m−1) > v(m), which is false since we assumed that (m, 0)
is an optimal allocation. In the second case we have that

p
(1)
m = u(1)

θB
, since u(1) > v(m)θB ≥ u(m)θB . Therefore,

the bundle of m items is not in Alice’s winning set since

v(m) < u(1)
θB

.

Lemma 3.6. The (1, θA, θB)-Triage auction provides an
approximation ratio of max( 1

θA
, 1

θB
).

Proof. Let (k, m− k) be an optimal allocation. In case
Alice has the bundle of k items in her winning set and Bob
has the bundle of m − k items in his winning set then the
approximation ratio is 1. By Claim 3.4, the only other cases
to consider are when at least one of the bidders (without
loss of generality Alice) does not have these bundles in his
winning set.

The first case we consider is when Alice’s winning set
does not contain the bundle of k items, but contains the
empty bundle (in particular, we have that k 6= 0). Since
the empty bundle has a zero profit, it means that the profit
from the bundle of k items is negative: v(k) < p1

k(u). By
the definition of the payment function we either have that

p1
k(u) ≥ u(m)− u(m− k) or that p1

k(u) = u(1)
θB

− u(m− k).

The first option does not occur since otherwise v(k) <
u(m) − u(m − k). In other words, the social welfare of the
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allocation (0, m) is bigger than the social welfare of the al-
location (k, m− k), a contradiction to the optimality of the
latter. Thus, the second option occurs and in particular:

v(m) <
u(1)

θB
(1)

Since Alice’s profit for the bundle of k items is negative,

(i.e., v(k) < u(1)
θB

− u(m − k)), we have, in particular, that

v(m) < u(1)
θB

. Therefore, to prove an approximation ratio of
1

θB
, it suffices to show that that Bob has at least one non-

empty bundle in his winning set. Suppose not, i.e.: u(1) <

p
(2)
1 (v) ≤ θBv(m) (the last inequality is from the definition

of the payment function – the payment for one item is always

at most θBv(m)). But then, u(1)
θB

≤ v(m), a contradiction

to (1).
We are left with considering the case where the only bun-

dle in Alice’s winning set is the bundle of one item. We
start by showing that u(m − 1) ≤ (1 − θA)u(m). Suppose
for contradiction that u(m − 1) > (1 − θA)u(m). Since the

bundle of one item maximizes the profit: v(1) − p
(1)
1 (u) >

v(k)−p
(1)
k (u). Using the definition of the payment function:

v(1) + u(m − 1) > v(k) + u(m − k). In other words, the
allocation (k, m − k) is not optimal, a contradiction. Thus
we have established that

u(m− 1) ≤ (1− θA)u(m) (2)

Recall that the bundle of one item is profitable for Alice.
Using (2) and the definition of the payment function, we
claim that:

v(1) ≥ θAu(m) (3)

Since the bundle of one item maximizes the profit, using
the definition of the payment function: v(1) + u(m − 1) >
v(k) + u(m− k). Using (2) we have that:

v(1) + (1− θA)(m) > v(k) + u(m− k) (4)

Thus, the approximation ratio is no worse than v(k)+u(m−k)
v(1)

≤
v(1)+(1−θA)u(m)

v(1)
≤ 1 + (1−θA)u(m)

θAu(m)
≤ 1

θA
(where the leftmost

inequality is due to (4), and the middle one is due to (3)).

4. CHARACTERIZATION OF SCALABLE
TWO-ITEM AUCTIONS

This section is devoted to proving the following character-
ization result:

Theorem 4.1 (two-item characterization). The only
feasible, scalable and truthful auctions with an approxima-
tion ratio strictly better than 2 for two identical goods and
two bidders are triage auctions for some (w, θA, θB).

We now provide a brief road map to the proof of the the-
orem. Very differently from Roberts’ theorem proof, we an-
alyze the payment functions of the bidders (rather then the
allocation rule) and show that the payment functions are
identical to the payment functions of some triage auction.
Notice that in the two-item case, the payment functions of a
triage auction are defined using three different regions that
correspond to the ratio between the value for two items and
the value for one item: high, mid, and low. The proof of
the theorem is quite involved and for readability we divide
it into subsections that roughly correspond to these regions.

Subsection 4.1 gives an alternative definition of the triage
auction, for the special case where m = 2, that is easier for
us to work with. Subsection 4.2 characterizes the payment
function for two items. The results of subsection 4.2 hold
for any scalable mechanism with a bounded approximation
ratio, not just ones with an approximation ratio better than
2. The next subsections are devoted to characterizing the
payment functions for one item. Subsection 4.3 defines and
“separates” the high-range from the mid and low ranges:
it shows that, roughly speaking, a valuation that is not in
the high range induces payment (for one item) that is also
not in the high range. Due to lack of space we defer the
next sections of the proof to the full version, and keep here
only the first simpler parts: the next subsection (in the full
version) proves some basic properties, like continuity, of the
payment function in the low and mid range. The central part
of the proof shows that the payment functions in the mid
range are equivalent to the payment functions of weighted
VCG. We conclude the proof with analyzing the value of the
transition points between the high and mid range, and with
characterizing the high range.

4.1 An Alternative Description of the Triage
Auction with Two Items

Definition 4.2. Let p, q : [0, 1] → <+ and f, g : [0, 1] →
[0, 1] be real valued functions and r, s be two variables that
take values in [0, 1]. The scalable mechanism based on p and
q is given by the following table.

Number Alice’s Alice’s
of items value payment

One rv g(s) · q(s) · u
Two v q(s) · u

Number Bob’s Bob’s
of items value payment

One su f(r) · p(r) · v
Two u p(r) · v

Proposition 4.3. For any p, q : [0, 1] → <+ and f, g :
[0, 1] → [0, 1], the scalable mechanism based on them is scal-
able and truthful (but may be infeasible and allocate more
than 2 items). Any truthful scalable mechanism (even a non-
feasible one as long as it allocates at most two items to any
bidder) is equivalent to one based on some functions.

The proof of the proposition can be found in the full ver-
sion. We now give an alternative (equivalent) definition of
the triage auction, for the m = 2 case.

Definition 4.4. The (w, θA, θB)-triage auction for w >
0 and 0 ≤ θA, θB ≤ 1, θA ≥ 1−θB, is the scalable mechanism
based on:

• For r ≤ 1− θB: f(r) = θB, and p(r) = w.

• For 1− θB ≤ r ≤ θA: f(r) = 1− r, and p(r) = w.

• For r ≥ θA: f(r) = 1− θA, and p(r) = wr/θA.

and
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• For s ≤ 1− θA: g(s) = θA, and q(s) = w−1.

• For 1− θA ≤ s ≤ θB: g(s) = 1− s, and q(s) = w−1.

• For s ≥ θB: g(s) = 1− θB, and q(s) = w−1s/θB.

4.2 Characterizing the Payment for Two Items
The results in this section hold for any scalable and truth-

ful mechanism with a bounded approximation ratio. We
usually prove the theorem only for the function p. The proof
for q is symmetric.

Lemma 4.5. The function p is monotone non-decreasing.

Proof. Assume towards contradiction that for some r′ >
r we have p(r′) < u < u′ < p(r). Since u > p(r′), on inputs
(r′, 1) and (0, u) Bob must win both items, so Alice can-
not win anything. Notice that (r, 1) wins nothing against
(0, u′(1 + ε)) (by payment scalability, (0, u′(1 + ε)) induces
bigger payments than (0, u′), and Alice did not win any
items with the bigger valuation (r, 1)), but also Bob does
not win both items since u′(1 + ε) < p(r) for small enough
ε > 0, so the total welfare achieved is 0 contradicting finite
approximation.

Lemma 4.6 (weighting). p(0) · q(0) = 1.

Proof. Consider the following input:

Number Alice’s Alice’s
of items value payment

One 0 ?
Two v uq(0)

Number Bob’s Bob’s
of items value payment

One 0 ?
Two u vp(0)

The only allocations that give finite approximation ratio
on inputs of the form (0, v) and (0, u) are those that give
both items to one of the bidders. If u < vp(0) then Bob
does not win two items; whereas if u > vp(0) then he wins
both items, and dually for Alice. So we get a contradiction to
feasibility if u > vp(0) and v > uq(0), i.e., if p(0)q(0) < 1.
On the other hand, if u < vp(0) and v < uq(0), i.e., if
p(0)q(0) > 1, then we get a total welfare of 0, contradicting
finite approximation ratio.

At this point we are ready to give a more precise definition
of the payment function. We start with the low range, i.e.,
when r < g(0). In particular we show that the function is
constant in this range.

Lemma 4.7 (low range). If r < g(0) then p(r) = p(0).

Proof. Assume that p(r) 6= p(0) then, using monotonic-
ity, let p(r) > u′ > u > p(0). On input (0, 1) and (0, u) Bob
gets both items (since u > p(0)) and so Alice must get none.
On inputs (r, 1) and (0, u′) Alice gets at most 1 item (since,
by the scalability of the payments, the payment induced by
Bob for two items has increased), but since u′ < p(r) Bob
does not get two items, and so for finite approximation, Al-
ice must get an item, so r ≥ u′g(0)q(0) ≥ p(0)q(0)g(0) =
g(0).

The following claim will be helpful in analyzing the pay-
ment function in the high range:

Claim 4.8. p(r) ≥ r/(g(0)q(0)).

Proof. Let u > p(r), then on input (r, 1) and (0, u)
Bob gets both items. Alice’s payment for a single item is
ug(0)q(0) which for feasibility must be at least r. Since this
holds for all u > p(r) we get that r ≤ p(r)g(0)q(0) as re-
quired.

For the high range (r > g(0)) we show that the payment
grows in a specific linear way:

Lemma 4.9 (high range). If r > g(0) then p(r) =
r/(g(0)q(0)).

Proof. We will prove the contra-positive which by the
previous claim assumes p(r) > u > r/(g(0)q(0)). Consider
the following input:

Number Alice’s Alice’s
of items value payment

One r uq(0)g(0)
Two 1 uq(0)

Number Bob’s Bob’s
of items value payment

One 0 ?
Two u p(r)

In this case Bob cannot win both items so he gets a value
of 0. By the choice of u, Alice’s payment for two items
is uq(0) > r/g(0) is greater than 1, thus she cannot win
two items. Thus for finite approximation she must win one
item and thus r ≥ uq(0)g(0) and since this is true for every
u < p(r), we have r ≥ p(r)g(0)q(0), contradiction.

At this point we have completed the required characteri-
zation of p and q.

Definition 4.10. Let w = p(0), θA = g(0), and θB =
f(0).

Lemma 4.11 (summary of subsection). For r ≤ θA

we have that p(r) = w and for r ≥ θA we have p(r) = wr/θA.
Similarly, for s ≤ θB we have that q(s) = w−1 and for
s ≥ θB we have q(s) = w−1s/θB.

Proof. The low range lemma states the required fact for
r < θA. The high range lemma states the required fact for
r > θA, taking into account the inverse lemma, p(0)q(0) = 1,
the same holds for q, replacing w with w−1, again relying on
p(0)q(0) = 1. For r = θA we observe that p(r) = w since p
is a monotone function and approaches w above and below
w.

4.3 Separating the high range
In this section we show that for r ≤ θA we have that

f(r) ≤ θB . Similarly it follows that for s ≤ θB we have that
g(s) ≤ θA. Note that by the previous section r > θA if and
only if p(r) > w, and this last condition is what drives this
section.

At this point we separate into two cases, according to
whether r > wf(r). We start with the easy case: we show
that if the payment for one item is “too high” then we do
not get the required approximation ratio.
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Lemma 4.12 (case I). If r ≤ θA and r ≤ wf(r) then
f(r) ≤ θB.

Proof. Assume by way of contradiction that f(r) > θB

and so q(f(r)) > w−1, and for ε small enough consider the
input:

Number Alice’s Alice’s
of items value payment

One r ?
Two 1 w(1− ε)q(f(r)) > 1

Number Bob’s Bob’s
of items value payment

One f(r)(1− ε)w f(r)w
Two (1− ε)w w

Notice that Bob gets negative utility from taking an item
or two items and thus takes nothing. Alice gets negative
utility from taking two items so can take at most a single
item. The total welfare is thus at most r, whereas the social
optimum is at least r + f(r)(1 − ε)w. Since r ≤ wf(r) this
is a contradiction to better than 2-approximation.

For the second case we first need to prepare two lemmas
and a corollary.

Lemma 4.13 (weak one-side inverse). If r ≤ θA then
for any δ > 0, wg(f(r)− δ)q(f(r)− δ) ≥ r.

Proof. Assume to the contrary wg(f(r)−δ)q(f(r)−δ) <
r and consider the following input:

Number Alice’s Alice’s
of items value payment

One r wg(f(r)− δ)q(f(r)− δ)(1 + ε) < r
Two 1 ?

Number Bob’s Bob’s
of items value payment

One (f(r)− δ)w(1 + ε) wf(r)
Two w(1 + ε) w

Bob takes two items. However, when ε is small enough,
Alice gets positive utility from one item so she will take (at
least) a single item, contradicting feasibility.

Lemma 4.14. For r > θA we have that r > f(r)p(r).

Proof. Consider the input:

Number Alice’s Alice’s
of items value payment

One r ?
Two 1 q(f(r))p(r)(1− ε)

Number Bob’s Bob’s
of items value payment

One f(r)p(r)(1− ε) f(r)p(r)
Two p(r)(1− ε) p(r)

Bob has negative utility for either one item or two items.
Since p(r) > w and q(f(r)) ≥ w−1, Alice has negative utility

for two items, as long as ε is small enough. Thus the total
welfare is at most r, whereas the social optimum is at least
r + f(r)p(r)(1 − ε), so for better than 2-approximation we
must have r > f(r)p(r).

Corollary 4.15. If f(r) > θB then f(r) > g(f(r))q(f(r)).

Proof. This is the previous lemma with the roles of the
players switched and with s = f(r).

We are now ready to handle the second case:

Lemma 4.16 (case II). If r ≤ θA and r > wf(r) then
f(r) ≤ θB.

Proof. Assume towards contradiction that there exists
δ > 0 such that f(r) − δ > θB . Combining the weak one-
sided inverse lemma and the previous corollary we have that
f(r)− δ > g(f(r)− δ)q(f(r)− δ) ≥ r/w; Contradiction.

Which concludes this subsection:

Lemma 4.17. For r ≤ θA we have f(r) ≤ θB. For s ≤ θB

we have q(s) ≤ θB.

Proof. The Case I and Case II lemmas cover all possi-
bilities for f ; for g the situation is symmetric.

5. CHARACTERIZING MECHANISMS FOR
ANY NUMBER OF ITEMS

We showed that every two-item scalable mechanism that
provides an approximation ratio better than 2 is a triage
auction. This section gives an almost complete character-
ization for truthful and scalable mechanisms that guaran-
tee an approximation ratio better than 2 for any number of
items. In particular this section’s characterization implies
that truthful and scalable mechanisms for multi-unit auc-
tions cannot guarantee an approximation ratio better than
2 in polynomial-time.

The two-item characterization is used as a black box to
characterize mechanisms for more items. Importantly, the
scalability assumption is not used in this section. In other
words, proving that triage auctions are the only truthful
mechanisms (scalable or not) that provide an approxima-
tion ratio better than 2 in multi-unit auctions with only two
items, would immediately imply our characterization result
for any number of items, and in particular would imply an
unconditional lower bound on the power of all polynomial
time truthful mechanisms. All missing proofs appear in the
full version.

5.1 Induced Mechanisms: Definition and
Basic Properties

Our main working horses will be induced mechanisms. In-
duced mechanisms allow us to define a two-item mechanism
given an m-item mechanism. By leveraging our two-item
characterization, we show that the induced two-item mech-
anisms are triage auctions. We then study the relationship
between all induced mechanisms and prove that many of
them must be welfare maximizers. We show that this im-
plies that the m-item mechanism we started with must have
a very specific form, as needed.

Definition 5.1. Let l1, h1 be such that 1 ≤ l1 < h1 ≤ m.
The (l1, h1)-extension of a two-item valuation v, denoted
vl1,h1 , is defined as follows: for every k < l1, vl1,h1(k) = 0.
For every h1 > k ≥ l1, vl1,h1(k) = v(1). For every k ≥ h1,
vl1,h1(k) = v(2).
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Definition 5.2 (Induced Mechanism). Let A be a mech-
anism for multi-unit auctions with m items and 2 bidders.
Let l1, h1, l2, h2 be positive integers with the following con-
straints: l1 < h1 ≤ m, l2 < h2 ≤ m, l1+l2 ≤ m, l1+h2 > m
and l2 +h1 > m. Define the induced mechanism Al1,h1,l2,h2

for 2 items as follows: given two valuations v and u run A
with the (l1, h1)-extended valuation vl1,h1 and the (l2, h2)-

extended valuation u(l2,h2). Let (a1, a2) be the output al-
location of A and (p1, p2) be the payments the bidders are
charged in A. If a1 < l1 then let a′1 = 0, if l1 ≤ a1 < h1

then let a′1 = 1, otherwise let a1 = 2. If a2 < l2 then let
a′2 = 0, if l2 ≤ a2 < h2 then let a′2 = 1, otherwise let a2 = 2.
The output of Al1,h1,l2,h2 on v and u is (a′1, a

′
2). Alice’s

payment is p1 and Bob’s payment is p2.

Proposition 5.3. Let A be a truthful and scalable mech-
anism for multi-unit auctions with m items and 2 bidders
that provides an approximation ratio of α. Let Al1,h1,l2,h2

be an induced mechanism. Al1,h1,l2,h2 is feasible, truthful,
scalable, and provides an approximation ratio of α.

In this section we denote the p(2) function of A (the pay-

ments induced by Alice) by f and by f l1,h1,l2,h2 the p(2)

function of the induced mechanism Al1,h1,l2,h2 . We denote
by g the p(1) function of A (the payments induced by Bob)

and by gl1,h1,l2,h2 the p(1) function of the induced mecha-
nism Al1,h1,l2,h2 . As a corollary of Proposition 5.4 we get
the following relationship between the payment functions of
A and its induced mechanisms.

Corollary 5.4. Let v be a two-item valuation and let
v(l1,h1) be its (l1, h1)-extension. Let l2, h2 be such that Al1,h1,l2,h2

is an induced mechanism. fl2(v
h1,l1) = f l1,h1,l2,h2

1 (v) and

fh2(v
h1,l1) = f l1,h1,l2,h2

2 (v).

Symmetrically, let u be a two-item valuation and let u(l2,h2)

be its (l2, h2)-extension. Let l1, h1 be such that Al1,h1,l2,h2

is an induced mechanism. gl1(u
h2,l2) = gl1,h1,l2,h2

1 (u) and

gh1(u
h2,l2) = gl1,h1,l2,h2

2 (u).

5.2 Relations between Induced Mechanisms
Let A be a scalable and truthful mechanism for multi-unit

auctions for m items with an approximation ratio better
than 2. By our characterization and the discussion above
above we have that all induced mechanisms of A are triage
auctions. Denote the parameters of the triage mechanism
Al1,h1,l2,h2 by θl1,h1,l2,h2

A , θl1,h1,l2,h2
B , wl1,h1,l2,h2 . The point

of this subsection is to study the relations between the pa-
rameters of the induced triage mechanisms of A.

Claim 5.5. Let A be a truthful and scalable mechanism
for multi unit auctions with m items that provides an approx-

imation ratio better than 2. Let Al1,h1,l2,h2 and Al1,h1,l2,h′2

be two induced mechanisms of A. Then, wl1,h1,l2,h2 = wl1,h1,l2,h′2 ,

θl1,h1,l2,h2
A = θ

l1,h1,l2,h′2
A , and θl1,h1,l2,h2

B = θ
l1,h1,l2,h′2
B . Sym-

metrically, let Al1,h1,l2,h2 and Al1,h′1,l2,h2 be two induced

mechanisms of A. Then, wl1,h1,l2,h2 = wl1,h′1,l2,h2 , θl1,h1,l2,h2
A =

θ
l1,h′1,l2,h2
A , and θl1,h1,l2,h2

B = θ
l1,h′1,l2,h2
B .

Claim 5.6. Let A be a truthful and scalable mechanism
for multi unit auctions with m items that provides an approx-

imation ratio better than 2. Let Al1,h1,l2,h2 and Al1,h1,l′2,h2

be two induced mechanisms of A. Then, θl1,h1,l2,h2
A = θ

l1,h1,l′2,h2
A

and wl1,h1,l2,h2 = wl1,h1,l′2,h2 . Symmetrically, let Al1,h1,l2,h2

and Al′1,h1,l2,h2 be two induced mechanisms of A. Then,

θl1,h1,l2,h2
B = θ

l′1,h1,l2,h2
B and wl1,h1,l2,h2 = wl′1,h1,l2,h2 .

We now use the claims to prove that all induced mech-
anisms share the same w. Thus, after proving it we may
denote the wl1,h1,l2,h2 parameter of every induced mecha-
nism Al1,h1,l2,h2 by (the same) w.

Lemma 5.7. Let A be a truthful and scalable mechanism
for multi unit auctions with m items that provides an approx-

imation ratio better than 2. Let Al1,h1,l2,h2 and Al′1,h′1,l′2,h′2

be two induced mechanisms of A. Then, the following equal-

ity holds: wl1,h1,l2,h2 = wl′1,h′1,l′2,h′2 .

5.3 Some Induced Mechanisms are
Welfare Maximizers

The heart of this section is here. We show that “many” of
the induced triage auctions take the simple form of welfare
maximizers. The crux is that the payment function for some
items is simultaneously the payment function of one item for
one induced mechanism, and the payment function for two
items for another. Simple algebra then gives us that some
θ’s must equal to 1. We are then able to specify the payment
functions of “simple” valuations.

Lemma 5.8. Let A be a truthful and scalable mechanism
for multi unit auctions with m items with an approximation
ratio better than 2. Let Al1,m,l2,m where l1, l2 ≥ 2. Then,
θl1,m,l2,m

A = θl1,m,l2,m
B = 1.

Definition 5.9. A valuation v is l-simple if there exists
some 0 < l < m such that for every k < l, v(k) = 0, and for
every l ≤ k < m we have that v(k) = v(l).

Corollary 5.10. Let l ≥ 2. For every l-simple valuation
v we have that fm(v) = wv(m) and for all 1 < t < m − 1
such that l + t ≤ m we have that ft(v) = w(v(m) − v(m −
t)). Similarly, for every l-simple valuation u we have that
fm(u) = u(m)/w and for all 1 < t < m − 1 such that
l + t ≤ m we have that gt(u) = (u(m)− u(m− t))/w.

Proof. For the first part, observe that Al,m,t,m is an
induced mechanism for every t such that l+t ≤ m and apply
Lemma 5.8. The proof of the second part is similar.

5.4 Concluding the Characterization
We are now ready to obtain our final characterization. We

give an almost complete description of the payment func-
tions for valuations where the value of one item is 0. Lemma
5.11 provides the payment function for m items, and Lemma
5.12 provides the payment functions for smaller bundles.

Lemma 5.11. For each v where v(1) = 0, fm(v) = wv(m).

Symmetrically, for each u where u(1) = 0, gm(u) = u(m)
w

.

Lemma 5.12. Let v be a valuation with v(1) = 0. For
every k 6= 1, m−1 we have that fk(v) = w(v(m)−v(m−k)).
Similarly, for every valuation u with u(1) = 0 we have, for
every k 6= 1, m− 1 that gk(u) = w−1(u(m)− u(m− k)).

Our final characterization result is:

Definition 5.13. A valuation v is degenerate if v(1) = 0
and v(m− 1) = v(m− 2).
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Theorem 5.14. (Characterization of mechanisms for
any number of items) Let A be a truthful and scalable two-
bidder mechanism for m > 2 items that provides an approx-
imation ratio better than 2. There exists a constant w > 0
such that for all degenerate v and u and on all inputs (v, u)
A outputs a solution with value maxk(v(k) + wu(m− k)).
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