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ABSTRACT
We study the question of how to easily recognize whether a social
choice function f from an abstract type space to a set of outcomes is
truthful, i.e. implementable by a truthful mechanism. In particular,
if the restriction of f to every “simple” subset of the type space
is truthful, does it imply that f is truthful? Saks and Yu proved
one such theorem: when the set of outcomes is finite and the type
space is convex, a function f is truthful if its restriction to every 2-
element subset of the type space is truthful, a condition called weak
monotonicity. This characterization fails for infinite outcome sets.

We provide a local-to-global characterization theorem for any
set of outcomes (including infinite sets) and any convex space of
types (including infinite-dimensional ones): a function f is truthful
if its restriction to every sufficiently small 2-D neighborhood about
each point is truthful. More precisely, f is truthful if and only if it
satisfies local weak monotonicity and is vortex-free, meaning that
the loop integral of f over every sufficiently small triangle van-
ishes. Our results apply equally well to multiple solution concepts,
including dominant strategies, Nash and Bayes-Nash equilibrium,
and to both deterministic and randomized mechanisms. When the
type space is not convex, we show that f is truthful if and only if
it extends to a truthful function on the convex hull of the original
type space.

We use our characterization theorem to give a simple alternate
derivation of the Saks-Yu theorem. Generalizing this, we give a
sufficient condition for constructing a truthful function by “stitch-
ing together” truthful subfunctions on different subsets of the do-
main.
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1. INTRODUCTION
Mechanism design is a branch of social choice theory that seeks

to implement social choice functions by pairing them with pay-
ments that induce players to report their preferences truthfully. An
important question is how to easily recognize whether a particu-
lar social choice function f is truthful, i.e., whether or not there
exists a payment scheme that can be paired with it to produce a
truthful mechanism, without actually specifying the payments ex-
plicitly. The main goal of this paper is to give a broadly applicable
characterization result that we hope will make it much easier for
researchers to design truthful mechanisms for players with multi-
dimensional types.

What should we look for in such a characterization? We want
necessary and sufficient conditions for f to be truthful, and we want
these conditions to be easy to check. In many cases, especially
those of most interest to computer scientists, f is defined implicitly
via an algorithm used to compute it. Understanding the behavior of
f then entails understanding how the decisions in the algorithm are
affected by changing the types reported by the players. Typically,
it is much easier to analyze how an algorithm reacts to small, local
perturbations of an input than to arbitrary changes. For instance,
if the algorithm involves solving a linear program, then restricting
ourselves to small perturbations allows us to do sensitivity analysis
based on dual variables. Therefore, it would be highly desirable
to have a local-to-global characterization result that allows us to
check some conditions on arbitrarily small neighborhoods about
each point in the type space, and conclude that f is truthful on the
entire type space.1 Moreover, it would be nice if these neighbor-
hoods had further structure that made them even simpler, such as
being low-dimensional.

Saks and Yu [15] make progress in this direction. Their result
applies if there are finitely many outcomes and the type space is
convex, in which case f is truthful as long as its restriction to ev-
ery 2-element subset of the type space is truthful. This can be
restated as a condition called weak monotonicity (WMON). It is
easy to extend the Saks-Yu characterization to require only local
WMON, i.e., it is sufficient to verify that WMON holds merely in
some neighborhood of each point (Theorem 4.1). This gives the
desired local-to-global characterization. This characterization can
1 To put the question in more precise terms, let us say that the germ
of f at x is truthful if there exists a truthful social choice function
f such that f = f on an open neighborhood of x. If the germ of f
is truthful at every point, does it follow that f itself is truthful? We
use the word “germ” here as it is used in sheaf theory. This also
explains the pun in the title of this paper.



also be viewed as saying that f is truthful iff its restriction to ev-
ery 1-D affine subspace of types is truthful. However, their result
fails if there are infinitely many outcomes — a situation which is
quite prevalent in mechanism design, e.g. problems that involve
fractionally allocating divisible resources, or designing truthful-in-
expectation mechanisms by extending a finite outcome set to the
simplex of lotteries over those outcomes.

Statement of main results. Our main result (Theorem 3.1) applies
to any arbitrary set O of outcomes (including infinite sets) pro-
vided the type space T is still convex (although it could be infinite-
dimensional). In this case, truthfulness of f is equivalent to local
WMON plus an additional property we call vortex-freeness. This
condition says that for every point x in the type space, the loop in-
tegral of f is zero around every sufficiently small triangle with one
corner at x. Thus, while truthfulness in all 1-D affine subspaces
is sufficient when the number of outcomes is finite, truthfulness in
2-D affine planes is sufficient when the number of outcomes is in-
finite. To demonstrate the power of our characterization theorem,
we use it in Section 4 to easily derive the Saks-Yu theorem.

One potentially powerful tool that has been largely missing from
mechanism design is an understanding of how one can combine
multiple truthful allocations together such that the result is truthful.
For example when an allocation function is computed by a program
containing branch points, it may be the case that the for any partic-
ular sequence of branch outcomes, the resulting function is truth-
ful; in other words, the type space can be decomposed into finitely
many subsets (defined by the outcomes of the branch points) with
a truthful allocation function on each. One then wishes to know
whether the allocation function obtained by “stitching together”
these subfunctions is truthful. In Section 5 we apply our charac-
terization theorem to show this happens whenever WMON holds
along the boundaries between pieces of the decomposition.

Since our characterization theorem holds only if T is convex,
we complete the picture by considering what happens if it is not.
In this case, Theorem 6.1 shows that f is truthful on T iff it can be
extended to a truthful function on T ], the convex hull of T .

Extensions. Since WMON can be phrased as the absence of nega-
tive 2-cycles in a certain graph associated to f , we define MON(k)
to be the absence of negative cycles of length k or less in the same
graph, and cycle monotonicity (CMON) to be the absence of all
negative cycles. In the Saks-Yu setting, truthfulness is equivalent
to WMON, while in general, it is equivalent to CMON, by a theo-
rem of Rochet (Theorem [14]). Thus, it is tempting to conjecture
that, either in general or in some intermediate setting, there exists
some k such that MON(k) is equivalent to truthfulness. Since The-
orem 3.1 shows that loop integrals are important, it seems most
logical to look at type spaces that are path-connected. In Section 7
we give examples of functions on path-connected domains that re-
fute this conjecture: they satisfy MON(k) but not MON(k + 1).
These examples are based on rotations in R2.

Solution concepts. So far, we have been deliberately vague about
the game-theoretic solution concept we are using. This is because
our characterization theorem applies equally well to each of the
most common solution concepts in mechanism design: dominant
strategies, Nash and Bayes-Nash equilibrium (with interdependent
but independently distributed types). In all these cases, determin-
ing whether a mechanism is truthful boils down to analyzing mech-
anisms involving just a single player. For dominant strategies, bid-
ding his true type must be each player’s best strategy regardless of
the types declared by the other players. Thus, every vector of types
declared by the other players presents a single-player mechanism
to this player. The social choice function f is truthful in domi-

nant strategies iff each such single-player mechanism it induces is
truthful.

For Nash equilibrium, we must consider the single-player mech-
anism induced when all other players bid truthfully. But since each
player’s true type can be anything in the type space, we must an-
alyze the same induced single-player mechanisms as in dominant
strategies.

For Bayes-Nash equilibrium, a player’s bid and the distribution
of the other players’ types induces randomizations over the pure
outcomes. The outcome space faced in the single-player mech-
anism is precisely this set of lotteries. If the players’ valuations
are interdependent (i.e., one player’s valuation for a given outcome
depends on the actual types of other players), then from the view-
point of any one player, the mechanism combined with the ran-
dom process of sampling the other players’ types, can be regarded
together as a single-player mechanism in which the outcomes are
tuples consisting of an outcome of the original mechanism design
problem together with a vector of the other players’ types. This ex-
panded outcome space will typically be infinite, corresponding to
an expanded type space of infinite dimension. Similarly, we han-
dle randomized mechanisms by considering the outcome space to
include lotteries over the pure outcomes.

In light of this discussion, from now on we focus only on single-
player mechanisms.

Conventions. As is common in mechanism design, we work in
the setting of quasi-linear utility functions, which means that the
player’s utility is the sum of his intrinsic valuation for the outcome
and the monetary payment he receives. The player’s type is simply
his valuation function from outcomes to the reals. Thus, T ⊆ RO .
When we assume convexity of the type space T , we mean convex-
ity in the linear space of all functions over O. That is, for every
pair of types x0,x1 ∈ T and every λ ∈ [0, 1] there exists a type
xλ ∈ T satisfying xλ(a) = (1−λ)x0(a)+λx1(a) for all a ∈ O.

To make our exposition more accessible and intuitive, we have
written the majority of the paper such that the reader may assume a
more familiar model — that T and O are both subsets of Rn, and
x(a) = x · a, where x ∈ T and a ∈ O. In this case, convexity
of the type space is the same as geometric convexity in Rn. If O
is finite, then we can take n = |O|, O = {e1, . . . , en}, and xi is
the valuation for outcome i. If the outcome function is randomized
and ai is the probability of selecting outcome i, then x · a is the
player’s expected valuation of the outcome. Alternatively, if the
n dimensions correspond n different goods, ai is the amount of
good i that the player receives, xi is his value per unit of that good,
and the values are additive, then x · a is his value for the bundle
a. While we focus on this model for its comfort and familiarity,
our characterization theorem holds for the more abstract (possibly
infinite-dimensional) setting described above. In Remark 3.1 we
explain the syntactic changes in our proof that make it valid for the
more general setting.

1.1 Related work
The problem of characterizing truthful social choice functions

has been studied for many years for various domains of types. The
most universal positive result, due to Vickrey [17], Clarke [4] and
Groves [5], says that for any T and O, the function f that maxi-
mizes the sum of the players’ valuations is truthful. This is the cel-
ebrated VCG mechanism. Roberts [13] showed that if 3 ≤ |O| =
n < ∞ and T = Rn for each player, then weighted affine maxi-
mizers (i.e., simple variations of the VCG mechanism) are the only
truthful functions. Thus, for finite sets of more than two outcomes
and unrestricted types, a mechanism is truthful iff it is weighted
VCG. Thus, the interesting cases are when either |O| =∞ or T is



restricted in some way.
When the types and outcomes are both 1-dimensional and satisfy

the Spence-Mirrlees single-crossing condition, f is truthful iff it is
monotone. This result is implicit in the work of Mirrlees [8] and
Spence [16]. Note that such type spaces are not necessarily convex
in function space. For the special case of dot-product valuations,
this result was made explicit by Myerson in the setting of auction
design [12], then later rediscovered by Archer and Tardos in the
context of discrete optimization [2].

In multi-dimensional type spaces, WMON is essentially the 1-D
monotoncity condition applied to 1-D affine subspaces. Bikchan-
dani et al. prove that WMON is equivalent to truthfulness on a
variety of domains [3], and Gui, Müller, and Vohra extend this re-
sult to more domains [6]. All of these type spaces can be described
as polyhedra in Rn, where n = |O|. Saks and Yu [15] generalize
this result to cover all convex domains in Rn. Monderer gives an
alternate inductive proof of the Saks-Yu theorem [9]. Yet another
simple proof of the Saks-Yu theorem is given by Vohra in [18]; this
proof generalizes to show that even in the infinite-outcome case, an
allocation function on a convex domain is truthful if its restriction
to every subset of the type space with at most three extreme points
is truthful.

McAfee and McMillan studied the case in which the type space
and outcome space lie in Rn, and the utilities are not necessarily
quasi-linear but rather any twice-differentiable function of the type,
allocation, and payment [7]. When specialized to the quasi-linear
case with dot-product valuations, their result says that a mechanism
(f, p) is truthful iff the matrix f ′ (the derivative of f ) is positive
semidefinite and the consumer surplus function x · f(x) + p(x)
is given by a line integral of f starting from a fixed basepoint x0,
plus any fixed additive constant.2 In particular, a payment func-
tion making (f, p) truthful exists only if the line integral is path-
independent, but they do not mention the conditions under which
this is the case. It turns out that this is the case iff f ′ is symmetric.
Being symmetric is equivalent to f having zero exterior derivative,
which for differentiable functions is equivalent to vortex-freeness
(by Stokes’s theorem). It is easy to see that for differentiable f ,
f ′ is positive semidefinite iff f satisfies WMON. Thus, the two
conditions of our Theorem 3.1 map directly to the two conditions
in (our modified version of) the McAfee-McMillan theorem. In-
deed, trying to understand the relationship between this theorem
and Rochet’s CMON characterization was a jumping-off point for
our research.

Any allocation function computed via an algorithm containing
a branching point is almost guaranteed to be non-smooth. Hence,
the McAfee-McMillan theorem is inadequate for most problems of
interest to computer scientists. Our characterization theorem fills
that void since it applies even to non-continuous f . In fact, our
“truthful stitching” theorem (Theorem 5.1) directly applies to the
case of algorithms containing branching points which result in non-
smooth but piecewise-truthful allocation functions.

Müller, Perea, and Wolf study truthfulness in finite-dimensional
type spaces under Bayes-Nash equilibrium [10]. They allow inter-
dependent valuations but assume independently distributed types
(as we do). In this setting, they prove some of the results we needed
along the way to our characterization theorem (although we devel-
oped our results before learning of theirs). Translating their re-
sults to our terminology, they show that an allocation function f
is truthful iff it satisfies WMON and its line integrals are path-
independent, provided the type space is convex. However, their

2For readers trying to replicate our translation of this result, we note
that it involves integration by parts, and reconstructing potentials
using line integrals of their gradients.

result does not feature the main selling point of our chacterization,
which is that ours depends only on local properties of f , whereas
the path-independence condition is a global property of f that is
usually much more difficult to check. Our approach offers fur-
ther benefits. Namely, by abstracting to infinite-dimensional type
spaces, we can treat the Bayes-Nash and dominant strategy solution
concepts using a unified framework. This crystalizes the geometric
ideas underlying the argument, while substantially generalizing it,
simplifying notation, and making it (we hope) more accessible.

2. PRELIMINARIES
We specified our conventions regarding outcome sets and type

spaces in Section 1. We will sometimes write the agent’s valuation
x(a) in the alternate form v(x,a).

An allocation function is a function f : T → O. A single-
player mechanism is a pair consisting of an allocation function f
and a payment function p : T → R. The semantics behind this
notation are that the player knows his type x but reports a (possi-
bly different) type y to the mechanism, whereupon the mechanism
selects the outcome f(y) and gives the player a monetary payment
of p(y). The mechanism is truthful if the agent can never improve
his utility (valuation plus payment) by lying about his type. In
other words, truthfulness is equivalent to the statement that for all
x,y ∈ T ,

v(x, f(x)) + p(x) ≥ v(x, f(y)) + p(y). (1)

An allocation function f is truthful (sometimes called rationaliz-
able or incentive-compatible) if there exists a payment function p
such that the mechanism (f, p) is truthful. When a player of type x
bids truthfully, his resulting utility is called the consumer surplus,
σ(x) = v(x, f(x)) + p(x). The following well-known character-
ization of truthfulness follows directly from (1).

Proposition 2.1. If T is convex, then the mechanism (f, p) is truth-
ful iff the consumer surplus function σ is convex and f(x) is a sub-
gradient of σ at x, for each x ∈ T .

The following characterization of truthful allocation functions f
is due to Rochet [14].

Definition 2.1. An allocation function f : T → O satisfies cyclic
monotonicity (CMON) if for every sequence of types x1, . . . ,xk
(with indices taken mod k) it holds that

kX
i=0

v(xi+1, f(xi+1))− v(xi, f(xi+1)) ≥ 0. (2)

A sequence x0,x1, . . . ,xk = x0 which violates (2) is called a
negative k-cycle.

Theorem 2.2 (Rochet). An allocation function f : T → O is
truthful if and only if it satisfies CMON.

For completeness, and to give the reader an appreciation for how
it relates to the ideas behind our results, we include what is essen-
tially Rochet’s original proof of Theorem 2.2, but using some of
the network language of Gui, Müller and Vohra [6].
Proof of Theorem 2.2: If the mechanism (f, p) is truthful, then
by (1), v(xi, f(xi))+p(xi) ≥ v(xi, f(xi+1))+p(xi+1) for each
i. Summing over i yields (2), so f satisfies CMON.

Conversely, suppose f satisfies CMON. For any two types x,y ∈
T define `(x,y) to be the infimum of the lengths of all finite paths
from x to y in GP (f). Note that the set of all such path lengths
in bounded below by −wP (y,x), as otherwise there would be a



negative-weight cycle. Hence `(x,y) is a well-defined real num-
ber. Now fix any type x0 and define a payment function by p(x) =
`(x0,x). Observe that

p(x) ≤ p(y) + wP (y,x) = p(y) + v(y, f(y))− v(y, f(x)),

and the assertion that (f, p) is truthful follows by rearranging terms.

Note that after rearranging terms, we may rewrite (2) as

kX
i=1

v(xi, f(xi))− v(xi, f(xi+1)) ≥ 0. (3)

One may define a directed graph with (possibly infinite) vertex set
T and with edge weights defined using the summands in either (2)
or (3). When the weight of edge x→ y is v(y, f(y))−v(x, f(y))
we refer to this as the S-weight wS(x,y) and denote the graph
by GS(f). When the weight of edge x → y is v(x, f(x)) −
v(x, f(y)) we refer to this as the P-weight wP (x,y) and denote
the graph by GP (f). The S and P are mnemonics that we mo-
tivate below. Note that CMON is equivalent to the assertion that
GP (f) contains no negative-weight cycles or, equivalently, that
GS(f) contains no negative-weight cycles. Also note that when
T ,O ⊆ Rn then the P-weights and S-weights are given by the
formulas

wS(x,y) = (y − x) · f(y) (4)
wP (x,y) = x · (f(x)− f(y)). (5)

The description of CMON in terms of negative cycles in GP (f)
is due to Gui, Müller and Vohra. It allows for a very nice inter-
pretation of the payments as being dual weights in a shortest path
problem, since the dual feasibiliy constraint on edge x → y boils
down to (1) [6]. We term (4) the P-weight precisely because of
this connection, where P stands for Payment. We named (5) the
S-weight because shortest path labels in GS(f) correspond to the
consumer Surplus σ.

3. THE CHARACTERIZATION THEOREM
We now embark on the proof of our main characterization theo-

rem. To understand both where our proof is going and the creative
process that led to it, it is helpful to draw a connection between
Rochet’s CMON condition and loop integrals. There are two ways
to write CMON, in terms of S-weights (5), or in terms of P-weights
(4). In recent papers, the latter has been more popular because it
ties more directly into the beautfiul Gui-Müller-Vohra network in-
terpretation [6], allowing us to view the payment function in terms
of linear programming duality. However, we prefer the former, be-
cause S-weights are more obviously related to line integrals. In
particular, a cycle C in GS(f) corresponds to a polygonal loop Γ
in T , connecting each type in the cycle to the next. If we were to
take the right-hand Riemann sum to approximate the loop integral
of f over Γ, using the very rough partition consisting of just the
types in C, the terms would correspond exactly to the S-weights
in C. But notice that we can refine this partition of Γ as much as
we like, so CMON implies that every loop integral is non-negative,
which in turn implies that every loop integral is zero (since revers-
ing the loop negates its integral). Conversely, if we can show that
every polygonal loop integral of f is zero and the Riemann sums
converge from above, then f satisfies CMON. The first condition
will follow from vortex-freeness, whereas the second condition fol-
lows from WMON.

Remark 3.1. All of the statements and proofs in this section hold
in the setting of abstract outcome sets and infinite-dimensional type

spaces, provided the notation is interpreted correctly. However, it
is conceptually helpful to assume for this discussion that T ,O ⊆
Rn. For example, this ensures that dot products have a well-defined
meaning. The next two paragraphs explain how to re-interpret our
notation, definitions, and proofs in the infinite-dimensional setting.
The reader is advised to skip these and assume T ,O ⊆ Rn on a
first pass through this section.

A dot product such as x · a should be interpreted to mean the
valuation x(a) (equivalently, v(x,a)). This also applies to ex-
pressions that need to be expanded using the distributive law, e.g.,
(x− y) · (a− b) denotes x(a)− x(b)− y(a) + y(b).

The interpretation of line integrals in the infinite-dimensional
case is as follows. Since every line integral considered in this sec-
tion is defined over a polygonal path consisting of one or more
line segments in T , it suffices to define the line integral over a sin-
gle line segment. If f is a function from T to O, x0,x1 are any
two types, L is the line segment from x0 to x1, and xt = (1 −
t)x0 + tx1, then

R
L
f(x) ·dx denotes the integral

R 1

0
x1(f(xt))−

x0(f(xt)) dt.

With this in mind, we present the following definitions.

Definition 3.1. An allocation function f : T → O satisfies local
weak monotonicity (local WMON) if for every x ∈ T and every
line L through x, there exists an open neighborhood U about x
such that

(x− y) · (f(x)− f(y)) ≥ 0

for all y ∈ L ∩ U.

Definition 3.2. An allocation function f : T → O is locally
path-integrable if T has an open covering such that for every line
segment L lying entirely in a single piece of the open covering, the
line integral

R
L
f(x) · dx is well-defined and finite.

Definition 3.3. A locally path-integrable allocation function f :
T → O is vortex-free if for every x ∈ T and every 2-dimensional
plane Π through x, there exists an open neighborhood U about x
such that the path integral

H
4 f(x) · dx vanishes for every triangle

4 in Π ∩ U with one corner at x.

Remark 3.2. The definition of vortex-free implies a seemingly
stronger condition: for every x ∈ T and every 2-dimensional plane
Π through it, there exists an open neighborhood U about x such
that the path integral

H
4 f(x) · dx vanishes for every triangle 4

in Π ∩ U . To see this, take U as in Definition 3.3, let x0 = x
and let x1,x2,x3 be the corners of 4. Now for 0 ≤ i, j ≤ 3,
define Lij to be a line segment directed from xi to xj and let
Wij =

R
Lij

f(x) ·dx. From the definition of vortex-free, we know

that the loop integral
H
4′ f(x) · dx vanishes when4′ is a triangle

contained in Π ∩ U with one corner at x0. Thus,

W01 +W12 −W02 = 0

W02 +W23 −W03 = 0

W03 +W31 −W01 = 0,

where we used the fact that reversing a path negates its line integral.
Summing these three equations, we obtain

H
4 f(x) · dx = 0, as

desired.

We can now state our characterization theorem.

Theorem 3.1. Let T be a convex type space and let f : T → O
be a locally path-integrable allocation function. Then f is truthful
if and only if it is vortex-free and satisfies local WMON.



Let us compare this theorem to the McAfee-McMillan result we
discussed in Section 1.1. There, in the differentiable case, f is
truthful if and only if its derivative matrix f ′ is symmetric and pos-
itive semidefinite. The symmetry condition is equivalent to f being
the gradient of some function, which turns out to be the consumer
surplus function σ.3 Given this, the positive-semidefiniteness of f ′

is equivalent to convexity of σ. Hence, these conditions together
are necessary and sufficient for truthfulness by Proposition 2.1. It
turns out that the important thing about f ′ being symmetric is that
it guarantees the path integral

H
Γ
f(x) · dx is equal to zero. Thus,

it should be clear that the positive semidefiniteness of f ′ plays an
analogous role to local WMON in Theorem 3.1, while the symme-
try of f ′ is analogous to vortex-freeness.

Before proving Theorem 3.1, it will be useful to establish a few
properties that follow from Definitions 3.1 and 3.3.

Lemma 3.2. An allocation function f : T → O satisfies WMON
iff for every x ∈ T and every vector h, the function g(t) = f(x +
th) · h is increasing on the subset of R on which it is defined.
In particular, if T is convex and f satisfies local WMON, then it
satisfies WMON.

Proof: Let x,h, g be as in the lemma, and let s < t be any two
real numbers such that the vectors y = x+ sh, z = x+ th belong
to T . From the equation

g(t)− g(s) = (f(z)− f(y)) · h = (f(z)− f(y)) · (z− y)

t− s
we see that f satisfies WMON if and only if g(t) > g(s) for all
such g, s, t. The final statement in the lemma follows because any
function which is defined on an interval and is locally increasing at
every point is increasing on the whole interval.

Lemma 3.3. Let g : [0, 1]→ R be an increasing function, and let
0 = x0 < x1 < · · · < xN = 1 and 0 = y0 < y1 < · · · < yM =
1 be two increasing sequences such that (yj)

M
j=0 refines (xi)

N
i=0,

i.e., (xi) is a subsequence of (yj). Then the Riemann sums of g
with respect to (xi), (yj) satisfy the inequality

NX
i=1

(xi − xi−1)g(xi) ≥
MX
j=1

(yj − yj−1)g(yj). (6)

Proof: It suffices to prove the lemma in the case M = N + 1; the
general case then follows by induction. So assume that for some r
we have xr−2 = yr−1 and xr = yr . We will use the notation ∆x

i

(resp. ∆y
i ) to denote xi − xi−1 (resp. yi − yi−1). In the sum on

the left side of (6) the i = q term on the left side matches the j = q
term on the right side for q ≤ r and it matches the j = q + 1 term
on the right side for q ≥ r + 2. Hence

NX
i=1

∆x
i g(xi)−

MX
j=1

∆y
j g(yj)

= ∆x
rg(xr)−∆y

rg(yr)−∆y
r−1g(yr−1)

= (yr − yr−2)g(yr)−∆y
rg(yr)−∆y

r−1g(yr−1)

= ∆y
r−1(g(yr)− g(yr−1)) ≥ 0.

Corollary 3.4. If f : T → O is an allocation function that sat-
isfies WMON, and L is a line segment in T with endpoints x,y,
then

(y − x) · f(y) ≥
Z
L

f(z) · dz (7)

3The differentiability assumptions rule out σ having multiple sub-
gradients.

Proof: We will apply Lemma 3.3 to the function g(t) = f(x +
t(y − x)) · (y − x), which is increasing by Lemma 3.2. For non-
negative integers k and i ≤ 2k, let xki = i/2k. Note that for each
k, 0 = xk0 < xk1 < · · · < xk2k = 1, and that (xk+1

j )2k+1

j=0 refines

(xki )2k

i=0. By Lemma 3.3, the sequence of Riemann sums

Sk =

2kX
i=1

(xki − xki−1)g(xki )

is decreasing. Moreover, by the definition of the Riemann integral,R
L
f(z) · dz = limk→∞ Sk. Hence

(y − x) · f(y) = S0 ≥ lim
k→∞

Sk =

Z
L

f(z) · dz.

Definition 3.4. Suppose oriented triangles 41 = x0 → x1 →
x2 ←↩ and42 = y0 → y1 → y2 ←↩ are co-planar. Then we say
41 and 42 are oriented consistently if there exists a matrix A =„
a b
c d

«
with positive determinant such that [(y1 − y0); (y0 −

y2)]A = [(x1 − x0); (x0 − x2)].

This definition captures the intuitive notion that41 and42 are
both oriented clockwise or both counterclockwise.

Lemma 3.5. If f : T → O is vortex-free, then for every triangle
4 contained in T , the path integral

H
4 f(x) · dx vanishes.

Proof: For clarity, in this proof we will distinguish between tri-
angles (sets consisting of three points and the three line segments
joining them) and 2-simplices (the convex hull of three points). We
will use the following geometric fact: if σ1, σ2 are 2-simplices with
disjoint interiors which share a side in common, and the boundaries
of σ1, σ2 are triangles 41,42 oriented consistently. then 41 and
42 traverse the common side of σ1, σ2 in opposite directions.

Let V be the 2-simplex consisting of 4 and its interior. The
definition of vortex-free (combined with Remark 3.2) implies that
V has an open covering {Ui | i ∈ I} such that for every i and
every triangle 4′ contained in Ui, the integral

H
4′ f(x) · dx van-

ishes. Because V is compact, we can apply the Lebesgue number
lemma [11] to deduce that there is a δ > 0 such that every set of
diameter less than δ is contained in one of the sets Ui. We can sub-
divide V into 2-simplices σ1, σ2, . . . , σN of diameter less than δ,
and let4i be a closed curve tracing out the boundary of σi; assume
every4i is oriented consistently with a single, fixed orientation of
T . If we write

0 =
NX
i=1

I
4i
f(x) · dx

and break each loop integral on the right side into a sum of three
integrals along line segments forming the boundary of σi, then each
such line segment appears either

1. twice with opposite orientations, if it is on the common bound-
ary between two simplices σi, σj ,

2. once, if it is a subset of T .
Terms of the first type cancel each other out, while those of the
second type sum up to

H
4 f(x) · dx. Thus

H
4 f(x) · dx = 0, as

claimed.

Now, for the main proof.
Proof of Theorem 3.1: First assume f is truthful. Hence it sat-
isfies CMON. This immediately implies WMON and therefore, a



fortiori, local WMON. If L is any line segment contained in T and
x,y are its endpoints, then the function g(t) = f(x + t(y − x)) ·
(y − x) is increasing on [0, 1], hence it is Riemann integrable on
that interval. This implies that f is locally path-integrable. To see
that f is vortex-free, we argue by contradiction, i.e., we will show
that if f is not vortex-free then it fails to satisfy CMON. Assuming
f is not vortex-free, there is a triangle4 such that

H
4 f · dx 6= 0.

Reversing the orientation of 4 if necessary, we may assume thatH
4 f · dx < 0. Since the integral is the limit of Riemann sums,

there must be a negative Riemann sum, i.e., a sequence of points
x1, . . . ,xN in4 such that

NX
i=i

f(xi) · (xi − xi−1) < 0.

This sequence constitutes a negative N -cycle.
Conversely, suppose f is vortex-free and satisfies local WMON.

We will prove that f satisfies CMON, from which it follows im-
mediately that f is truthful. For any sequence of type vectors
x0,x1, . . . ,xN = x0, let {Lij : 0 ≤ i < j ≤ N} denote the set
of paths Lij(t) = (1 − t)xi + txj , i.e., Lij traces out a line seg-
ment from xi to xj . If P is the polygonal closed curve formed by
concatenating L01, L12, . . . , L(N−1)N , then Corollary 3.4 impliesI

P

f(x) · dx =

NX
i=1

Z
L(i−1)i

f(x) · dx

≤
NX
i=1

f(xi) · (xi − xi−1), (8)

so to prove CMON (i.e., that the sum on the right side of (8) is non-
negative) it suffices to prove that

H
P
f(x) · dx = 0. For 0 ≤ i <

j ≤ N let

Wij =

Z
Lij

f(x) · dx, Wji = −Wij .

For i = 1, 2, . . . , N − 2 let Ti denote the triangle formed from
L0i, Li(i+1), L(i+1)0. Lemma 3.5 implies that

0 =

I
Ti

f(x) · dx = W0i +Wi(i+1) +W(i+1)0. (9)

Interpreting the subscripts mod N and summing (9) as i runs from
1 to N − 2 yields

0 =

N−2X
i=1

(W0i +Wi(i+1) +W(i+1)0)

=

NX
i=1

Wi(i+1) +

N−2X
i=2

(W0i +Wi0)

=

NX
i=1

Wi(i+1) =

I
P

f(x) · dx.

The following two corollaries are now trivial.

Corollary 3.6. If T is convex and the restriction of f to Π ∩ T is
truthful for every 2-dimensional affine subspace Π, then f is truth-
ful.

Proof: The definitions of local WMON and vortex-free depend
only on the restrictions of f to sets of the form Π ∩ T where Π
is an affine subspace of dimension at most 2. (In the case of local

WMON, in fact, it suffices to consider 1-dimensional affine sub-
spaces Π.)

Corollary 3.7. If T is convex and every x ∈ T has an open neigh-
borhood U such that the restriction to f to U is truthful, then f is
truthful.

Proof: The definitions of local WMON and vortex-free depend
only on the restrictions of f to sufficiently small neighborhoods of
every point in T .

4. APPLICATION TO FINITE |O|
In this section, we use Theorem 3.1 to give an easy new proof

of the Saks-Yu theorem [15]. As such, each of our lemmas will
include the implicit blanket hypothesis that |O| < ∞, f satisfies
WMON, and T is convex. Their paper states the theorem in terms
of WMON rather than local WMON; the equivalence of the version
stated here follows easily, e.g., using Lemma 3.2.

Theorem 4.1 (Saks-Yu [15]). If |O| is finite, T is convex, and f
satisfies local WMON, then f is truthful.

We begin by exploring the geometric structure of f and some
simple properties of its line integrals. For a ∈ O, let Da =
f−1(a) = {x ∈ T : f(x) = a}. For any set S, let S̄ and S◦

denote its topological closure and interior, respectively.

Definition 4.1. Let I ⊆ O. Define BI = ∩a∈ID̄a to be the
common boundary of I , andEI = BI ∩f−1(I) to be the exclusive
common boundary of I . We say that outcomes a,b are adjacent if
B{a,b} 6= ∅, and each type in B{a,b} is called a boundary type for
a and b.

By analogy to physical chemistry, we think of the ensemble of
sets D̄a,a ∈ O, as the “phase diagram” of the allocation func-
tion f , because it represents the value of f geometrically, and the
boundaries correspond to “phase transitions” where the behavior
of f changes abruptly. Each D̄a is a “cell” of this phase diagram.
Lemma 4.2 sums up some key structural properties of the phase di-
agram that are also used in [6, 15]. Its proof is a straightforward
application of WMON.

Lemma 4.2. For a ∈ O, D̄a is the intersection of T̄ with the
polyhedronPa defined by the inequalities x·(a−b) ≥ supy∈D̄b

y·
(a − b), for each b ∈ O. Moreover, if x0 ∈ T lies in B{a,b},
then the entire boundary is contained in the hyperplane defined by
{x ∈ T : x · (a− b) = x0 · (a− b)}.

Proof: If a,b ∈ O and x ∈ Da, y ∈ Db, then WMON implies
that

x · (a− b) ≥ y · (a− b)

inf
x∈D̄a

x · (a− b) ≥ sup
y∈D̄b

v · (a− b). (10)

Note that if a and b are adjacent, then the inequality in (10) is tight,
with the extremum for each side occuring at every boundary type.

Let the half-space Hab = {x ∈ T : x · (a−b) ≥ supy∈D̄b
y ·

(a − b)}, and let Pa denote the polyhedron ∩b∈OHab. We will
show that D̄a = Pa ∩ T̄ . By (10), we have D̄a ⊆ Pa. Moreover,
no type x ∈ P ◦a can have f(x) = b 6= a, since x ∈ H◦ab, which
implies x · (a−b) > supy∈D̄b

y · (a−b). Hence, P ◦a ∩T ⊆ Da,
so Pa ∩ T̄ ⊆ D̄a. Finally, if x0 is on the boundary between a and
b, then we know D̄a ⊆ Hab and D̄b ⊆ Hba, so D̄a ∩ D̄b ⊆
Hab ∩Hba = {x : x · (a− b) = x0 · (a− b)}.



Lemma 4.3. Suppose I ⊆ O, a ∈ I and Γ is a polygonal path
from y0 to y1 that lies entirely in EI , except perhaps for y0 and
y1. Then

R
Γ
f(x)dx = a · (y1 − y0).

Proof: It suffices to consider the case where Γ is just a line seg-
ment, which we parametrize as yt = y0 + t(y1 − y0), t ∈ [0, 1].
For every t ∈ (0, 1), yt ∈ EI , so (a − f(yt)) · (y1 − y0) =
2(a− f(yt)) · (y1/4 − y3/4) = 0 by Lemma 4.2. Thus,Z

Γ

f(x) · dx =

Z 1

0

f(yt) · (y1 − y0)dt

=

Z 1

0

a · (y1 − y0)dt = a · (y1 − y0).

Lemma 4.4. Suppose x ∈ T , Π is a 2-D plane through x such
that Π∩T is 2-D, andOx = {a : x ∈ D̄a, (D̄a∩Π)−{x} 6= ∅}.
Then there exists a disc N ⊆ Π ∩ T centered at x such that for
every b ∈ Ox, D̄b ∩N is a convex sector of N .

In other words, the restriction of each cell of the phase diagram to
N is either all of N or looks like a slice of pizza. This follows
easily from the cells of the phase diagram being polyhedral.
Proof of Lemma 4.4: Take N to be sufficiently small that it ex-
cludes all cells of the phase diagram that do not contain x0 (which
we can do because the cells are closed). Moreover, for every a ∈ O
for which x0 lies in the relative interior of D̄a with respect to Π,
let us also take N to be so small that it lies inside D̄a. For all
other a ∈ O, x0 lies on the boundary of D̄a ∩ Π relative to Π. By
Lemma 4.2, there is some polyhedron Pa such that D̄a = Pa ∩ T̄ .
Hence, Pa ∩ Π is some (possibly unbounded) polygon with x0 on
its boundary. Let us choose N to be small enough that it contains
no vertices of Pa ∩ Π, aside from x0. Let ON = {a ∈ O :
x0 ∈ D̄a, (D̄a ∩ N) − {x0} 6= ∅}, that is, the set of outcomes
a for which x0 is a boundary type, and for which D̄a intersects N
at some other point in addition to x0. By our construction of N ,
for every a ∈ ON , D̄a ∩ N is either all of N or a wedge-shaped
slice of N , coming to a point at x0 (including a 180◦ wedge as one
possible case).

Now for the main proof.
Proof of Theorem 4.1: In order to apply Theorem 3.1, we need
only show that f is vortex-free. Consider any type x0, and fix any
2-D plane Π through x0. If x0 is not a boundary type, then f is
constant in some ball around x0, so loop integrals inside that ball
vanish. If Π ∩ T is at most 1-D, then there are no non-degenerate
triangular loops to check, so vortex-freeness holds trivially. In the
case where Π∩T is 2-D and x0 is a boundary type, then we choose
N as in Lemma 4.4.

Consider how the the phase diagram of f could look, restricted
to the small neighborhood N . Because each D̄a (for a ∈ Ox0 )
is either all of N or a wedge radiating from x0 (by Lemma 4.4),
when we overlay all of these wedges to obtain the phase diagram,
it looks like a pizza with some finite number of slices, all coming
together at x0. Each slice Si is the intersection of N with BIi for
some Ii ⊆ O, and the slices are numbered consecutively around
x0. For each slice Si, select some outcome ai ∈ Ii.

We fix an arbitrary4 polygonal loop Γ within N and will show
that

R
Γ
f(x) · dx = 0. Let yi, i = 1, . . . , k be the consecutive

types along Γ where the loop crosses from one pizza slice Sj(i−1)

to the next Sj(i). Let Γi be the path from yi to yi+1 along Γ. By

4For this proof, it will not matter whether Γ is a triangle or whether
x0 is a vertex of Γ.

Lemma 4.3,
R

Γi
f(x) · dx = aj(i) · (yi+1 − yi). Hence,Z

Γ

f(x) · dx =

kX
i=1

Z
Γi

f(x) · dx

=

kX
i=1

aj(i) · (yi+1 − yi)

=

kX
i=1

yi · (aj(i−1) − aj(i))

=

kX
i=1

x0 · (aj(i−1) − aj(i)).

The last line follows from Lemma 4.2 because both yi and x0 are
boundary types for outcomes aj(i−1) and aj(i). This last sum tele-
scopes to zero.

5. STITCHING TRUTHFUL FUNCTIONS
This section applies Theorem 3.1 to address the following ques-

tion: when is a “piecewise-truthful” function guaranteed to be truth-
ful? In other words, when can one construct a truthful function f
on a convex type space T by “stitching together” truthful functions
fi defined on subsets of T ? Actually, we will require the sub-
functions fi to satisfy a weaker condition called local truthfulness
which says that the germ of fi at every point is truthful (see foot-
note 1) or, equivalently, that fi satisfies local WMON and vortex
freeness at every point.

Theorem 5.1. Suppose that a finite-dimensional convex type space
T is covered by closed sets {Ti : i ∈ I} such that:

1. the covering is locally finite;

2. each set Ti is the closure of its interior;

3. the pairwise intersections Ti∩Tj are piecewise differentiable
and have positive codimension in T .

Suppose that f is a function on T , and that for each i ∈ I, we have
a locally truthful function fi on Ti, continuous at each point of the
boundary ∂Ti, such that f = fi on the interior of Ti. If f satisfies
local WMON, then f is truthful.

Note that the Saks-Yu Theorem, Theorem 4.1, constitutes the
special case in which each fi is a constant function. The proof of
Theorem 5.1 requires the following simple lemma.

Lemma 5.2. Under the hypotheses of Theorem 5.1, suppose P is
a differentiable path in ∂Ti. If P has derivative h as it passes
through a point x, then h · f(x) = h · fi(x). Consequently,Z

P

f(x)dx =

Z
P

fi(x)dx.

Proof: Assume without loss of generality that P is parametrized
by a differentiable function γ : [−1, 1] → ∂Ti such that γ(0) =
x. For i = 1, 2, . . . let xi = γ(1/i) and let yi be any point in the
interior of Ti such that ‖yi − xi‖ ≤ (1/i)‖xi − x‖. By construc-
tion, the vectors i(xi−x) converge to h and the vectors i(yi−xi)
converge to 0, so i(yi − x) → h. Also, f(yi) − f(x) converges
to fi(x) − f(x), because fi is continuous at x and is equal to f
at each of the points yi. Applying the fact that f satisfies WMON,
we obtain

h · (fi(x)− f(x)) = lim
i→∞

[i(yi − x) · (f(yi)− f(x))] ≥ 0.

A similar argument using the points x̃i = γ(−1/i) establishes
that −h · (fi(x) − f(x)) ≥ 0. Hence h · fi(x) = h · f(x).



The final assertion, that
R
P
f(x) dx =

R
P
fi(x) dx, follows by

approximating each integral by a Riemann sum and comparing the
sums term-by-term using the first part of the lemma.

Proof of Theorem 5.1: Since f satisfies local WMON, it suffices
to prove that it is vortex free. As in the proof of Lemma 3.5, any
triangular loop 4 in T can be decomposed into a finite number
of closed loops L composed of finitely many segments, each of
which is either a subinterval of a side of 4 or a differentible path
in one of the sets Ti ∩ Tj(i 6= j), such that the segments of the
second type cancel each other (each is matched by an oppositely-
oriented version of the same segment in another loop L′) and such
that each loop L is completely contained in one of the sets Ti for
some i = i(L). Then we haveI

4
f(x)dx =

X
L

I
L

f(x)dx =
X
L

I
L

fi(x)dx = 0,

where the second equality holds by Lemma 5.2 and the third one
holds because fi is vortex-free.

6. NON-CONVEX TYPE SPACES
In this section we prove that an allocation function on a non-

convex type space T is truthful if and only if it extends to a truthful
allocation function on the convex hull of the type space, T ]. The
basic idea is that if f is truthful, then by analogy to Proposition 2.1
we can construct a corresponding convex consumer surplus func-
tion for it on T , where for a non-convex domain, a function is de-
fined to be convex if it has a subgradient at each point. The trick is
to extend this to a convex consumer surplus function on T ] without
invalidating any of the original subgradients, then pick a subgradi-
ent at each point of T ] − T that lies in O. Our theorem requires
the types and outcomes to satisfy a compactness criterion that we
now explain.

Definition 6.1. Given an outcome set O and type space T ⊆ RO ,
for every a ∈ O we may define a function va : T → R by
va(x) = v(x,a). We say that (Θ,O) satisfies outcome compact-
ness if the set {ua |a ∈ O} is a compact subset of RT in the
product topology.

Remark 6.1. If O is a compact topological space and each x ∈
T ⊆ RO is a continuous function from O to R, then the func-
tion a 7→ va is continuous and hence (T ,O) satisfies outcome
compactness. In particular, this holds when T ,O ⊆ Rn and O is
compact.

Theorem 6.1. Let T be any type space and let T ] denote the con-
vex hull of T . An allocation function f : T → O is truthful if and
only if there exists a truthful allocation function f ] : T ] → O
such that f is the restriction of f ] to T .

Proof: If f is the restriction of a truthful allocation function f ]

defined on T ] then clearly f is truthful. Conversely, assume there
exists a truthful mechanism (f, p). For every x ∈ T we may define
a function σx : T ] → R by σx(y) = v(y, f(x)) − p(x). The
truthfulness of the mechanism (f, p) is equivalent to the assertion
that σx(x) ≥ σx′(x) for every x,x′ ∈ T .

Any y ∈ T ] can be written as a finite convex combination y =Pm
i=1 wiyi, where yi ∈ T . For all x ∈ T we have

σx(y) =

mX
i=1

wiσx(yi) ≤
mX
i=1

wiσyi(yi),

which implies that {σx(y) |x ∈ T } is bounded above. Let σ∗(y)
be the supremum of this set, and let x1,x2, . . . be an infinite se-

quence in T such that σxn(y) → σ∗(y) as n → ∞.5 Pass-
ing to an infinite subsequence if necessary, we can assume that
vf(xn) converges, in RT , to the function va for some a ∈ O.6
(This step uses the assumption of outcome compactness.) Now de-
fine f ](y) to be this outcome a, and define a payment p](y) =
v(y, f ](y)) − σ∗(y). We claim that (f ], p]) is a truthful mecha-
nism.

To prove the claim, consider any y, z ∈ T ]. Let (xn)∞n=1 and
(x′n)∞n=1 be the sequences used in defining f ](y) and f ](z), re-
spectively. Then we have σxn(y) → σ∗(y) and v(y, f(xn)) →
v(y, f ](y)) as n→∞, so

lim
n→∞

p(xn) = lim
n→∞

v(y, f(xn))− σxn(y)

= v(y, f ](y))− σ∗(y)

= p](y).

Similarly, limn→∞ p(x
′
n) = p](z). Finally,

v(y, f ](z))− p(z) = lim
n
v(y, f(x′n))− lim

n
p(x′n)

= lim
n
σx′n(y)

≤ σ∗(y)

= v(y, f ](y))− p(y),

hence (f ], p]) is truthful as claimed.

7. DOES MON(K) IMPLY CMON?
In the case where O is finite and T is convex, WMON implies

truthfulness, by Theorem 4.1. We say that f satisfies MON(k) if
GS(f) contains no negative cycles of k or fewer hops, so MON(2)
is the same as WMON. By Theorem 2.2, we can recast the previ-
ous conclusion as saying MON(2) =⇒ CMON. Saks and Yu [15]
give a pair of examples where MON(2) holds but MON(3) fails.
In one of their examples, the domain is convex, but the outcome
space is infinite. In their other example, there are only three out-
comes, but the domain is non-convex. This prompts the following
question: if we relax either the finite range assumption, the con-
vex domain assumption, or both, does there exist some k such that
MON(k) implies CMON? The answer is no, as we illustrate below
with three examples whereMON(k) holds butMON(k+1) does
not: a simple example with a non-convex domain and infinite out-
come space, followed by more complicated examples with one of
these properties but not the other (i.e., a convex domain and infinite
outcome space, or a non-convex domain and finite outcome space).

7.1 Non-convex domain, infinite outcome space
In our simplest example, the domain T and outcome space O

are both S1, i.e., the unit circle in R2 centered at the origin. Thus,
the outcome space is infinite and the domain is non-convex. In this
section and the following ones, we will use the following notation

for points of S1: êφ denotes the vector
„

cosφ
sinφ

«
. We fix some

k ≥ 2, and pick any θ ∈ ( π
k+1

, π
k

]. The allocation function is
simply rotation by−θ (i.e., θ in the clockwise direction), which we
denote byR−θ(·). We claim that MON(k) holds, but MON(k+1)
does not.

First we show that Ck+1 = ê0 → ê 2π
k+1
→ ê2· 2π

k+1
→ · · · →

êk· 2π
k+1

→ ê0 is a negative (k + 1)-cycle. In general, consider

5If y ∈ T , we will insist that this sequence is chosen to be x1 =
x2 = . . . = y.
6If xn = y for all n, we insist that a is chosen to be outcome f(y).



v1, v2 ∈ S1, where v2 = Rα(v1). Then the S-weight of the edge
v1 → v2 is

(v2 − v1) ·R−θ(v2) = v2 ·R−θ(v2)− v1 ·R−θ(Rα(v1))

= cos θ − cos(α− θ), (11)

because the dot product between two unit vectors equals the cosine
of the angle between them. If α − θ ∈ (−θ, θ), i.e., α ∈ (0, 2θ),
then this weight is negative. For each hop in C, we have 0 < α =
2π
k+1

< 2θ, so each hop has the same negative weight. Thus, C is a
negative (k + 1)-cycle.

Now we prove that no cycle of k or fewer hops has negative
weight. Notice that the regular k-gon, oriented in the counterclock-
wise direction, has non-negative weight, by (11), since α = 2π

k
≥

2θ. We proceed to prove that the cycle of k or fewer hops with the
smallest weight is the regular k-gon.

Since (S1)k is compact, there exists some cycle Ck = v0 →
v1 → · · · → vk−1 → v0 that attains the minimum weight amongst
all k-cycles. Since we can simulate a cycle with fewer than k hops
by setting two or more adjacent vi’s to be equal, this cycle actually
has the minimum weight amongst all cycles of k or fewer hops. Let
us perturb Ck by varying v1 while keeping all the other vertices
fixed. The only edges whose weights change are v0 → v1 and
v1 → v2. The sum of the weights on these two edges is

(v2 − v1) ·R−θ(v2) + (v1 − v0) ·R−θ(v1)

= v2 ·R−θ(v2)− v1 ·R−θ(v2)

+ v1 ·R−θ(v1)− v0 ·R−θ(v1) (12)
= cos θ − v1 ·R−θ(v2) + cos θ −Rθ(v0) · v1 (13)
= 2 cos θ − v1 · (Rθ(v0) +R−θ(v2)), (14)

where we transformed the last term in (12) by applying the rotation
Rθ to both vectors, which leaves their dot product unchanged. If
Rθ(v0) +R−θ(v2) 6= 0, then (14) is minimized when v1 points in
the same direction asRθ(v0)+R−θ(v2), which means that v1 must
bisect the angle between v0 and v2. If Rθ(v0) + R−θ(v2) = 0,
then every choice of v1 minimizes (14), yielding another k-cycle
of minimum weight. But if we choose any value for v1 such that
Rθ(vk−1)+R−θ(v1) 6= 0, and v0 is not the angle bisector of vk−1

and v1, then we can apply the previous argument to show that this
cycle does not have the minimum weight. It is possible to choose
such a v1 unless k = 2 and θ = π

2
. In this one exceptional case,

(14) shows that every choice of v0, v1 yields a cycle with weight
0. In all other cases, we have shown that the minimum k-cycle
must be the regular k-gon. Examination of (14) shows that the
counterclockwise orientation of the regular k-gon yields a larger
magnitude for Rθ(v0) +R−θ(v2) and hence a smaller weight than
the clockwise orientation.

7.2 Convex domain, infinite outcome space
Fix k and let θ ∈ ( π

k+1
, π
k

], T = O = R2, and f = R−θ , i.e.,
rotation by angle θ in the clockwise direction.

It is easily verified that any regular (k + 1)-gon centered at the
origin and oriented in the counterclockwise direction has negative
weight. We now prove the tricky part, that there are no negative k-
cycles. We use exclusively S-weights in this section. The following
result is easily derived by examining the behavior of dot products
under affine transformations.

Proposition 7.1. The weight of every cycle is invariant under trans-
lations and rotations. If we dilate a cycle by a scale factor r > 0,
then the weight is multiplied by r2.

Corollary 7.2. If there is a negative k-cycle, then there exists a
negative k-cycle with one vertex at the origin and its predecessor
at ê1.

In the cycle given by Corollary 7.2, the arc ê1 → 0 weighs
R−θ(0) · (−1, 0) = 0. Thus, the weight of the lightest such k-
cycle is equal to that of the lightest (k − 1)-hop path from the
origin to ê1. Let pn be the weight of the lightest n-hop path from
0 to ê1. Since there is only a single 1-hop path to choose from, we
have p1 = R−θ(ê1) · (ê1 − 0) = cos θ.

Lemma 7.3. For n ≥ 1 such that pn ≥ 0, we have pn+1 =
cos θ − 1

4pn
.

Proof: We proceed by induction. The lightest (n + 1)-hop path
from 0 to ê1 consists of the lightest n-hop path from 0 to some
type x, followed by x → ê1. Using Proposition 7.1, the lightest
n-hop path from 0 to x weighs |x|2pn, and the last hop has weight
R−θ(ê1) · (ê1− t) = cos θ− t ·R−θ(ê1). The total is minimized
when t = 1

2pn
R−θ(ê1), yielding pn+1 = cos θ − 1

4pn
.

Theorem 7.4. For n ≤ k − 1, pn = sin[(n+1)θ]
2 sin(nθ)

.

Proof: We want to solve the recurrence p1 = a, pn+1 = a − b
pn

for n ≥ 1, where a = cos θ, b = 1
4

. We will first transform
this into a three-term linear recurrence. A closed-form solution
will then be obtained using identities from the theory of orthog-
onal polynomials, specifically Chebyshev polynomials of the sec-
ond kind [1, p. 776-7, 782]. As a first step, we multiply through
by pn, define c0 = 1, cn = pncn−1 for n ≥ 1, and substitute
to yield the recurrence cn+1 = acn − bcn−1, for n ≥ 1. Now
let dn = cnb

n/2 and substitute to get dn+1 = a√
b
dn − dn−1. The

Chebyshev polynomials of the second kindUn(x) satisfy the recur-
rence Un+1(x) = 2xUn(x) − Un−1(x) and the initial conditions
U0(x) = 1 and U1(x) = 2x. When x = a

2
√
b
, these are the same

recurrence and initial conditions that the dn satisfy. Therefore, we
have established that dn = Un( a

2
√
b
) = Un(cos θ) for all n ≥ 0.

Using the identity Un(cos θ) = sin[(n+1)θ]
sin(θ)

, we get

pn =
cn
cn−1

=
dn
dn−1

√
b =
√
b
Un( a

2
√
b
)

Un−1( a

2
√
b
)

=
sin[(n+ 1)θ]

2 sin(nθ)
. (15)

The recurrence for pn+1 is valid as long as pn ≥ 0, so (15) holds up
to and including the first index where pn < 0. Since θ ∈ ( π

k+1
, π
k

],
this occurs at n = k.

Corollary 7.5. For θ ∈ ( π
k+1

, π
k

], the allocation function f =
R−θ satisfies MON(k) , but not MON(k + 1).

7.3 Non-convex domain, finite outcome space
In this example, T is once again equal to S1, the unit circle cen-

tered at the origin in R2. We divide the circle into 2k intervals of
angle π/k each; interval Ij(j = 0, . . . , 2k − 1) runs from ê jπ

k
to

ê (j+1)π
k

. We will always interpret the interval subscripts mod 2k.

For each t ∈ Ii, we define f(t) = iπ/k. We will show that f
satisfies MON(k) but not MON(k + 1).

This time it will be more convenient to reason using P-weights,
rather than S-weights. Recall that the P-weight of an arc from type
u to v is u · (f(u) − f(v)). We can label each arc u → v by
its number of clicks, i.e., the number of segments from the one
containing f(u) to the one containing f(v), which we will always



take to be in {−k + 1, . . . , k}. Thus, by rotational symmetry, the
P-weight of arc u → v depends only on the number of clicks and
where u lies in its interval. We now compute m(j), the infimum of
the weights amongst all j-click arcs:

m(j) = inf
α∈(0,π/k]

êα · (ê0 − êjπ/k) (16)

= inf
α∈(0,π/k]

cosα− cos(jπ/k − α) (17)

=

(
cos(π/k)− cos((j − 1)π/k) for 0 ≤ i ≤ k
1− cos(jπ/k) for i < 0

(18)

Thus, we see that m(1) < 0, m(0) = m(2) = 0, and m(j) > 0
for all other j. From now on, every j-click arc we refer to has
weight equal to or arbitrarily close tom(j). Hence, a (k+1)-cycle
consisting of (k− 1) 2-click arcs and two 1-click arcs has negative
weight. We now show that every k-cycle has non-negative weight.

Consider the most negative k-cycleC, and suppose it has strictly
negative weight. Any combination of clicks is realizable by some
cycle, so long as the clicks sum to zero mod 2k. The most negative
k-cycle cannot contain arcs of −i clicks and j clicks (with i, j >
0), because we could decrease the weight by replacing them with
arcs of −i + 1 clicks and j − 1 clicks. Since m(i) > 0 for i < 0,
C must have only arcs with positive clicks. Some arc in C must
have only 1 click, since C has negative weight. But if there is a
1-click arc and an i-click arc with i ≥ 3, then we can decrease the
weight by replacing these with a 2-click arc and an (i − 1)-click
arc. Hence, C must contain only arcs of 0, 1 or 2 clicks. But then
it is impossible for the clicks to sum to zero mod 2k, given that at
least one of them has 1 click. This leads to a contradiction, so there
are no negative k-cycles.
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