Two Simplified Proofs for Roberts’ Theorem
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Abstract

Roberts (1979) showed that every social choice function that is ex-post implementable in
private value settings must be weighted VCG, i.e. it maximizes the weighted social welfare. This
paper provides two simplified proofs for this. The first proof uses the same underlying key-point,
but significantly simplifies the technical construction around it, thus helps to shed light on it.
The second proof builds on monotonicity conditions identified by Rochet [11] and Bikhchandani
et. al. [2]. This proof is for a weaker statement that assumes an additional condition of “player
decisiveness”.

1 Introduction

Social choice functions represent a way to aggregate individuals’ preferences into an integrated
social preference. When viewing each individual as a “game-theoretic entity”, acting selfishly to
maximize its own utility, one needs to provide incentives for the individuals to actually reveal
their true preferences. This is commonly done by assuming quasi-linear private value utilities, and
introducing a carefully designed payment scheme that induces truthful behavior (in equilibrium).
With such a payment scheme, we implement the social choice function. The most convincing
equilibrium concept is probably that of dominant strategies: no matter what the other players do,
player ¢ will maximize his own utility by revealing his true preferences. In private value settings,
dominant strategies implementation is equivalent to ex-post implementation, making its importance
even more notable. It is therefore important to understand what social choice functions are ex-post
implementable (or equivalently dominant-strategy implementable).

To answer this question, one first has to fix a domain of preferences. On one extreme, when the
domain is single-dimensional, implementability essentially reduces to a simple monotonicity condi-
tion (Myerson [9]) which allows for many types of social choice functions to be implemented. The
difficulty comes from switching to a multi-dimensional domain. In such domains, the monotonicity
conditions are much more complex, and almost no examples of ex-post implementable functions
exist. The only general implementability result is the classic Vickrey-Clarke-Groves (VCG) mech-
anisms that maximize the social welfare. Other common and natural social goals, like min-max
fairness criteria, are not known to be implementable, and, in general, no characterization of the
class of ex-post implementable social choice rules is at hand. To further stress the importance of
this question, let us parallel it to the case of non-quasi-linear utilities. In that case, Arrow’s theorem
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gives the characterization for unrestricted domains; on the other extreme single-peaked domains
enable many positive results; and the status for many multi-dimensional domains, like saturated
domains [6], is quite understood.

Unfortunately, no such understanding exists for the central model of quasi-linear utilities with
private values. The only exception is the work of Roberts [10], that gave the desired characterization
for an unrestricted domain: the only implementable social choice functions are weighted welfare
maximizers! But for all the intermediate range of domains, that are not single-dimensional nor
unrestricted, almost no possibilities or impossibilities are known. For example, in the context of
auctions, Holzman and Monderer [4] pointed out the potential importance of Roberts’ theorem to
the understanding of the uniqueness of truth-telling mechanisms in a private value setting.

In light of this, it seems extremely important to fully understand the techniques and intuitions
behind Roberts’ original proof. To this end, we provide two alternative proofs: in the first, the key
point of Roberts’ proof (the use of the separation lemma) remains, but the construction process is
significantly simplified, thus making the essence visible. The second theorem is a weaker version,
with an additional requirement of “player decisiveness” [8]. Our proof relies on the cycle mono-
tonicity characterization of Rochet [11], and shows how to strengthen this characterization, for the
case of unrestricted domains, to yield as a result weighted welfare maximization.

1.1 Recent related work

To emphasize the importance of truly understanding the proofs and structures, let us describe the
recent efforts that were done in this direction.

The first branch of investigations consider the characterization of truthfulness in terms of mono-
tonicity. Roberts [10] defines a monotonicity condition called PAD, that fully characterizes truth-
fulness for unrestricted domains. Bikhchandani et. el. [2] identify a weak monotonicity condition
that fully characterizes truthfulness for many restricted domains. This is further discussed and
analyzed also by Lavi, Mu’alem, and Nisan [7], by Gui, Muller, and Vohra [3] and by Saks and
Yu [13]. Rochet [11], and independently Rozenshtrom [12], define a “cycle-monotonicity” condition
that fully characterizes ex-post implementability for every domain.

Another direction is to investigate these questions for the model of inter-dependent valuations.
This is studied by e.g. Jehiel, Meyer-ter-Vehn and Moldovanu [5]. They use Roberts’ theorem to
characterize ex-post implementable interdependent valuations that are “semi-separable”.

The most intriguing question of all is arguably to classify the domains in which weighted VCG’s
are the only implementable social choice functions. While as mentioned above this question is well-
studied for non-quasi-linear settings, and also for quasi-linearity with inter-dependent valuations,
the important case of private values is almost unexplored, with few exceptions. Lavi, Mu’alem and
Nisan [7] generalize Roberts’ characterization for a family of “auction-like” restricted domains, in-
cluding Combinatorial Auctions and Multi Unit Auctions. They show that, under several additional
requirements (of which the crucial one resembles Arrow’s ITA condition), every implementable so-
cial choice function must be “almost” weighted-VCG. On the other hand, many positive results for
implementable social choice functions that are not weighted VCG have been recently introduced
by the Computer Science community. Most of these are for single-dimensional domains, but one
interesting example of dominant-strategy non-VCG mechanism for a multi dimensional auction
domain is given by Bartal, Gonen, and Nisan [1].



1.2 The Formal Setting

Before stating Roberts’ characterization, let us first describe the setting. A social designer is
required to choose one alternative among a finite set A = {x,y, z, ...} of social alternatives. There
are n players, each has a private type v; € V; C Rl where vi(x) is interpreted as i’s resulting value
if alternative x were to be chosen, and Vj is the space of all possible types of player i. We denote
by V = Vi x ... x V, the type space of all players. The domain V is called unrestricted if V; = R4
for all 4, i.e. every |A|-tuple of real numbers can represent a valid private type. Let f:V — A be
a social choice function, i.e. f represents the goals of the social designer. Assume w.l.o.g that f is
onto A.

In order to motivate the players to reveal their true types, the social designer is allowed to charge
payments (p; : V. — R) from the players. We assume that players are quasi-linear and rational
in the sense of maximizing their total utility: u; = v;(f(v)) — pi;(v). We say that f is truthfully
implementable (in dominant strategies) if there exist payment functions that induce truthfulness as a
dominant strategy, for every player. L.e. player ¢ will maximize his utility by declaring his true type
v;, rather than declaring some false type v}, no matter what the other players declare. Formally, if
for every player i, every v_; € V_;, and every v;, v € Vi v;(f(v))—pi(v) > vi(f(v],v—;))—pi(v],v_;).

Our motivation, therefore, is to understand what social choice functions can or cannot be
implemented. It is well known that all (weighted) welfare-maximizers are truthfully implementable,
by using Vickrey-Clarke-Groves payments. This is true for any domain of players’ types and every
set of alternatives. For unrestricted domains, Roberts proved the opposite direction:

Theorem 1 (Roberts [10]) Suppose |A| > 3 and V is unrestricted domain. Then, for every
implementable social choice function f, there exist non-negative weights ki, ..., ky, not all of them
equal to zero, and constants {Cy}rca such that, for allv €V,

f(v) € argmaz,ec 4 { i kivi(z) + Cy }.

2 Monotonicity Conditions

Both proofs start by eliminating the need to rely on price specifications, by replacing prices with
certain monotonicity conditions, that are necessary to the existence of appropriate prices. Our
two proofs start from two different monotonicity conditions, but the origin of both conditions
may be viewed as the recently defined property of “weak monotonicity” (W-MON), formalized
by Bikhchandani et. al. [2]. We give here a short exposition on these various conditions, partly
accompanied with proofs for completeness.

Definition 1 (Bikhchandani et. al. [2]) A social choice function f:V — A satisfies W-MON
if f(v) = and f(v}, v_;) =y implies that:

vi(y) — vi(y) > vi(x) — vi(z)
for every v_; € V_; and v;, v, € V.
In words, W-MON requires that, if player ¢ may change the social outcome from z to y by changing
his type declaration from v; to v}, then it must be the case that ’s value difference for y is at least
as large as i’s value difference for x. The use of value differences (instead of the more intuitive use

of absolute values) in the definition comes from the quasi-linearity of utilities, and is best explained
by looking at the proof of the following claim:



Lemma 1 FEvery dominant-strategy implementable social choice function f satisfies W-MON.

Proof: We first claim that the payment function of player ¢ can be denoted by p; : V_; x A — R Uoo,
i.e. that p; does not depend on v;. Otherwise there are v_; € V_;, z € A, and v;, v, € V; such that
f(vi,v_;) = f(v},v-;) = @, and p;(vi,v—;) < pi(v},v_;). But then, when all other players declare
v_; and the true type of ¢ is v}, he will increase his utility by declaring v;, a contradiction.

Now fix some v_; € V_; and v;, v; € V; as in the definition of WMON. It must be the case that
vi(x) — pi(z,v_;) > vi(y) — pi(y,v—;), otherwise when i has type v; he can increase his utility by
misreporting his type to be v} (and by this causing y to be chosen). Similarly, v}(y) — p;(y,v—;) >

/

vi(z) — pi(xz,v_;). Combining these inequalities we get v (y) — v;(y) > vi(x) — v;i(z), as W-MON

(]
requires.

Thus, W-MON is necessary for implementability on every domain. Quite interestingly, it is
also sufficient on many domains. Bikhchandani et. al. [2] show the sufficiency of W-MON for a
certain family of auction domains (that includes, as a special case, the unrestricted domain), and
Saks and Yu [13] extend the result to all convex domains. In the proofs here, we do not use W-
MON directly. Instead we use two closely related conditions, that are easier to work with in our
unrestricted domain, and that we next describe.

2.1 PAD

Roberts, in his original proof, formalizes and uses the following “Positive Association of Differences”
(PAD) monotonicity condition:

Definition 2 (Roberts [10]) A social choice function f satisfies PAD if the following holds for
all v,v' € Vi If f(v) =z, and vi(x) — vi(z) > vi(y) —vi(y) for ally € A\ x and alli =1,...,n,
then it must be the case that f(v') = z, as well.

PAD continues to focus on value differences, as W-MON does, but makes all players symmetric, in
the shift from v to v'. PAD easily follows from W-MON, as we next show, and is hence necessary
for dominant-strategy implementability:

Lemma 2 FEvery implementable social choice function f satisfies PAD.

Proof: By Lemma 1, f satisfies W-MON. Fix some v, v’ € V as in the definition of PAD, i.e. f(v) = x
and v} (z)—v;(z) > vi(y)—vi(y) forally € A\z and alli = 1,...,n. We need to show that f(v') = x.
Denote v* = (v},...,v,vit1,...,0,) (i.e. all players up to i declare according to v/, and the rest
declare according to v). Thus v = v and v™ = ¢/, and f(v") = 2. We show by induction that
f(") = x. Assume by contradiction that f(v'~') = x but f(v') = y. Since all players except
player i have the same type in v'~! and in v, we get by W-MON that v}(y) — v;(y) > vi(z) — vi(x),
a contradiction to PAD’s assumption on v,v’. So f(v') = z. By induction, f(v") = z. n

In addition to the direct use of PAD, we sometimes use it also implicitly, through the following
claim:

Notation: Given vectors a, 3 € R", we use o > (3 to denote that Vi, «; > f;, i.e., a strict
inequality in every coordinate. Additionally, we shall denote 0 as the n-dimensional vector of zeros.



Claim 1 Assume f satisfies PAD, and fix any v,v' € V. If f(v') = x and v'(y)—v(y) > v'(z)—v(x)
for some y € A, then f(v) #vy.

Proof: Suppose by contradiction that f(v) = y. Fix A € R" such that A = v/(y)—v(y)+v(z)—v'(x).
Clearly, A; > 0 for all 4. Additionally, v;(z) — v}(z) — % = v;i(y) — vi(y) + % > vi(y) — vi(y).

(]
Define a new type v” € V as follows:

min{v;(z) , vi(z) +vi(z) —vl(2)} — Ay z#z,y
Vi, z€ A 1 v(2) =< wvi(x) — % Z=2x
vi(y) z=y.

We will show that, from PAD, the transition v — v” implies f(v”) = y, and the transition v' — v”
implies f(v") = x, a contradiction.

Since v/ (y) — vi(y) = 0 > v/(2) — vi(z) for all z # y and all i, it follows from PAD that
f(@") = y. On the other hand, for z # z,y, v/(z) < vi(z) + vi(z) — vj(x) — A; and thus
vl () = vj(x) = vi(x) — vj(x) = 5t > o] (2) = vj(2). For y, v} (w) — vj(w) = vi(x) — vj(x) — 5t >

vi(y) — vi(y) = v/ (y) — vi(y), and thus it also follows from PAD that f(v") = z. m

2.2 S-MON

Our second proof utilizes a different extension of W-MON, termed Strong Monotonicity (S-MON).
This extension requires the inequality in the monotonicity condition to be strict:

Definition 3 (Lavi, Mu’alem, and Nisan [7]) A social choice function f : V — A satisfies
S-MON if f(v) =z, f(v), v—;) =y and x # y, implies that:

/

vi(y) — vi(y) > vi(x) — vi(x)
for all v_;, v;, v} € V.

Thus, the only difference between W-MON and S-MON is the strictness of the inequality. While
this may seem as a minor difference, a “tie-breaking” consistency, it is actually much more subtle,
and [7] give examples for implementable functions that satisfy W-MON, but violate S-MON in a
fundamental way that cannot be viewed as a “tie-breaking” difference. However, all these examples
use restricted domains, and this is not an accident. For the unrestricted domain, [7] indeed show
that the immediate tie-breaking intuition can be formalized and made exact, in the following way.

Theorem 2 (Lavi, Mu’alem, and Nisan [7]) Suppose V is an open set L. Then for every social
choice function f:V — A there exists a social choice function f:V — A such that:

1. If f satisfies W-MON then f satisfies S-MON.

2. If f is affine mazimizer then f is affine mazimizer.

"We use the term “open” in its usual topological meaning: V is open if for any v € V there exists e, > 0 such
that for any v’ € RI4*"™ if |v](z) — vi(x)] < €, for all i,z then v’ € V as well.



Since the unrestricted domain is open, then, by this theorem, proving that S-MON implies affine
maximization exactly implies that W-MON implies affine maximization: Using the first step of the
theorem we “generate” from f that satisfies W-MON an f that satisfies S-MON. We then show
that this f is an affine maximizer using the main theorem. Finally, by the second step of Theorem 2
we conclude that the original f is also an affine maximizer.

The proof of theorem 2 exactly utilizes the tie-breaking intuition. Let us use the notation v+€l,
to denote the valuation that is almost identical to v, except that, for every i, v;(z) is increased by
€. Then, for a valuation v, the following set of alternatives T'(v) captures all the alternatives that
are “tied” with f(v):

Tw) = {x€eA| I >0st Veec (0,6"): f(vt+ely) =z}

The function f that fixes some predetermined order over all the alternatives, and always chooses
the highest alternative in T'(v) to be f, can be shown to satisfy the two requirements of Theorem 2.
The first property follows by showing that, for any v € V, i, and v} € V; : ifx € T(v), y € T'(v},v—;),
and v} (z) —v;(z) > vi(y) —v;i(y), then z € T(v},v_;) (and this in turn follows by applying W-MON).
The second property follows in a straight-forward way from the definition of affine maximization.

Our theorem that S-MON implies affine maximization (theorem 3) also requires the social
choice function to be implementable, and to satisfy “decisiveness”: for every v_; and every = €
A there exists v; such that f(v;,v—;) = x. Therefore, in order to use f instead of f in the
theorem, we need to show that the transition from f to f carries these two properties. Indeed,
f is implementable since it satisfies S-MON, and therefore also W-MON, which is a sufficient
condition for implementability [2, 13]. It is not hard to verify that f is also decisive, by the
following argument: Fix some ¢y > 0. We are given any v_; and x, and need to find v; such that
fvi,v_4) = x. Let v ; = v_; — egl,. Since f is decisive, there exists v} such that f(v},v' ;) = z.
Let v; = v} +€9l,. By PAD, it follows that T'(v;,v_;) = {2}, since for every € < ¢y and every y # z,
f(vi + €ly,v_; + €l,) = . Therefore f = z, as required.

Thus, although replacing W-MON by S-MON requires some technical preparations, our proof
shows that it can significantly simplify the “rest” of the analysis (if one is willing to additionally
assume decisiveness). Since the W-MON — S-MON “equivalence” does not hold for most restricted
domains, one can view the second proof as an indication that similar impossibilities for restricted
domains crucially depend on the differentiation between S-MON and W-MON, an indication that
also appears in [7].

3 First Proof

The starting point of both proofs is the simple, but important observation that, to show that a
function is an affine maximizer, one should actually study the structure of valuation differences.
This comes from the fact that affine maximization translates to the system of inequalities

> ki (vila) = vily) = Cy — Cu,y

i=1l..n

where v is such that f(v) =z # y. Conveniently, all the above monotonicity properties are indeed
expressed by valuation differences. The second proof fixes a player, i, and the declaration v_; of the
other players, and studies the resulting structure of valuation differences for player i, to show that
it yields the above system of inequalities. In contrast, the first proof aggregates the value differences
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Figure 1: The structure of P(x,y) and P(y,z) (for two players), as the proof reveals. The set
P(z,y) is defined to contain all points (v1 (z) —v1(y), v2(x) —va(y)) such that f(vi,ve) = z, e.g. the
black dot in the north east corner of the Figure.

of all players, and studies the topological structures induced by wvectors of value differences. The
main topological set that is being explored is given by:

P(xz,y) ={a € R" | Jv € V such that v(z) — v(y) = a and f(v) = x}.

In words, if f(v) = z then v(z) — v(y) € P(z,y). Figure 1 describes the structure of these sets, as
the proof reveals. It shows that P(x,y) is a half-space shifted by v(x,y) from the center of axes,
where v(x,y) is the smallest shift needed for the origin to be on the boundary of P(x,y). The slope
of this half-space, relative to the center of axes, exactly gives us the constants k;’s in the affine
maximization term. These k;’s do not depend on the tuple (x,y), as the proof shows. The shift
factors give us the additive constants {Cy}zc4. Roberts’ original proof uses the same P(x,y) sets
(and we have kept the original notation to make this point explicit). However, in order to reveal
the topological structure of these P(z,y) sets, the original proof relies on certain properties of an
underlying complete order over the set of alternatives, as well as on other auxiliary constructions
(e.g. the so-called Q(z,y) sets). The analysis we give here is more concise, and shows with less
effort that these P(x,y) sets are half-spaces.

Briefly and informally, the two main observations about these sets are: (1) o € P(z,y) if and
only if —a ¢ P(y,x), and (2) P(z,y) + P(y,2) = P(x,z) (to be accurate, these properties hold
only for the interiors of the P(x,y) sets). To get some geometric intuition to the implications of
these two statements, assume for a minute that 0 € P(z,y) for all z,y € A (this assumption need
not necessarily hold, and in the proof, like in Roberts’ proof, the sets are “shifted”, as explained
above, to account for that). Then the following short chain of arguments leads us to the desired
conclusion:

1. Property (2) implies that all the P(x,) sets are equal (since o € P(z,%) implies that a+0 €
P(x,z)). Let us denote this set by C.

2. Property (1) then implies that C is convex: assume by contradiction that «, 3 € C, but



$(a+ B) ¢ C. Then property (1) implies that —3(a+ 8) € C. Property (2) implies that
a+ € C, and therefore o + 3 — %(O& + ) € C as well, a contradiction.

3. Let —-C ={a| —aeC}. Property (1) implies that CU—-C =R": If o ¢ C then —a € C
and therefore a € —C.

4. Since C' and —C' are convex, with disjoint interiors, and their union is the entire space, each
must be a half-space.

Thus, these two basic observations about the P(x,y) sets significantly simplify the analysis,
and we give a very short and straight-forward proof for their correctness. Roberts’ original proof
essentially entails this structure, but it is practically lost in the many additional constructions that
are being used there. Here, the simplicity of these arguments is emphasized.

3.1 The proof

As described above, the proof studies the following sets, which are defined for tuples (z,y) € Ax A,

T # Yy
P(z,y) = {a € R" | Jv € V such that v(z) —v(y) = a and f(v) = x}. (1)

Figure 1 describes the structure of these sets, as the following proof will reveal. We start with two
immediate properties:

1. For every x and y, the set P(x,y) is not empty, since by assumption f is onto A.

2. If a € P(x,y) then for any positive § € R* (i.e. § > 0), a4+ 8 € P(x,y). To see this,
note that by definition there exists v such that f(v) = x and v(z) — v(y) = a. Now change
v to v’ by increasing v(xz) by § (the rest stays the same). Thus by PAD f(v') = z, and
V' (xz) —v'(y) = a + 6, as required.

Claim 2 For every a,e € R", € > 0:
1. a—e€ P(x,y) = —a¢ Py,x).

2. a¢ P(x,y) = —a€Py,x).

Proof: For the first part, suppose by contradiction that —a € P(y,x). Therefore there exists
v €V with v(y) —v(z) = —a and f(v) =y. As a — e € P(z,y), there also exists v € V with
V'(z) — V' (y) = a—eand f(v') = z. But since v(z) — v(y) = a > v'(z) — v'(y), this contradicts
claim 1. Thus —a ¢ P(y,x), as needed.

For the second part, for any z # x,y take some (3, € P(x, z) and fix some € > 0. Choose any
v such that v(z) —v(y) = @ and v(x) —v(z) = B, + € for all z # x,y. Applying claim 1 for every
z # x,y, we get that f(v) € {z, y}. Since v(z) —v(y) = a ¢ P(z,y) it follows that f(v) =y. Thus
—a=v(y) —v(z) € P(y,x), as needed. n

As a checkpoint, we specify the parts of the view outlined in Figure 1 that are now proved by
the above arguments: The second “immediate property” from above shows that the boundary of
P(z,y) is monotonically non-increasing. Claim 2 exactly shows that the interiors of P(y,x) and
the “mirror set” of P(z,y) are disjoint, and that their union forms the entire space (where the



mirror set of P(z,y) contains —« if and only if « is in P(x,y)). Indeed, setting v(x,y) = —v(y, )
in Figure 1 would imply exactly that. We do not know, yet, that the boundaries of these sets are
hyperplanes, and the rest of the proof aims to show this issue.

Claim 3 For every o, 3, €@, B c Rn @) 0B) > 0:
a—e e Py and B— P e Ply,z) = a+8— (Y +eP)/2 e Pz, 2).

Proof: For any w # x, v, z fix some 6(*) ¢ P(xz,w), and some € € R, e > 0. Choose any v such that
v(z) —v(y) = a—9/2 v(y) —v(z) = B — /2, and v(z) — v(w) = 6@ + € for all w # z,y, 2.
By claim 1, f(v) = 2. Thus a+ 3 — (¢! + ) /2 = v(z) — v(2) € P(z,2). »

If we had 0 € P(z,y) for all x,y € A then we could have easily concluded, by using the last
claim, that all the P(z,y) sets are equal (to be accurate, only their interiors); this essentially
follows by claiming that P(z,y) C P(x, z), since for any « in the interior of P(z,y) we have that
a4 0 € P(y,z) by the last claim. However, since it is not necessarily true that 0 € P(x,y), we
need to “shift” the sets to contain this point. We do this using the following definition:

Y(z,y) =inf{peR [ p-T € Plz,y) }.

It is easy to show that v(z,y) is a real number: First, we argue that the set is not empty. Take
any v such that f(v) = z, let p = max;{v;(x) — v;(y)} and increase all coordinates v;(z) until
vi(x) — v;(y) = p for all i. By PAD the outcome remains z. This shows that v(z,y) < oo. Second,
the set is also bounded from below, otherwise by claim 2 P(y,z) would have been empty. Thus the
set has a real infimum.

Claim 4 For all x,y,z € A, the following holds:
1. y(z,y) = —(y, @)
2. v(x,2) =z, y) + (Y, 2).

Proof: For the first part, assume that v(z,y) = p*. Thus for any € > 0, (p*+(¢/2))-1 € P(x,y) and
so by claim 2, (—p* —€) -1 ¢ P(y,z). On the other hand by the definition of v(z,y), (p* —€)-1 ¢
P(z,y) and thus by claim 2, (—p*4¢)-1 € P(y,z). Thus —p* = inf{p | p-1 € P(y,z) }, as needed.

For the second part, fix some € > 0. Since (y(z,y) + (¢/2)) -1 € P(z,y), (v(y,2) + (¢/2)) -1 €
P(y,z) it follows from claim 3 that (y(z,y) + v(y,2) +¢€) -1 € P(x,2) and thus v(z,z) <
v(z,y) + v(y, z). By exchanging variable names, we also get v(z,z) < v(z,y) + v(y, z). Replacing
v(y, z) with —y(z,y) (and doing this also for v(z, x), v(z,y)) we get that v(z, z) > v(x,y) +7(y, 2)
as well, and the claim follows.

We can now “shift” the sets P(z,y) by defining:

More precisely, C(z,y) = {a —~(z,y)-1 | o € P(x,y) }. Let 5(3;,3;) denote the interior of C'(z,y),
ie.C={aeC|a—ecC forsomee>0}.
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Claim 5 C(z,y) = C(w, z), for every x,y,w,z € A, x #y and w # z.

Proof: By claim 3, ﬁ(x, y) C 103(:17, z)— 3, for any 3 € ﬁ(y, z), specifically for 3’ = (y(y, z)+e¢)-1 for
any € > 0. Similarly (by exchanging variable names in the claim), ]Oj(x, z) C FO’(w, z) — «, for any
a € Ig(w,az), specifically for o = (y(w, x)+€)-1. Thus IOD(x,y) - I%(w, 2)—(v(y, 2) +y(w,z))-1. By
claim 4, 5(y, 2)+7(w, ) = (y, 2)+7(w, y)+7(y,2) = 7(w, 2)=7(z,y). Andso, Pla,y)—y ()1 C
P(w,z) —y(w,2) - I, as claimed.

o

Remark: When z,y,w, z are not distinct the claim still holds. For example, C(x,y) = C(y, ).

o

For this to hold we need a third (distinct) alternative w, and then C(z,y) = C(w,y) = C(w,z) =

[¢]
C(y,x) in the same manner as done in the proof.

o

As a result of the last claim, we denote C = C(x,y) = C(w,z). To finish the proof, we first
conclude that C is convex:

Claim 6 C is convexz.

Proof: We will show that for any a, 8 € C' C R", it must be the case that (o + (3)/2 € C. Since
C is open, it is well known that all together this implies that C' is convex?. We first show that

a+ (€ C. Fix some distinct z,y,z € A. Since v(x,y)-1+a € P(z,y) and v(y,2) -1+ 8 € P(y, 2)

it follows from claims 3 and 4 that v(x, z) - T+a+p8e P(z,z), and thus a + g € C.

We now show that for any a@ € C' we have o/2 € C' as well. Assume by contradiction that
a/2 ¢ C. Thus a/2 + ~(x,y) -1 ¢ P(x,y) and by claim 2, —a/2 — y(z,y) - 1 € P(y,x). Since
—y(z,y) = v(y,x) it follows that —a/2 € C. But then a/2 = a + (—a/2) € C by using the above
claim, and we reach a contradiction. m

We can now easily conclude the proof of the theorem. Notice that 0 ¢ é (if 0 € C(x,y) then it
must be on its boundary since (y(xz,y)—e)-1 ¢ P(x,y) for any e > 0). By the Separating Hyperplane
Lemma, there exists k € R" such that for any o € C, k-a > 0 (where C is the closure of C'). Now,
fix some x¢ € A and determine the constants Cy for any © € A as Cy = > | ki - (0, x) (define
v(zg,z9) = 0). To see that the theorem now follows with these constants, suppose f(v) = z for
some v € V, and take any y # z. Clearly, v(z) — v(y) € P(z,y). Let a = v(z) — v(y) — v(z,y) - 1,
and so « € C. Thus k- a > 0. Replacing —y(x,y) = v(w0,2) — 7(x0,y) and rearranging the terms
we get: k-v(z) + Cy > k- v(y) + Cy, and the theorem follows. m

4 Second Proof

As described previously, the second proof starts from a different monotonicity condition, and uses
a completely different analysis method. We need to assume one additional condition, defined by
Meyer-ter-Vehn and Moldovanu [8]:

*For any o, 3 € C and 0 < X < 1, the argument essentially builds a series of points that approach Aa + (1 — \)8,
with the property that any point in the series has a ball of some fixed radius around it that fully belongs to C.
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Definition 4 (Player Decisiveness) Given a social choice function f : V — A, we say that
player i is decisive if for every v_; € V_; and x € A, there exists v; € V; such that f(v;,v_;) = x.

In other words, given the types of the other players, player i can enforce the choice of any
alternative (e.g. by assigning a “high enough” value to it). It is interesting to note that when only
two possible alternatives exist, the majority rule (i.e. player 1 “votes” for the alternative x with
highest value) is implementable, but is not decisive. For three or more alternatives, we know by
the previous proof that every implementable social choice function must admit at least one decisive
player, but we do not know of an “easy” explicit way of proving this. Our proof explicitly requires
the existence of one decisive player.

Theorem 3 Suppose V is unrestricted and |A| > 3. Then every implementable social choice
function f with at least one decisive player has non-negative constants k1, ..., k,, not all of them
equal to zero, and constants {Cy}rca such that, for allv €V,

f(v) € argmaz,c 4 { XL kvi(x) + Cy }.

From now on we assume w.l.o.g. that player 1 is decisive. Using Theorem 2, we can additionally
assume w.l.o.g that f satisfies S-MON. Throughout the proof we will use the following notation:

Notation: The valuation v/ =v+e€- 1; z, or equivalently v' = (vi+e€- 1z v_;), is almost identical
to v, except that v;(x) is increased by e. Finally, e; denotes the j-th elementary vector.

The proof in this section analyzes the implications of the following basic notion. This notion
stems from the work of Rochet [11] (and, independently, [12]), and is tightly related to W-MON in
a way that will be discussed below.

Definition 5 For every two distinct x,y € A, and any v_; € V_;, define:
5;y(v_i) = inf {vj(x) —vi(y) | vi € V; such that f(v},v_;) = z}.

By definition, if f(v) = x, then v;(z) — vi(y) > 5%(?)_,-) for every y € A. In words, fixing
v_q, 5;y(v_i) is the minimal'value difference between x and y whenever f chooses x. For instance,
in a second price auction, (%Vini, lose, (v—;) is equal to the minimal value player i needs to declare
in order to win the item. The next claims explore the structural properties of this definition, for
the case of an unrestricted domain, and show that (591@(1)_1) is an affine function of the vector of

value differences v_1(z) — v_1(y). From this, the affine maximization property will follow.
Claim 7 For everyv_1 € V_1, x,y € A, (5;,y(1)_1) s a real number, and 591@(1)_1) + 5;1,(1)_1) > 0.

(x

~—
|

Proof: By decisiveness, there exists v; € V; such that f(v;,v_1) = z. Thus (591@(@_1) <w
v1(y) < oo. Additionally, decisiveness also implies that there exists v} such that f(v],v_;
For any vj € V; with f(v},v_1) = z we have, by W-MON, that v} (z) — v} (y) > vi(z) —
Hence 6}, (v_;) > vi(z) — v}(y) > —o0.

For the second part, fix any € > 0, and take v} € V; such that f(v],v_1) =y and v} (y) —v](z) <
8y (v_1)+€ and vf € Vi with f(v],v_1) = 2 and v} (z) —v](y) < 03, (v_1)+€. By W-MON we have
V(@) — i (y) = vi(x) — viy). Thus Ly (v1) + € > v} () — v} (y) = 07 (2) — v} (y) = —0Ly (1) — e

V1 (y)-
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Therefore 6}, (v_1) + 6y, (v_1) +2- € > 0 for any € > 0, and the claim follows.

The inequality &%, (v_;) 46}, (v_;) > 0 was interpreted by Gui, Muller, and Vohra [3] as a 2-cycle
inequality, in the context of a specific “allocation graph”. For convex domains, the non-negativity
of all 2-cycles implies implementability [13]. For general domains, this is not necessarily the case,
and Rochet [11] replaced the 2-cycle requirement with an “all possible cycles” requirement, showing
that this is equivalent to implementability on all domains. Our proof shows that, in an unrestricted
domain, these ¢'’s have a concrete and well-defined structure, that essentially translates to being
affine functions.

Claim 8 For everyv_y € V_q, z,y € A, 61, (v-1) + 0y, (v_1) = 0.

Proof: By the previous claim it is enough to show that 591@(1)_1) + 5;33(1)_1) < 0. For every ¢ > 0
and v1 such that f(vi, v_1) = = and vy (z) —v1(y) = €+ 65, (v_1), consider v} = v1 +3e-1,+€- 1,.
Then f(v}, v—1) € {z,y} by W-MON. However, f(v], v_1) cannot be z, since v}(z) — vj(y) =
(v1(z)+€) — (v1(y) +3€) < 03, (v_1). We get that f(v], v_1) =y. Thus d,,(v_1) < v{(y) —v}(z)
v1(y) — v1(x) 4 26 = =0y, (v_1) + €, and so 0y, (v_1) 4 8, (v_1) < € for every € > 0. m

Claim 9 For everyv_; € V_q, x,y and z € A, 591@(1)_1) + 5;2(21_1) + 6l (v_1) = 0.

Proof: Fix v_;. For every vy, v},v] such that f(vy, v_1) =z, f(v], v_1) =y, f(vf, v_1) = 2,
truthfulness implies that vi(x) — p1(x,v_1) > v1(y) — p1(y,v_1), Vi(y) — p1(y,v_1) > vi(z) —
pr(2,0_1), and v} (=) — p1 (2, 01) > v} (&) — pr (2, v_1). Thus v1(z) — o1 (5) + 0] (5) — v} (2) + 0} (2) —
vj(z) > 0. In particular, 5glcy(v_1) + 5;2(11_1) + 6L (v_1) >03.

Now, suppose there exist v_1,z,y and z s.t. 5glcy(v_1) + 5;2(21_1) + 6L (v_1) > 0. By claim 8
[5alcy(v—1)+5;:c(v—1)]+[(%z(v—l)—’_(gy(v—l)]+[5§x(v—i)+5glcz(v—l)] = 0. And so, (5;;2,(?]_1)4—(5;3/(?]_1)4‘
5596(21_1) < 0, a contradiction. m

The next two claims show that 591@ (v_1) depends only on v_1(x)—v_1(y), the (n—1)-dimensional
vector that results in taking the difference between v_;(z) and v_;(y). Recall that (v —e€-1;,)
denotes the valuation v in which player j decreases his value for the alternative z by e.

Claim 10 For every L >0, j # 1, v_1 € V_1, and distinct x,y,z € A: 591@(21_1) = 591@(1)_1 - L.
1]'7Z)-

Proof: Let vy = v_1 —L-1;,. If f(v1, v_1) = x then S-MON implies that f(vi, v' ;) = =,
therefore 03, (v_1) > 03, (v_). Assume by contradiction that d;,(v_1) > 0, (v ). First note that
similar to the above argument, %m(v_l) > %m(v’_l). But then (by claim 8) (591@(1)_1) + %m(v_l) =
0= 5glcy(v’_ 1)+ (%x (v"1). By our assumption the LHS is greater than the RHS, a contradiction. m

Claim 11 Let z,y € A and let v_1,v" | be such that v_i(z) —v_1(y) = v/ _y(x) —v_1(y). Then
5%3/(2}—1) = 5;31(1),—1)'

Proof: Fix any v_1,v"; € V_; with v_1(z) — v_1(y) = v ;(z) — v {(y). For every j # 1
and every v; € V;, S-MON implies that adding a constant to all coordinates of v; will not

3This is actually true for any number of alternatives [11, 12].
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change the choice of f. Therefore we can assume w.l.o.g that v;(z) = vj(z) and v;(y) = vi(y).
Now define vj(w) = min{v;(w),v}(w)} for any w € A. By the last claim (claim 10) we have

Oty (v_1) = 63, (V")) = 63,(v' 1), and the claim follows.

The above claim shows that 6, (v_1) depends only on v_1(x) —v_1(y). From now on we slightly
abuse the notation and identify for the ease of exposition (591@(1)_1) with 591@(1)_1(3;) —v_1(y)). The
following is immediate:

Conclusion 1 For every 7,t € R" ', x,y,z € A: 6},(F) +6,,(—7) = 0, and 63, (F) +6,.(T ) +
8L, (=7 —t) = 0. In particular, 6,(0) + 6,,(0) =0, and &},(0) + 4,.(0) + 61,(0) = 0.

Claim 12 For every 7,5,t € R, z,y,z € A: 6, ,(F+1) —0,,(F) = 6L, (5+1) —6L,(5).

Proof: 1t is enough to show that d1,(5) — 6,,(7) = 61,(5 +1) — 6,,(F +¢). By conclusion 1,
gy 81 (7)) = 81 (8) L 8l (i) — — 8 (7 2) Qimi 1 (s L) — 8l (7=
020(8) = 05 (7) = 054(8) + 0y (—7) = =0, (7 — 5). Similarly, 6, (5+1) — 0, (T +1) = —0,,(F —5).

Claim 13 There exist non-negative real constants ks, ..., k, such that for every ¥ € R™ ' and
Y,z € A, 5;Z(F) ==X 5 kjrj + 5;2(0).

For the proof of this claim we need the following technical fact (for completeness, we provide
the proof for that in the end of the section). Here, a function g : R" — R is monotone if for every
a, 3 € R" with 5; > «; for every i, it is the case that g(3) > g(«).

Technical Claim ([7]): Fixz some monotone function g : R™ — R, and suppose there exists
hi : R — R such that g(r + 9 -e;) — g(r) = hi(6) for any r € R™ and § > 0 (where e; is the i’th unit
vector). Then there exist constants k; € R and v € R such that g(r) = >0 ki -1 + 7.

Proof (of claim): First notice that 5;2() is a monotone non-increasing real function: If f(vy, v_1) =
y then f(v1, v_1 +¢€-1;,) =y by SSMON. And so, the infimum on v_; 4+ €- 1, is taken on a
“larger set”, and is thus “smaller”. Now, claim 12 and the above technical claim together imply
that there exist real constants kY” such that d,.(7) = ;21 k¥” rj + ,,(0). Since d,.(-) is mono-
tone non-increasing, each k:fz must be non-positive. For convenience, we rewrite the equation as
5;2(77) = —Xj4 k‘;"z rj + 5;2(6), and assume that the k:fz constants are non—negatjve. Let us now
verify that k:;cy = kY* for any z,y,2,w € A. B}j the above we get that k:;cy = 5glcy(0) - 5;,y(ej). By
conclusion 1 we get k;;cy = ki* as 61,(e5) +6,.(0) + 61, (—e;) = 0. Similarly, k3T =k{=. m

We can now easily conclude the proof of the theorem. Fix an arbitrary alternative w € A,
and set the constants C, = &% (0) for every z # w, and C,, = 0. Fix v € V, and suppose that

fv) ==z ifherefore,ifor every y # 1z, v (x)7— v1(y) > 5%y(v_1) = =221 ki(vj(z) —v;(y)) +05,(0).
Since 6, (0) = 61,,(0) + 6,,(0) and 6},,(0) = —d,,,(0) we get, rearranging terms, that v;(z) +
>oiz1 kv (@) + Co > vi(y) + 32,4 kjvi(y) + Cy, as needed. m

Proof of Technical Claim:

We split the claim to two:
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Claim 14 Suppose m : Ry — R is monotonically non-decreasing and there exists h : Ry — R4
such that m(z+9)—m(z) = h(d) for any x,0 € Ry. Then there exist w € Ry such that h(§) = w-0.

Proof: Let w = h(1) (note that w > 0 since m is non-decreasing). First we claim that for any two
integers p, ¢, h(p/q) = w - (p/q)- Note that h(1) = m(1) —m(0) = S¢=5 m((i + 1)/q) — m(i/q) =
q-h(1/q). Thus h(1/q) = (1/q) - h(1). Similarly, h(p/q) = m(p/q) — m(0) = 303 m((i +1)/q) —
m(i/q) = p-h(1/q) = (p/q) - h(1) = (p/q) - w. Now we claim that for any real 4, h(d) = § - w.
Notice that since m is monotonically non-decreasing then A must be monotonically non-decreasing
as well. Suppose by contradiction that h(d) > § - w. Choose some rational r > ¢ close enough to
d such that h(d) > - w. Since h is monotone and r > § then h(r) > h(¢), but since r is rational,
h(r) =r-w < h(d), a contradiction. A similar argument holds if A(d) < §-w. B

Claim 15 Suppose that X C R™ has the property that x € X and y > x implies y € X. Let
m : X — R be monotonically non-decreasing, and suppose there exist wy,...,wy such that m(x +
d-e)—m(z) =w;-0 for any i, * € X, and 6 > 0. Then there exist v € R such that m(z) =
D Wit T+
Proof: First we claim that for any z,y € X such that y; > x; for all 4, it is the case that m(y) =
m(x)+Y i wi- (y;—x;). Notice that (y1,x2,...,2,) € X, and m(y1, 22, ..., 2,) = m(x)+hi(y1 —
z1). Repeating this step n times we get m(y) = m(x) + > i wi - (yi — ).

Now fix some z* € X. We claim that for any z € X, m(z) = m(2*) + > w; - (x; — 2f). To
see this, choose some y such that y; > max{wz;, z}} for all i. Thus m(y) = m(z)+> 1 wi-(yi —x;)
and also m(y) = m(z*) + Y1, w; - (y; — ), therefore the claim follows. ®
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