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ABSTRACT
Weak monotonicity is a simple necessary condition for a so-
cial choice function to be implementable by a truthful mech-
anism. Roberts [10] showed that it is sufficient for all so-
cial choice functions whose domain is unrestricted. Lavi,
Mu’alem and Nisan [6] proved the sufficiency of weak mono-
tonicity for functions over order-based domains and Gui,
Muller and Vohra [5] proved sufficiency for order-based do-
mains with range constraints and for domains defined by
other special types of linear inequality constraints. Here we
show the more general result, conjectured by Lavi, Mu’alem
and Nisan [6], that weak monotonicity is sufficient for func-
tions defined on any convex domain.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; K.4.4
[Computers and Society]: Electronic Commerce—pay-
ment schemes

General Terms
Theory, Economics

Keywords
Dominant strategy, mechanism design, strategyproof, truth-
ful, weak monotonicity

1. INTRODUCTION
Social choice theory centers around the general problem of

selecting a single outcome out of a set A of alternative out-

∗This work was supported in part by NSF grant CCR-
9988526.†This work was supported in part by NSF grant CCR-
9988526 and DIMACS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’05, June 5–8, 2005, Vancouver, British Columbia, Canada.
Copyright 2005 ACM 1-59593-049-3/05/0006 ...$5.00.

comes based on the individual preferences of a set P of play-
ers. A method for aggregating player preferences to select
one outcome is called a social choice function. In this paper
we assume that the range A is finite and that each player’s
preference is expressed by a valuation function which as-
signs to each possible outcome a real number representing
the “benefit” the player derives from that outcome. The
ensemble of player valuation functions is viewed as a valu-
ation matrix with rows indexed by players and columns by
outcomes.

A major difficulty connected with social choice functions
is that players can not be required to tell the truth about
their preferences. Since each player seeks to maximize his
own benefit, he may find it in his interest to misrepresent
his valuation function. An important approach for dealing
with this problem is to augment a given social choice func-
tion with a payment function, which assigns to each player
a (positive or negative) payment as a function of all of the
individual preferences. By carefully choosing the payment
function, one can hope to entice each player to tell the truth.
A social choice function augmented with a payment function
is called a mechanism 1 and the mechanism is said to im-
plement the social choice function. A mechanism is truthful
(or to be strategyproof or to have a dominant strategy) if
each player’s best strategy, knowing the preferences of the
others, is always to declare his own true preferences. A so-
cial choice function is truthfully implementable, or truthful
if it has a truthful implementation. (The property of truth-
ful implementability is sometimes called dominant strategy
incentive compatibility). This framework leads naturally to
the question: which social choice functions are truthful?

This question is of the following general type: given a
class of functions (here, social choice functions) and a prop-
erty that holds for some of them (here, truthfulness), “char-
acterize” the property. The definition of the property itself
provides a characterization, so what more is needed? Here
are some useful notions of characterization:

• Recognition algorithm. Give an algorithm which, given
an appropriate representation of a function in the class,
determines whether the function has the property.

• Parametric representation. Give an explicit parametrized
family of functions and show that each function in the

1The usual definition of mechanism is more general than this
(see [8] Chapter 23.C or [9]); the mechanisms we consider
here are usually called direct revelation mechanisms.
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family has the property, and that every function with
the property is in the family.

A third notion applies in the case of hereditary properties
of functions. A function g is a subfunction of function f , or
f contains g, if g is obtained by restricting the domain of
f . A property P of functions is hereditary if it is preserved
under taking subfunctions. Truthfulness is easily seen to be
hereditary.

• Sets of obstructions. For a hereditary property P , a
function g that does not have the property is an ob-
struction to the property in the sense that any function
containing g doesn’t have the property. An obstruction
is minimal if every proper subfunction has the prop-
erty. A set of obstructions is complete if every function
that does not have the property contains one of them
as a subfunction. The set of all functions that don’t
satisfy P is a complete (but trivial and uninteresting)
set of obstructions; one seeks a set of small (ideally,
minimal) obstructions.

We are not aware of any work on recognition algorithms
for the property of truthfulness, but there are significant re-
sults concerning parametric representations and obstruction
characterizations of truthfulness. It turns out that the do-
main of the function, i.e., the set of allowed valuation matri-
ces, is crucial. For functions with unrestricted domain, i.e.,
whose domain is the set of all real matrices, there are very
good characterizations of truthfulness. For general domains,
however, the picture is far from complete. Typically, the do-
mains of social choice functions are specified by a system of
constraints. For example, an order constraint requires that
one specified entry in some row be larger than another in
the same row, a range constraint places an upper or lower
bound on an entry, and a zero constraint forces an entry to
be 0. These are all examples of linear inequality constraints
on the matrix entries.

Building on work of Roberts [10], Lavi, Mu’alem and
Nisan [6] defined a condition called weak monotonicity (W-
MON). (Independently, in the context of multi-unit auc-
tions, Bikhchandani, Chatterji and Sen [3] identified the
same condition and called it nondecreasing in marginal utili-
ties (NDMU).) The definition of W-MON can be formulated
in terms of obstructions: for some specified simple set F of
functions each having domains of size 2, a function satisfies
W-MON if it contains no function from F . The functions
in F are not truthful, and therefore W-MON is a neces-
sary condition for truthfulness. Lavi, Mu’alem and Nisan
[6] showed that W-MON is also sufficient for truthfulness
for social choice functions whose domain is order-based, i.e.,
defined by order constraints and zero constraints, and Gui,
Muller and Vohra [5] extended this to other domains. The
domain constraints considered in both papers are special
cases of linear inequality constraints, and it is natural to
ask whether W-MON is sufficient for any domain defined by
such constraints. Lavi, Mu’alem and Nisan [6] conjectured
that W-MON suffices for convex domains. The main result
of this paper is an affirmative answer to this conjecture:

Theorem 1. For any social choice function having con-
vex domain and finite range, weak monotonicity is necessary
and sufficient for truthfulness.

Using the interpretation of weak monotonicity in terms
of obstructions each having domain size 2, this provides a
complete set of minimal obstructions for truthfulness within
the class of social choice functions with convex domains.

The two hypotheses on the social choice function, that
the domain is convex and that the range is finite, can not
be omitted as is shown by the examples given in section 7.

1.1 Related Work
There is a simple and natural parametrized set of truth-

ful social choice functions called affine maximizers. Roberts
[10] showed that for functions with unrestricted domain, ev-
ery truthful function is an affine maximizer, thus providing
a parametrized representation for truthful functions with
unrestricted domain. There are many known examples of
truthful functions over restricted domains that are not affine
maximizers (see [1], [2], [4], [6] and [7]). Each of these ex-
amples has a special structure and it seems plausible that
there might be some mild restrictions on the class of all so-
cial choice functions such that all truthful functions obeying
these restrictions are affine maximizers. Lavi, Mu’alem and
Nisan [6] obtained a result in this direction by showing that
for order-based domains, under certain technical assump-
tions, every truthful social choice function is “almost” an
affine maximizer.

There are a number of results about truthfulness that
can be viewed as providing obstruction characterizations, al-
though the notion of obstruction is not explicitly discussed.

For a player i, a set of valuation matrices is said to be
i-local if all of the matrices in the set are identical except for
row i. Call a social choice function i-local if its domain is i-
local and call it local if it is i-local for some i. The following
easily proved fact is used extensively in the literature:

Proposition 2. The social choice function f is truthful
if and only if every local subfunction of f is truthful.

This implies that the set of all local non-truthful functions
comprises a complete set of obstructions for truthfulness.
This set is much smaller than the set of all non-truthful
functions, but is still far from a minimal set of obstructions.

Rochet [11], Rozenshtrom [12] and Gui, Muller and Vohra
[5] identified a necessary and sufficient condition for truth-
fulness (see lemma 3 below) called the nonnegative cycle
property. This condition can be viewed as providing a min-
imal complete set of non-truthful functions. As is required
by proposition 2, each function in the set is local. Further-
more it is one-to-one. In particular its domain has size at
most the number of possible outcomes |A|.

As this complete set of obstructions consists of minimal
non-truthful functions, this provides the optimal obstruction
characterization of non-truthful functions within the class of
all social choice functions. But by restricting attention to in-
teresting subclasses of social choice functions, one may hope
to get simpler sets of obstructions for truthfulness within
that class.

The condition of weak monotonicity mentioned earlier can
be defined by a set of obstructions, each of which is a local
function of domain size exactly 2. Thus the results of Lavi,
Mu’alem and Nisan [6], and of Gui, Muller and Vohra [5]
give a very simple set of obstructions for truthfulness within
certain subclasses of social choice functions. Theorem 1 ex-
tends these results to a much larger subclass of functions.
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1.2 Weak Monotonicity and the Nonnegative
Cycle Property

By proposition 2, a function is truthful if and only if each
of its local subfunctions is truthful. Therefore, to get a set
of obstructions for truthfulness, it suffices to obtain such a
set for local functions.

The domain of an i-local function consists of matrices that
are fixed on all rows but row i. Fix such a function f and
let D ⊆ R

A be the set of allowed choices for row i. Since
f depends only on row i and row i is chosen from D, we
can view f as a function from D to A. Therefore, f is a
social choice function having one player; we refer to such a
function as a single player function.

Associated to any single player function f with domain D
we define an edge-weighted directed graph Hf whose vertex
set is the image of f . For convenience, we assume that f
is surjective and so this image is A. For each a, b ∈ A,
x ∈ f−1(a) there is an edge ex(a, b) from a to b with weight
x(a) − x(b). The weight of a set of edges is just the sum of
the weights of the edges. We say that f satisfies:

• the nonnegative cycle property if every directed cycle
has nonnegative weight.

• the nonnegative two-cycle property if every directed cy-
cle between two vertices has nonnegative weight.

We say a local function g satisfies nonnegative cycle prop-
erty/nonnegative two-cycle property if its associated single
player function f does.

The graph Hf has a possibly infinite number of edges
between any two vertices. We define Gf to be the edge-
weighted directed graph with exactly one edge from a to b,
whose weight δab is the infimum (possibly −∞) of all of the
edge weights ex(a, b) for x ∈ f−1(a). It is easy to see that Hf

has the nonnegative cycle property/nonnegative two-cycle
property if and only if Gf does. Gf is called the outcome
graph of f .

The weak monotonicity property mentioned earlier can
be defined for arbitrary social choice functions by the con-
dition that every local subfunction satisfies the nonnegative
two-cycle property. The following result was obtained by
Rochet [11] in a slightly different form and rediscovered by
Rozenshtrom [12] and Gui, Muller and Vohra [5]:

Lemma 3. A local social choice function is truthful if and
only if it has the nonnegative cycle property. Thus a social
choice function is truthful if and only if every local subfunc-
tion satisfies the nonnegative cycle property.

In light of this, theorem 1 follows from:

Theorem 4. For any surjective single player function f :
D −→ A where D is a convex subset of R

A and A is finite,
the nonnegative two-cycle property implies the nonnegative
cycle property.

This is the result we will prove.

1.3 Overview of the Proof of Theorem 4
Let D ⊆ R

A be convex and let f : D −→ A be a single
player function such that Gf has no negative two-cycles. We
want to conclude that Gf has no negative cycles. For two
vertices a, b, let δ∗ab denote the minimum weight of any path

from a to b. Clearly δ∗ab ≤ δab. Our proof shows that the
δ∗-weight of every cycle is exactly 0, from which theorem 4
follows.

There seems to be no direct way to compute δ∗ and so we
proceed indirectly. Based on geometric considerations, we
identify a subset of paths in Gf called admissible paths and
a subset of admissible paths called straight paths. We prove
that for any two outcomes a, b, there is a straight path from
a to b (lemma 8 and corollary 10), and all straight paths
from a to b have the same weight, which we denote ρab

(theorem 12). We show that ρab ≤ δab (lemma 14) and that
the ρ-weight of every cycle is 0. The key step to this proof
is showing that the ρ-weight of every directed triangle is 0
(lemma 17).

It turns out that ρ is equal to δ∗ (corollary 20), although
this equality is not needed in the proof of theorem 4.

To expand on the above summary, we give the definitions
of an admissible path and a straight path. These are some-
what technical and rely on the geometry of f . We first
observe that, without loss of generality, we can assume that
D is (topologically) closed (section 2). In section 3, for each
a ∈ A, we enlarge the set f−1(a) to a closed convex set
Da ⊆ D in such a way that for a, b ∈ A with a 
= b, Da and
Db have disjoint interiors. We define an admissible path to
be a sequence of outcomes (a1, . . . , ak) such that each of the
sets Ij = Daj ∩Daj+1 is nonempty (section 4). An admissi-
ble path is straight if there is a straight line that meets one
point from each of the sets I1, . . . , Ik−1 in order (section 5).

Finally, we mention how the hypotheses of convex domain
and finite range are used in the proof. Both hypotheses are
needed to show: (1) the existence of a straight path from a
to b for all a, b (lemma 8). (2) that the ρ-weight of a directed
triangle is 0 (lemma 17). The convex domain hypothesis is
also needed for the convexity of the sets Da (section 3). The
finite range hypothesis is also needed to reduce theorem 4 to
the case that D is closed (section 2) and to prove that every
straight path from a to b has the same δ-weight (theorem
12).

2. REDUCTION TO CLOSED DOMAIN
We first reduce the theorem to the case that D is closed.

Write DC for the closure of D. Since A is finite, DC =
∪a∈A(f−1(a))C . Thus for each v ∈ DC − D, there is an
a = a(v) ∈ A such that v ∈ (f−1(a))C . Extend f to the
function g on DC by defining g(v) = a(v) for v ∈ DC −
D and g(v) = f(v) for v ∈ D. It is easy to check that
δab(g) = δab(f) for all a, b ∈ A and therefore it suffices to
show that the nonnegative two-cycle property for g implies
the nonnegative cycle property for g.

Henceforth we assume D is convex and closed.

3. A DISSECTION OF THE DOMAIN
In this section, we construct a family of closed convex sets

{Da : a ∈ A} with disjoint interiors whose union is D and
satisfying f−1(a) ⊆ Da for each a ∈ A.

Let Ra = {v : ∀b ∈ A, v(a) − v(b) ≥ δab}. Ra is a closed
polyhedron containing f−1(a). The next proposition im-
plies that any two of these polyhedra intersect only on their
boundary.

Proposition 5. Let a, b ∈ A. If v ∈ Ra ∩Rb then v(a)−
v(b) = δab = −δba.
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Figure 1: A 2-dimensional domain with 5 outcomes.

Proof. v ∈ Ra implies v(a) − v(b) ≥ δab and v ∈ Rb

implies v(b)−v(a) ≥ δba which, by the nonnegative two-cycle
property, implies v(a) − v(b) ≤ δab. Thus v(a) − v(b) = δab

and by symmetry v(b) − v(a) = δba.

Finally, we restrict the collection of sets {Ra : a ∈ A}
to the domain D by defining Da = Ra ∩ D for each a ∈
A. Clearly, Da is closed and convex, and contains f−1(a).
Therefore

S
a∈A Da = D. Also, by proposition 5, any point

v in Da ∩Db satisfies v(a) − v(b) = δab = −δba.

4. PATHS AND D-SEQUENCES
A path of size k is a sequence −→a = (a1, . . . , ak) with each

ai ∈ A (possibly with repetition). We call −→a an (a1, ak)-
path. For a path −→a , we write |−→a | for the size of −→a . −→a is
simple if the ai’s are distinct.

For b, c ∈ A we write Pbc for the set of (b, c)-paths and
SPbc for the set of simple (b, c)-paths. The δ-weight of path−→a is defined by

δ(−→a ) =

k−1X
i=1

δaiai+1 .

A D-sequence of order k is a sequence −→u = (u0, . . . , uk)
with each ui ∈ D (possibly with repetition). We call −→u a
(u0, uk)-sequence. For a D-sequence −→u , we write ord(u) for
the order of −→u . For v, w ∈ D we write Svw for the set of
(v, w)-sequences.

A compatible pair is a pair (−→a ,−→u ) where −→a is a path
and −→u is a D-sequence satisfying ord(−→u ) = |−→a | and for
each i ∈ [k], both ui−1 and ui belong to Dai .

We write C(−→a ) for the set of D-sequences −→u that are
compatible with −→a . We say that −→a is admissible if C(−→a )
is nonempty. For −→u ∈ C(−→a ) we define

∆−→a (−→u ) =

|−→a |−1X
i=1

(ui(ai) − ui(ai+1)).

For v, w ∈ D and b, c ∈ A, we define Cvw
bc to be the set of

compatible pairs (−→a ,−→u ) such that −→a ∈ Pbc and −→u ∈ Svw.
To illustrate these definitions, figure 1 gives the dissec-

tion of a domain, a 2-dimensional plane, into five regions
Da, Db,Dc,Dd, De. D-sequence (v, w, x, y, z) is compatible
with both path (a, b, c, e) and path (a, b, d, e); D-sequence
(v, w, u, y, z) is compatible with a unique path (a, b, d, e).
D-sequence (x,w, p, y, z) is compatible with a unique path
(b, a, d, e). Hence (a, b, c, e), (a, b, d, e) and (b, a, d, e) are ad-

missible paths. However, path (a, c, d) or path (b, e) is not
admissible.

Proposition 6. For any compatible pair (−→a ,−→u ), ∆−→a (−→u ) =
δ(−→a ).

Proof. Let k = ord(−→u ) = |−→a |. By the definition of a
compatible pair, ui ∈ Dai ∩Dai+1 for i ∈ [k − 1]. ui(ai) −
ui(ai+1) = δaiai+1 from proposition 5. Therefore,

∆−→a (−→u ) =

k−1X
i=1

(ui(ai) − ui(ai+1)) =

k−1X
i=1

δaiai+1 = δ(−→a ).

Lemma 7. Let b, c ∈ A and let −→a ,−→a ′ ∈ Pbc. If C(−→a ) ∩
C(−→a ′) 
= ∅ then δ(−→a ) = δ(−→a ′).

Proof. Let −→u be a D-sequence in C(−→a ) ∩ C(−→a ′). By
proposition 6, δ(−→a ) = ∆−→a (−→u ) and δ(−→a ′) = ∆−→a ′(−→u ), it
suffices to show ∆−→a (−→u ) = ∆−→a ′(−→u ).

Let k = ord(−→u ) = |−→a | = |−→a ′|. Since

∆−→a (−→u ) =
k−1X
i=1

(ui(ai) − ui(ai+1))

= u1(a1) +

k−1X
i=2

(ui(ai) − ui−1(ai)) − uk−1(ak)

= u1(b) +

k−1X
i=2

(ui(ai) − ui−1(ai)) − uk−1(c),

∆−→a (−→u ) − ∆−→a ′(−→u )

=
k−1X
i=2

((ui(ai) − ui−1(ai)) − (ui(a
′
i) − ui−1(a′i)))

=

k−1X
i=2

((ui(ai) − ui(a
′
i)) − (ui−1(ai) − ui−1(a′i))).

Noticing both ui−1 and ui belong to Dai ∩Da′
i
, we have by

proposition 5

ui−1(ai) − ui−1(a′i) = δaia′
i

= ui(ai) − ui(a
′
i).

Hence ∆−→a (−→u ) − ∆−→a ′(−→u ) = 0.

5. LINEAR D-SEQUENCES AND STRAIGHT
PATHS

For v, w ∈ D we write vw for the (closed) line segment
joining v and w.

A D-sequence −→u of order k is linear provided that there
is a sequence of real numbers 0 = λ0 ≤ λ1 ≤ . . . ≤ λk = 1
such that ui = (1 − λi)u0 + λiuk. In particular, each ui

belongs to u0uk. For v, w ∈ D we write Lvw for the set of
linear (v, w)-sequences.

For b, c ∈ A and v, w ∈ D we write LCvw
bc for the set of

compatible pairs (−→a ,−→u ) such that −→a ∈ Pbc and −→u ∈ Lvw.
For a path −→a , we write L(−→a ) for the set of linear se-

quences compatible with −→a . We say that −→a is straight if
L(−→a ) 
= ∅.

For example, in figure 1, D-sequence (v, w, x, y, z) is lin-
ear while (v,w, u, y, z), (x,w, p, y, z), and (x, v, w, y, z) are
not. Hence path (a, b, c, e) and (a, b, d, e) are both straight.
However, path (b, a, d, e) is not straight.
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Lemma 8. Let b, c ∈ A and v ∈ Db, w ∈ Dc. There is
a simple path −→a and D-sequence −→u such that (−→a ,−→u ) ∈
LCvw

bc . Furthermore, for any such path −→a , δ(−→a ) ≤ v(b) −
v(c).

Proof. By the convexity of D, any sequence of points on
vw is a D-sequence.

If b = c, singleton path −→a = (b) and D-sequence −→u =
(v, w) are obviously compatible. δ(−→a ) = 0 = v(b) − v(c).

So assume b 
= c. If Db∩Dc∩vw 
= ∅, we pick an arbitrary
x from this set and let −→a = (b, c) ∈ SPbc, −→u = (v, x, w) ∈
Lvw. Again it is easy to check the compatibility of (−→a ,−→u ).
Since v ∈ Db, v(b) − v(c) ≥ δbc = δ(−→a ).

For the remaining case b 
= c and Db ∩Dc∩vw = ∅, notice
v 
= w otherwise v = w ∈ Db ∩Dc ∩ vw. So we can define
λx for every point x on vw to be the unique number in [0, 1]
such that x = (1 − λx)v + λxw. For convenience, we write
x ≤ y for λx ≤ λy.

Let Ia = Da ∩ vw for each a ∈ A. Since D = ∪a∈ADa, we
have vw = ∪a∈AIa. Moreover, by the convexity of Da and
vw, Ia is a (possibly trivial) closed interval.

We begin by considering the case that Ib and Ic are each
a single point, that is, Ib = {v} and Ic = {w}.

Let S be a minimal subset of A satisfying ∪s∈SIs = vw.
For each s ∈ S, Is is maximal, i.e., not contained in any
other It, for t ∈ S. In particular, the intervals {Is : s ∈
S} have all left endpoints distinct and all right endpoints
distinct and the order of the left endpoints is the same as
that of the right endpoints. Let k = |S| + 2 and index S
as a2, . . . , ak−1 in the order defined by the right endpoints.
Denote the interval Iai by [li, ri]. Thus l2 < l3 < . . . < lk−1,
r2 < r3 < . . . < rk−1 and the fact that these intervals cover
vw implies l2 = v, rk−1 = w and for all 2 ≤ i ≤ k − 2,
li+1 ≤ ri which further implies li < ri. Now we define
the path −→a = (a1, a2, . . . , ak−1, ak) with a1 = b, ak = c
and a2, a3, . . . , ak−1 as above. Define the linear D-sequence−→u = (u0, u1, . . . , uk) by u0 = u1 = v, uk = w and for
2 ≤ i ≤ k−1, ui = ri. It follows immediately that (−→a ,−→u ) ∈
LCvw

bc . Neither b nor c is in S since lb = rb and lc = rc. Thus−→a is simple.
Finally to show δ(−→a ) ≤ v(b) − v(c), we note

v(b) − v(c) = v(a1) − v(ak) =

k−1X
i=1

(v(ai) − v(ai+1))

and

δ(−→a ) = ∆−→a (−→u ) =

k−1X
i=1

(ui(ai) − ui(ai+1))

= v(a1) − v(a2) +
k−1X
i=2

(ri(ai) − ri(ai+1)).

For two outcomes d, e ∈ A, let us define fde(z) = z(d)−z(e)
for all z ∈ D. It suffices to show faiai+1(ri) ≤ faiai+1(v) for
2 ≤ i ≤ k − 1.

Fact 9. For d, e ∈ A, fde(z) is a linear function of z.
Furthermore, if x ∈ Dd and y ∈ De with x 
= y, then
fde(x) = x(d) − x(e) ≥ δde ≥ −δed ≥ −(y(e) − y(d)) =
fde(y). Therefore fde(z) is monotonically nonincreasing along

the line
←→
xy as z moves in the direction from x to y.

Applying this fact with d = ai, e = ai+1, x = li and y = ri

gives the desired conclusion. This completes the proof for
the case that Ib = {v} and Ic = {w}.

For general Ib, Ic, rb < lc otherwise Db ∩Dc ∩ vw = Ib ∩
Ic 
= ∅. Let v′ = rb and w′ = lc. Clearly we can apply the
above conclusion to v′ ∈ Db, w′ ∈ Dc and get a compatible

pair (−→a ,−→u ′) ∈ LCv′w′
bc with −→a simple and δ(−→a ) ≤ v′(b) −

v′(c). Define the linear D-sequence −→u by u0 = v, uk = w
and ui = u′i for i ∈ [k − 1]. (−→a ,−→u ) ∈ LCvw

bc is evident.
Moreover, applying the above fact with d = b, e = c, x = v
and y = w, we get v(b) − v(c) ≥ v′(b) − v′(c) ≥ δ(−→a ).

Corollary 10. For any b, c ∈ A there is a straight (b, c)-
path.

The main result of this section (theorem 12) says that for
any b, c ∈ A, every straight (b, c)-path has the same δ-weight.
To prove this, we first fix v ∈ Db and w ∈ Dc and show
(lemma 11) that every straight (b, c)-path compatible with
some linear (v, w)-sequence has the same δ-weight ρbc(v, w).
We then show in theorem 12 that ρbc(v, w) is the same for
all choices of v ∈ Db and w ∈ Dc.

Lemma 11. For b, c ∈ A, there is a function ρbc : Db ×
Dc −→ R satisfying that for any (−→a ,−→u ) ∈ LCvw

bc , δ(−→a ) =
ρbc(v, w).

Proof. Let (−→a ′,−→u ′), (−→a ′′,−→u ′′) ∈ LCvw
bc . It suffices to

show δ(−→a ′) = δ(−→a ′′). To do this we construct a linear
(v, w)-sequence −→u and paths −→a ∗,−→a ∗∗ ∈ Pbc, both compati-
ble with −→u , satisfying δ(−→a ∗) = δ(−→a ′) and δ(−→a ∗∗) = δ(−→a ′′).
Lemma 7 implies δ(−→a ∗) = δ(−→a ∗∗), which will complete the
proof.

Let |−→a ′| = ord(−→u ′) = k and |−→a ′′| = ord(−→u ′′) = l. We se-
lect −→u to be any linear (v, w)-sequence (u0, u1, . . . , ut) such
that −→u ′ and −→u ′′ are both subsequences of −→u , i.e., there
are indices 0 = i0 < i1 < · · · < ik = t and 0 = j0 <
j1 < · · · < jl = t such that −→u ′ = (ui0 , ui1 , . . . , uik ) and−→u ′′ = (uj0 , uj1 , . . . , ujl ). We now construct a (b, c)-path−→a ∗ compatible with −→u such that δ(−→a ∗) = δ(−→a ′). (An
analogous construction gives −→a ∗∗ compatible with −→u such
that δ(−→a ∗∗) = δ(−→a ′′).) This will complete the proof.−→a ∗ is defined as follows: for 1 ≤ j ≤ t, a∗j = a′r where
r is the unique index satisfying ir−1 < j ≤ ir. Since both
uir−1 = u′r−1 and uir = u′r belong to Da′

r
, uj ∈ Da′

r
for

ir−1 ≤ j ≤ ir by the convexity of Da′
r
. The compatibility of

(−→a ∗,−→u ) follows immediately. Clearly, a∗1 = a′1 = b and a∗t =
a′k = c, so −→a ∗ ∈ Pbc. Furthermore, as δa∗

j a∗
j+1

= δa′
ra′

r
= 0

for each r ∈ [k], ir−1 < j < ir,

δ(−→a ∗) =

k−1X
r=1

δa∗
ir

a∗
ir+1

=

k−1X
r=1

δa′
ra′

r+1
= δ(−→a ′).

We are now ready for the main theorem of the section:

Theorem 12. ρbc is a constant map on Db × Dc. Thus
for any b, c ∈ A, every straight (b, c)-path has the same δ-
weight.

Proof. For a path −→a , (v, w) is compatible with −→a if
there is a linear (v, w)-sequence compatible with −→a . We
write CP (−→a ) for the set of pairs (v, w) compatible with−→a . ρbc is constant on CP (−→a ) because for each (v, w) ∈
CP (−→a ), ρbc(v, w) = δ(−→a ). By lemma 8, we also haveS
−→a∈SPbc

CP (−→a ) = Db ×Dc. Since A is finite, SPbc, the set
of simple paths from b to c, is finite as well.
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Next we prove that for any path −→a , CP (−→a ) is closed.
Let ((vn, wn) : n ∈ N) be a convergent sequence in CP (−→a )

and let (v, w) be the limit. We want to show that (v, w) ∈
CP (−→a ). For each n ∈ N, since (vn, wn) ∈ CP (−→a ), there is
a linear (vn, wn)-sequence un compatible with −→a , i.e., there
are 0 = λn

0 ≤ λn
1 ≤ . . . ≤ λn

k = 1 (k = |−→a |) such that
un

j = (1 − λn
j )vn + λn

j w
n (j = 0, 1, . . . , k). Since for each

n, λn = (λn
0 , λ

n
1 , . . . , λ

n
k ) belongs to the closed bounded set

[0, 1]k+1 we can choose an infinite subset I ⊆ N such that the
sequence (λn : n ∈ I) converges. Let λ = (λ0, λ1, . . . , λk) be
the limit. Clearly 0 = λ0 ≤ λ1 ≤ · · · ≤ λk = 1.

Define the linear (v, w)-sequence −→u by uj = (1 − λj)v +
λjw (j = 0, 1, . . . , k). Then for each j ∈ {0, . . . , k}, uj is
the limit of the sequence (un

j : n ∈ I). For j > 0, each un
j

belongs to the closed set Daj , so uj ∈ Daj . Similarly, for j <
k each un

j belongs to the closed set Daj+1 , so uj ∈ Daj+1 .
Hence (−→a ,−→u ) is compatible, implying (v, w) ∈ CP (−→a ).

Now we have Db × Dc covered by finitely many closed
subsets on each of them ρbc is a constant.

Suppose for contradiction that there are (v, w), (v′, w′) ∈
Db ×Dc such that ρbc(v, w) 
= ρbc(v′, w′).

L = {((1 − λ)v + λv′, (1 − λ)w + λw′) : λ ∈ [0, 1]}
is a line segment in Db ×Dc by the convexity of Db,Dc. Let

L1 = {(x, y) ∈ L : ρbc(x, y) = ρbc(v, w)}
and L2 = L− L1. Clearly (v, w) ∈ L1, (v′, w′) ∈ L2. Let

P = {−→a ∈ SPbc : δ(−→a ) = ρbc(v, w)}.

L1 =
`S
−→a∈P CP (−→a )

´∩L, L2 =
“S
−→a∈SPbc−P CP (−→a )

”
∩L

are closed by the finiteness of P . This is a contradiction,
since it is well known (and easy to prove) that a line segment
can not be expressed as the disjoint union of two nonempty
closed sets.

Summarizing corollary 10, lemma 11 and theorem 12, we
have

Corollary 13. For any b, c ∈ A, there is a real number
ρbc with the property that (1) There is at least one straight
(b, c)-path of δ-weight ρbc and (2) Every straight (b, c)-path
has δ-weight ρbc.

6. PROOF OF THEOREM 4

Lemma 14. ρbc ≤ δbc for all b, c ∈ A.

Proof. For contradiction, suppose ρbc − δbc = ε > 0.
By the definition of δbc, there exists v ∈ f−1(b) ⊆ Db with
v(b) − v(c) < δbc + ε = ρbc. Pick an arbitrary w ∈ Dc.
By lemma 8, there is a compatible pair (−→a ,−→u ) ∈ LCvw

bc

with δ(−→a ) ≤ v(b) − v(c). Since −→a is a straight (b, c)-path,
ρbc = δ(−→a ) ≤ v(b) − v(c), leading to a contradiction.

Define another edge-weighted complete directed graph G′f
on vertex set A where the weight of arc (a, b) is ρab. Imme-
diately from lemma 14, the weight of every directed cycle in
Gf is bounded below by its weight in G′f . To prove theorem
4, it suffices to show the zero cycle property of G′f , i.e., ev-
ery directed cycle has weight zero. We begin by considering
two-cycles.

Lemma 15. ρbc + ρcb = 0 for all b, c ∈ A.

Proof. Let −→a be a straight (b, c)-path compatible with
linear sequence −→u . let −→a ′ be the reverse of −→a and −→u ′ the
reverse of −→u . Obviously, (−→a ′,−→u ′) is compatible as well and
thus −→a ′ is a straight (c, b)-path. Therefore,

ρbc + ρcb = δ(−→a ) + δ(−→a ′) =
k−1X
i=1

δaiai+1 +
k−1X
i=1

δai+1ai

=

k−1X
i=1

(δaiai+1 + δai+1ai) = 0,

where the final equality uses proposition 5.

Next, for three cycles, we first consider those compatible
with linear triples.

Lemma 16. If there are collinear points u ∈ Da, v ∈ Db,
w ∈ Dc (a, b, c ∈ A), ρab + ρbc + ρca = 0.

Proof. First, we prove for the case where v is between u
and w. From lemma 8, there are compatible pairs (−→a ′,−→u ′) ∈
LCuv

ab , (−→a ′′,−→u ′′) ∈ LCvw
bc . Let |−→a ′| = ord(−→u ′) = k and

|−→a ′′| = ord(−→u ′′) = l. We paste −→a ′ and −→a ′′ together as

−→a ′′′ = (a = a′1, a
′
2, . . . , a

′
k−1, a

′
k, a
′′
1 , . . . , a

′′
l = c),

−→u ′ and −→u ′′ as

−→u ′′′ = (u = u′0, u
′
1, . . . , u

′
k = v = u′′0 , u

′′
1 , . . . , u

′′
l = w).

Clearly (−→a ′′′,−→u ′′′) ∈ LCuw
ac and

δ(−→a ′′′) =

k−1X
i=1

δa′
ia′

i+1
+ δa′

k
a′′
1

+

l−1X
i=1

δa′′
i a′′

i+1

= δ(−→a ′) + δbb + δ(−→a ′′)
= δ(−→a ′) + δ(−→a ′′).

Therefore, ρac = δ(−→a ′′′) = δ(−→a ′) + δ(−→a ′′) = ρab + ρbc.
Moreover, ρac = −ρca by lemma 15, so we get ρab + ρbc +
ρca = 0.

Now suppose w is between u and v. By the above ar-
gument, we have ρac + ρcb + ρba = 0 and by lemma 15,
ρab + ρbc + ρca = −ρba − ρcb − ρac = 0.

The case that u is between v and w is similar.

Now we are ready for the zero three-cycle property:

Lemma 17. ρab + ρbc + ρca = 0 for all a, b, c ∈ A.

Proof. Let S = {(a, b, c) : ρab + ρbc + ρca 
= 0} and
for contradiction, suppose S 
= ∅. S is finite. For each
a ∈ A, choose va ∈ Da arbitrarily and let T be the convex
hull of {va : a ∈ A}. For each (a, b, c) ∈ S, let Rabc =
Da × Db × Dc ∩ T 3. Clearly, each Rabc is nonempty and
compact. Moreover, by lemma 16, no (u, v, w) ∈ Rabc is
collinear.

Define f : D3 → R by f(u, v, w) = |v−u|+|w−v|+|u−w|.
For (a, b, c) ∈ S, the restriction of f to the compact set Rabc

attains a minimum m(a, b, c) at some point (u, v, w) ∈ Rabc

by the continuity of f , i.e., there exists a triangle ∆uvw of
minimum perimeter within T with u ∈ Da, v ∈ Db, w ∈ Dc.

Choose (a∗, b∗, c∗) ∈ S so that m(a∗, b∗, c∗) is minimum
and let (u∗, v∗, w∗) ∈ Ra∗b∗c∗ be a triple achieving it. Pick
an arbitrary point p in the interior of ∆u∗v∗w∗. By the
convexity of domain D, there is d ∈ A such that p ∈ Dd.
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Consider triangles ∆u∗pw∗, ∆w∗pv∗ and ∆v∗pu∗. Since
each of them has perimeter less than that of ∆u∗v∗w∗ and
all three triangles are contained in T , by the minimality of
∆u∗v∗w∗, (a∗, d, c∗), (c∗, d, b∗), (b∗, d, a∗) 
∈ S. Thus

ρa∗d + ρdc∗ + ρc∗a∗ = 0,

ρc∗d + ρdb∗ + ρb∗c∗ = 0,

ρb∗d + ρda∗ + ρa∗b∗ = 0.

Summing up the three equalities,

(ρa∗d + ρdc∗ + ρc∗d + ρdb∗ + ρb∗d + ρda∗)

+(ρc∗a∗ + ρb∗c∗ + ρa∗b∗) = 0,

which yields a contradiction

ρa∗b∗ + ρb∗c∗ + ρc∗a∗ = 0.

With the zero two-cycle and three-cycle properties, the
zero cycle property of G′f is immediate. As noted earlier,
this completes the proof of theorem 4.

Theorem 18. Every directed cycle of G′f has weight zero.

Proof. Clearly, zero two-cycle and three-cycle properties
imply triangle equality ρab +ρbc = ρac for all a, b, c ∈ A. For
a directed cycle C = a1a2 . . . aka1, by inductively applying
triangle equality, we have

Pk−1
i=1 ρaiai+1 = ρa1ak . Therefore,

the weight of C is

k−1X
i=1

ρaiai+1 + ρaka1 = ρa1ak + ρaka1 = 0.

As final remarks, we note that our result implies the follow-
ing strengthenings of theorem 12:

Corollary 19. For any b, c ∈ A, every admissible (b, c)-
path has the same δ-weight ρbc.

Proof. First notice that for any b, c ∈ A, if Db ∩Dc 
= ∅,
δbc = ρbc. To see this, pick v ∈ Db ∩Dc arbitrarily. Obvi-
ously, path −→a = (b, c) is compatible with linear sequence−→u = (v, v, v) and is thus a straight (b, c)-path. Hence
ρbc = δ(−→a ) = δbc.

Now for any b, c ∈ A and any (b, c)-path −→a with C(−→a ) 
=
∅, let −→u ∈ C(−→a ). Since ui ∈ Dai ∩Dai+1 for i ∈ [|−→a | − 1],

δ(−→a ) =

|−→a |−1X
i=1

δaiai+1 =

|−→a |−1X
i=1

ρaiai+1 ,

which by theorem 18, = −ρa|−→a |a1 = ρa1a|−→a | = ρbc.

Corollary 20. For any b, c ∈ A, ρbc is equal to δ
∗
bc, the

minimum δ-weight over all (b, c)-paths.

Proof. Clearly ρbc ≥ δ∗bc by corollary 13. On the other
hand, for every (b, c)-path −→a = (b = a1, a2, . . . , ak = c), by
lemma 14,

δ(−→a ) =

k−1X
i=1

δaiai+1 ≥
k−1X
i=1

ρaiai+1 ,

which by theorem 18, = −ρaka1 = ρa1ak = ρbc. Hence ρbc ≤
δ∗bc, which completes the proof.

7. COUNTEREXAMPLES TO STRONGER
FORMS OF THEOREM 4

Theorem 4 applies to social choice functions with convex
domain and finite range. We now show that neither of these
hypotheses can be omitted. Our examples are single player
functions.

The first example illustrates that convexity can not be
omitted. We present an untruthful single player social choice
function with three outcomes a, b, c satisfying W-MON on a
path-connected but non-convex domain. The domain is the
boundary of a triangle whose vertices are x = (0, 1,−1), y =
(−1, 0, 1) and z = (1,−1, 0). x and the open line segment
zx is assigned outcome a, y and the open line segment xy
is assigned outcome b, and z and the open line segment
yz is assigned outcome c. Clearly, δab = −δba = δbc =
−δcb = δca = −δac = −1, W-MON (the nonnegative two-
cycle property) holds. Since there is a negative cycle δab +
δbc + δca = −3, by lemma 3, this is not a truthful choice
function.

We now show that the hypothesis of finite range can not
be omitted. We construct a family of single player social
choice functions each having a convex domain and an infinite
number of outcomes, and satisfying weak monotonicity but
not truthfulness.

Our examples will be specified by a positive integer n and
an n × n matrix M satisfying the following properties: (1)
M is non-singular. (2) M is positive semidefinite. (3) There
are distinct i1, i2, . . . , ik ∈ [n] satisfying

k−1X
j=1

(M(ij , ij) −M(ij , ij+1)) + (M(ik, ik) −M(ik, i1)) < 0.

Here is an example matrix with n = 3 and (i1, i2, i3) =
(1, 2, 3): 0

@
0 1 −1
−1 0 1
1 −1 0

1
A

Let e1, e2, . . . , en denote the standard basis of R
n. Let

Sn denote the convex hull of {e1, e2 . . . , en}, which is the
set of vectors in R

n with nonnegative coordinates that sum
to 1. The range of our social choice function will be the
set Sn and the domain D will be indexed by Sn, that is
D = {yλ : λ ∈ Sn}, where yλ is defined below. The function
f maps yλ to λ.

Next we specify yλ. By definition, D must be a set of
functions from Sn to R. For λ ∈ Sn, the domain element
yλ : Sn −→ R is defined by yλ(α) = λTMα. The non-
singularity of M guarantees that yλ 
= yµ for λ 
= µ ∈ Sn.
It is easy to see that D is a convex subset of the set of all
functions from Sn to R.

The outcome graph Gf is an infinite graph whose vertex
set is the outcome set A = Sn. For outcomes λ, µ ∈ A, the
edge weight δλµ is equal to

δλµ = inf{v(λ) − v(µ) : f(v) = λ}

= yλ(λ) − yλ(µ) = λTMλ− λTMµ = λTM(λ− µ).

We claim that Gf satisfies the nonnegative two-cycle prop-
erty (W-MON) but has a negative cycle (and hence is not
truthful).

For outcomes λ, µ ∈ A,

δλµ +δµλ = λTM(λ−µ)+µTM(µ−λ) = (λ−µ)TM(λ−µ),
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which is nonnegative since M is positive semidefinite. Hence
the nonnegative two-cycle property holds. Next we show
that Gf has a negative cycle. Let i1, i2, . . . , ik be a se-
quence of indices satisfying property 3 of M . We claim
ei1ei2 . . . eikei1 is a negative cycle. Since

δeiej = eT
i M(ei − ej) = M(i, i) −M(i, j)

for any i, j ∈ [k], the weight of the cycle

k−1X
j=1

δeij
eij+1

+ δeik
ei1

=

k−1X
j=1

(M(ij , ij) −M(ij , ij+1)) + (M(ik, ik) −M(ik, i1)) < 0,

which completes the proof.
Finally, we point out that the third property imposed on

the matrix M has the following interpretation. Let R(M) =
{r1, r2, . . . , rn} be the set of row vectors of M and let hM be
the single player social choice function with domain R(M)
and range {1, 2, . . . , n} mapping ri to i. Property 3 is equiv-
alent to the condition that the outcome graph GhM has a
negative cycle. By lemma 3, this is equivalent to the condi-
tion that hM is untruthful.

8. FUTURE WORK
As stated in the introduction, the goal underlying the

work in this paper is to obtain useful and general character-
izations of truthfulness.

Let us say that a set D of P × A real valuation matrices
is a WM-domain if any social choice function on D satisfy-
ing weak monotonicity is truthful. In this paper, we showed
that for finite A, any convex D is a WM-domain. Typically,
the domains of social choice functions considered in mecha-
nism design are convex, but there are interesting examples
with non-convex domains, e.g., combinatorial auctions with
unknown single-minded bidders. It is intriguing to find the
most general conditions under which a set D of real matri-
ces is a WM-domain. We believe that convexity is the main
part of the story, i.e., a WM-domain is, after excluding some
exceptional cases, ”essentially” a convex set.

Turning to parametric representations, let us say a set
D of P × A matrices is an AM-domain if any truthful so-
cial choice function with domain D is an affine maximizer.
Roberts’ theorem says that the unrestricted domain is an
AM-domain. What are the most general conditions under
which a set D of real matrices is an AM-domain?
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