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Abstract. We study efficiency and budget balance for designing mecha-
nisms in general quasi-linear domains. Green and Laffont [13] proved that
one cannot generically achieve both. We consider strategyproof budget-
balanced mechanisms that are approximately efficient. For deterministic
mechanisms, we show that a strategyproof and budget-balanced mech-
anism must have a sink agent whose valuation function is ignored in
selecting an alternative, and she is compensated with the payments made
by the other agents. We assume the valuations of the agents come from
a bounded open interval. This result strengthens Green and Laffont’s
impossibility result by showing that even in a restricted domain of val-
uations, there does not exist a mechanism that is strategyproof, bud-
get balanced, and takes every agent’s valuation into consideration—a
corollary of which is that it cannot be efficient. Using this result, we
find a tight lower bound on the inefficiencies of strategyproof, budget-
balanced mechanisms in this domain. The bound shows that the ineffi-
ciency asymptotically disappears when the number of agents is large—a
result close in spirit to Green and Laffont [13, Theorem 9.4]. However,
our results provide worst-case bounds and the best possible rate of con-
vergence. Next, we consider minimizing any convex combination of inef-
ficiency and budget imbalance. We show that if the valuations are unre-
stricted, no deterministic mechanism can do asymptotically better than
minimizing inefficiency alone. Finally, we investigate randomized mech-
anisms and provide improved lower bounds on expected inefficiency. We
give a tight lower bound for an interesting class of strategyproof, budget-
balanced, randomized mechanisms. We also use an optimization-based
approach—in the spirit of automated mechanism design—to provide a
lower bound on the minimum achievable inefficiency of any random-
ized mechanism. Experiments with real data from two applications show
that the inefficiency for a simple randomized mechanism is 5-100 times
smaller than the worst case. This relative difference increases with the
number of agents.

1 Introduction

Consider a group a friends deciding which movie to watch together. The movie
can be watched in someone’s home by renting it or at any of a number of
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movie theaters. Each of these choices incurs a cost. Since individual preferences
are different and sometimes conflicting, the final choice may not make every-
body maximally satisfied. This may cause some of the agents to misreport their
preferences or drop out of the plan. To alleviate this problem, one can think of
monetary transfers so that the friends who get their more-preferred choice pay
more than the friends that get their less-preferred choice. Desirable properties of
such a choice and payment rule are that (1) the total side payments (transfers
among the friends) should sum to zero, so there is no surplus or deficit, and
(2) the choice is efficient, that is, the movie that is selected maximizes the sum
of all the friends’ valuations. Since the valuations are private information of the
friends, an efficient decision requires the valuations to be revealed truthfully. This
simple example is representative of many joint decision-making problems that
often involve monetary transfers. Consider, for example, a group of firms sharing
time on a jointly-owned supercomputer, city dwellers deciding on the location
and choice of a public project (e.g., stadium, subway, or library), mobile ser-
vice providers dividing spectrum among themselves, or a student body deciding
which musician or art performer to invite to entertain at their annual function.
These problems all call for efficient joint decision making and involve—or could
involve depending on the application—monetary transfers.

This is a ubiquitous problem in practice and a classic problem in the acad-
emic literature. We study the standard model of this problem where the agents’
utilities are quasi-linear: each agent’s utility is her valuation for the selected
alternative (e.g., the choice of movie) minus the money she has to pay. A clas-
sic goal is to select an efficient alternative, that is, the one that maximizes the
sum of the agents’ valuations (also known as social welfare). We will study the
problem of designing strategyproof mechanisms, that is, mechanisms where each
agent is best off revealing the truth regardless of what other agents reveal.

Even though there are mechanisms that select efficient alternatives in a truth-
ful manner (e.g., the Vickrey-Clarke-Groves (VCG) mechanism [5,14,34]), the
transfers by the individuals do not sum to zero (in public goods settings, the
VCG mechanisms leads to too much money being collected from the agents).
The execution of such a mechanism needs an external mediator who consumes
the surplus (or may need to pay the deficit), to keep the mechanism truthful and
efficient—a phenomenon known as ‘money burning’ in literature. In our movie
selection example, this implies that we need a third party who will collect the
additional money paid by the individuals, which is highly impractical in many
settings. This has attracted significant criticism of the VCG mechanism [30].
Ideally, one would like to design strategyproof mechanisms that are efficient and
budget balanced, that is, they do not have any surplus or deficit. Green and Laf-
font [13] proved a seminal impossibility for this setting: in the general quasi-linear
domain, strategyproof, efficient mechanisms cannot be budget balanced.

In this paper, we primarily focus on the problem of minimizing inefficiency
subject to budget balance in the general setting of quasi-linear utilities. This is
because, in the applications of interest to this paper (e.g., movie selection),
budget balance is more critical than efficiency. However, we show that for
a large set of agents, the per-agent inefficiency vanishes. We also show that
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for deterministic settings, optimizing the sum (or any convex combination) of
efficiency and budget balance—which seems to be the most sensible objective—
does not provide any asymptotic benefit over maximizing efficiency subject to
budget balance.

1.1 Contributions of this Paper

In this paper, we assume that the agents’ valuations are picked from a bounded
open interval. In Sect. 3, we characterize the structure of truthful, budget bal-
anced, deterministic mechanisms in this restricted domain, and show that any
such mechanism must have a sink agent,' whose reported valuation function does
not impact the choice of alternative and she gets the payments made by the other
agents (Theorem 1). This result strengthens the Green and Laffont impossibility
by showing that even in a restricted domain of bounded valuations, there does
not exist a mechanism that is strategyproof, budget balanced, and takes every
agent’s valuation into consideration—a corollary of which is that it cannot be
efficient. With the help of this characterization, we find the optimal determinis-
tic mechanism that minimizes the inefficiency. This provides a tight lower bound
on the inefficiency of deterministic, strategyproof, budget-balanced mechanisms.
By inefficiency of a mechanism in this paper, we mean the worst-case inefficiency
over all valuation profiles. We provide a precise rate of decay (%) of the ineffi-
ciency with the increase in the number of agents (Theorem 2). This implies that
the inefficiency vanishes for large number of agents. To contrast this mechanism
with the class of mechanisms that minimize budget imbalance subject to effi-
ciency, we considered the joint minimization problem of a convex combination
of inefficiency and budget imbalance, and observed that it does not provide any
asymptotic benefit over the previous problem. Due to limited space, we discuss
this only in the full version of this paper [28].

We investigate the advantages of randomized mechanisms in Sect. 4. We first
consider the class of generalized sink mechanisms. These mechanisms have, for
every possible valuation profile, a probability distribution over the agents that
determines each agent’s chance of becoming the sink. This class of mechanisms
is budget balanced by design. We show examples where mechanisms from this
class are not strategyproof (Algorithm 2), and then isolate an interesting subclass
whose mechanisms are strategyproof, the modified irrelevant sink mechanisms
(Algorithm 3). We show that no mechanism from this class can perform better
than the deterministic mechanisms if the number of alternatives is greater than
the number of agents (Theorem 3). Since inefficiency (weakly) increases with the

! Mechanisms using this idea have been presented with different names in the liter-
ature. The original paper by Green and Laffont [13] refers to this kind of agents
as a sample of the population. Later Gary-Bobo and Jaaidane [11] formalized
the randomized version of this mechanism which is known as polling mechanism.
Faltings [9] refers to this as an exzcluded coalition (when there are multiple such
agents) and Moulin [25] mentions this as residual claimants. However, we use the
term ‘sink’ for brevity and convenience, and our paper considers a different setup
and optimization objective.
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number of alternatives (Theorem4), we consider the extreme case of two alter-
natives and compare the performances of different mechanisms. We show that a
naive uniform random sink mechanism and the modified irrelevant sink mech-
anism (Algorithm 3) perform equally well (Theorems5 and 6) and reduce the
inefficiency by a constant factor of 2 from that of the deterministic mechanisms.
However, the optimal, strategyproof, budget-balanced, randomized mechanism
performs better than these mechanisms. Since the structure of strategyproof
randomized mechanisms for general quasi-linear utilities is unknown,? we take
an optimization-based approach to find the best mechanism for the special case
of two agents. This approach is known in the literature as automated mechanism
design [6]. For an overview, see [32]. We discretize the range of the valuations into
finite levels and show that when the number of levels increases—thereby making
the lower bound tighter to the actual open-interval problem—the improvement
factor reduces to less than 5 (Fig. 1). This is a significant improvement over the
class of randomized sink mechanisms, which only improve over the best deter-
ministic mechanism by a factor of 2.

We present experiments using real data from two applications. They show
that in practice the inefficiency is significantly smaller and has a faster rate of
decay than the worst case bounds (Sect. 5). We conclude the paper in Sect. 6 and
present future research directions. Owing to the page limitation, the complete
details of the results and the proofs are available in the full version of this
paper [28].

1.2 Relationships to Prior Literature

The Green-Laffont impossibility result motivated the research direction of
designing efficient mechanisms that are minimally budget imbalanced. The app-
roach is to redistribute the surplus money in a way that satisfies truthfulness of
the mechanism [3,4]. The worst case optimal and optimal in expectation guaran-
tees have been given for this class of mechanisms in restricted settings [16,17,25].
The performance of this class of redistribution mechanisms has been evaluated in
interesting special domains such as allocating single or multiple (identical or het-
erogeneous) objects [15]. Also, mechanisms have been developed and analyzed
that are budget balanced (or no deficit) and minimize the inefficiency in special
settings [18,22,24]. Characterization of strategyproof budget-balanced mecha-
nisms in the setting of cost-sharing is explored by Moulin and Shenker [26] and
its quantitative guarantees are presented by Roughgarden and Sundararajan [31].
If the distribution of the agents’ valuations is known and we assume common
knowledge among the agents over those priors, the strategyproofness requirement
can be weakened to Bayesian incentive compatibility. In that weaker framework,
mechanisms can extract full expected efficiency and achieve budget balance [1,7].
However, those mechanisms use knowledge of the priors. Therefore, in the gen-
eral quasi-linear setting, for mechanisms without priors, it is an important open

2 For randomized mechanisms, results involving special domains are known, e.g., facil-
ity location [10,29,33], auctions [8], kidney exchange [2], and most of these mecha-
nisms aim for specific objectives.
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question to characterize the class of strategyproof budget-balanced mechanisms,
to find such mechanisms that minimize inefficiency, and to find strategyproof
mechanisms that minimize the sum (or other convex combination) of inefficiency
and budget imbalance. This paper addresses this important research gap in the
general quasi-linear setting, for both deterministic and randomized settings. Our
approach is also prior-free—the strategyproofness guarantees consider the worst-
case scenarios. We show that the answers are asymptotically positive: even in
such a general setup, the Green-Laffont impossibility is not too restrictive when
the number of agents is large, and our mechanisms seem to work well on real-
world datasets.

2 Model and Definitions

We denote the set of agents by N = {1,2,...,n} and the set of alternatives
by A = {a1,as,...,a,}. We assume that each agent’s valuation is drawn from

an open interval (=X, M) c R, that is, the valuation of agent i is a mapping

202

vi t A — (f%, %),Vi € N and is a private information. Denote the set of all
such valuations of agent i as V; and the set of valuation profiles by V = X;cnV;.

A mechanism is a tuple of two functions (f,p), where f is called the social
choice function (SCF) that selects the allocation and p = (p1,pa,...,pn) is
the vector of payments, p; : V. — R,Vi € N. The utility of agent ¢ for an
alternative a and valuation profile v = (v;,v_;) is given by the quasi-linear
function: wv;(a) — pi(vi,v_;). For deterministic mechanisms, f : V. — A is a
deterministic mapping, while for randomized mechanisms, the allocation function
f is a lottery over the alternatives, that is, f : V — AA. With a slight abuse
of notation, we denote v;(f(vi,v_;)) = Eqnf(v,v_,)vila) = f(vi,v_;) - v; to be
the expected valuation of agent i for a randomized mechanism. The following
definitions are standard in the mechanism design literature.

Definition 1 (Strategyproofness). A mechanism (f,p) is strategyproof if
for allv = (v;,v_;) €V,

'Ui(f(vivvfi)) _pi('Uiani) 2 vi(f(vgvvfi)) _pi(vgvvfi)a v U'Z € ‘/177’ €N.

Definition 2 (Efficiency). An allocation f is efficient if it mazimizes social
welfare, that is, f(v) € argmaxaea ) ;e vi(a), Vv € V.

Definition 3 (Budget Balance). A payment function p; : V — R,i € N is
budget balanced if ), pi(v) =0, Yo € V.

In addition, in parts of this paper we will consider mechanisms that are oblivious
to the alternatives—a property known as neutrality. To define this, we consider
a permutation m : A — A of the alternatives. Therefore, m over a randomized
mechanism and over a valuation profile will imply that the probability masses
and the valuations of the agents are permuted over the alternatives according to
m, respectively.?

3 We have overloaded the notation of m following the convention in social choice litera-
ture (see, e.g., Myerson [27]). The notation 7(v) denotes the valuation profile where
the alternatives are permutated according to .
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Definition 4 (Neutrality). A mechanism (f,p) is neutral if for every per-
mutation of the alternatives m (where w(v) # v) we have

m(f(v)) = f(x(v)) and  pi(n(v)) = pi(v), VveV,VieN.

Note that efficient social choice functions are neutral and the Green-Laffont
result implicitly assumes this property.

The most important class of allocation functions in the context of determin-
istic mechanisms are affine maximizers, defined as follows.

Definition 5 (Affine Maximizers). An allocation function f is an affine
maximizer if there exist real numbers w; > 0,79 € N, not all zeros, and a function
k:A— R such that f(v) € argmaxaea (3 ;e n wivi(a) + £(a)).

As we will explain in the body of this paper, we will focus on neutral affine
maximizers [23], where the function & is zero.

f(v) € argmax Z w;v;(a) neutral affine maximizer (1)
“eA len

The following property of the mechanism ensures that two different payment
functions of an agent, say i, that implement the same social choice function differ
from each other by a function that does not depend on the valuation of agent i.*

Definition 6 (Revenue Equivalence). An allocation f satisfies revenue
equivalence if for any two payment rules p and p’' that make f strategyproof,
there exist functions h; : V_; — R, such that

pi(’l)i,’l),i) :pg(vhv,i) + hi('l},i), Y, € Vi,Vo_; € V_;,Vi € N.
The metrics of inefficiency we consider in this paper are defined as follows.

Definition 7 (Sample Inefficiency). The sample inefficiency for a determin-
istic mechanism (f,p) is:

nM a€A
vev iEN iEN

rM(f) = L sup [max vi(a) — Z vl(f(v))] . (2)

The metric is adapted to expected sample inefficiency for randomized
mechanisms:

1
()= — sup {Ef(v) [Teaj(;v”i(“) - ;vw(f (v))] } : (3)

The majority of this paper is devoted to finding strategyproof and budget bal-
anced mechanisms (f, p) that minimize the sample inefficiency.

4 This definition is a generalization of auction revenue equivalence and is commonly
used in the social choice literature (see, e.g., Heydenreich et al. [21]).



Efficiency and Budget Balance 375

A different, but commonly used, metric of inefficiency in the literature is the
worst-case ratio of the social welfare of the mechanism and the maximum social
welfare: inf,cy WZGNUM(@ A conclusion similar to what we prove in this
paper: “inefficiency vanishes when n — o0”, holds in that metric as well, but
unlike our metric, that metric would require an additional assumption that the
valuations are positive, which is not always the case in a quasi-linear domain.

We are now ready to start presenting our results. We begin with deterministic
mechanisms that are strategyproof and budget balanced.

3 Deterministic, Strategyproof, Budget-Balanced
Mechanisms

Before presenting the main result of this section, we formally define a class of
mechanisms we call sink mechanisms. A sink mechanism has one or more sink
agents, given by the set S C N, picked a priori, whose valuations are not used
when computing the allocation (i.e., f(v) = f(v_g)) and the sink agents do not
pay anything and together they receive the payments made by the other agents.
The advantage of a sink mechanism is that it is strategyproof if it is strate-
gyproof for the agents other than the sink agents and the surplus is divided
among the sink agents in some reasonable manner, and sink mechanisms are
budget balanced by design. An example of a sink mechanism is where S = {is}
(only one sink agent) and f(v_; ) chooses an alternative that would be effi-
cient had agent i, not exist, that is, f(v_;,) = argmaxeea X ;e (i} vila).
The Clarke [5] payment rule can be applied here to make the mechanism
strategyproof for the rest of the agents—that is, for agents other than i,
pi(v—i,) = maxeea ZjeN\{is,i} vj(a) — ZjeN\{is7i} v (f(v=s,)), Vi € N\ {is}.
Paying agent i, the ‘leftover’ money (that is, p;, (v—-i,) = = > ;e nn 1103 i (V-i.))
makes the mechanism budget balanced. Our first result establishes that the exis-
tence of a sink agent is not only sufficient but also necessary for deterministic
mechanisms.

Theorem 1. Any deterministic, strategyproof, budget-balanced, neutral mecha-
nism (f,p) in the domain V has at least one sink agent.®

All proofs are provided in the full version of this paper [28]. This proof involves
two steps. First, we leverage the fact that a mechanism that satisfies the stated
axioms must necessarily be a neutral affine maximizer (Eq. 1) and has a specific
structure for payments. The characterization of the payment structure comes

5 Green and Laffont’s impossibility result holds for efficient mechanisms, and all effi-
cient mechanisms are neutral. However, there could be instances where multiple
alternatives are efficient, i.e., there is a tie. The neutrality of an efficient rule is up to
tie-breaking, and Green-Laffont applies no matter how the tie is broken. Similarly,
our result also holds irrespective of how the tie is broken. Therefore, this theorem
covers and generalizes that result since having at least one sink agent implies that
the outcome cannot be efficient.
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from the revenue equivalence result. The second part of the proof shows that
for such payment functions, it is impossible to have no sink agents (identified as
agents that have zero weights, w; = 0, in the affine maximizer). This is shown
in a contrapositive manner—assuming that there is no sink agent, we construct
valuation profiles that lead to a contradiction to budget balance.

The next goal is to find the mechanism in this class that gives the lowest
sample inefficiency (Eq.2). In the proof of the next theorem (presented in [28])
we show that this is achieved when there is exactly one sink and the neutral
affine maximizer weights are equal for all other agents. This, in turn, yields the
following lower bound on inefficiency.

Theorem 2. For every deterministic, strategyproof, budget-balanced, neutral
mechanism (f,p) over V, v (f) > L. This bound is tight.

4 Randomized, Strategyproof, Budget-Balanced
Mechanisms

In Sect. 3, we saw that the best sample inefficiency achieved by a deterministic
budget balanced mechanism is % In this section, we discuss how the inefficiency
can be reduced by considering randomized mechanisms. An intuitive approach is
to consider a mechanism where each agent is picked as a sink with probability %

Definition 8 (Naive Randomized Sink). A naive randomized sink (NRS)
mechanism picks every agent as a sink w.p. % and takes the efficient allocation
without that agent. The payments of the non-sink agents are VCG payments
without the sink. The surplus is transferred to the sink.

Clearly, this mechanism is strategyproof, budget balanced, and neutral by design.
One can anticipate that this may not yield the best achievable inefficiency bound.
Unlike deterministic mechanisms, very little is known about the structure of
randomized strategyproof mechanisms in the general quasi-linear setting. Fur-
thermore, we consider mechanisms that are budget-balanced in addition. Hence,
even though we can obtain an upper bound on the expected sample inefficiency
(rM(f)) by considering specific mechanisms like the NRS mechanism described
above, the problem of providing a lower bound (i.e., no randomized mechanism
can achieve a smaller 7 (f) than a given number), seems elusive in the general
quasi-linear setting.

Therefore, in the following two subsections, we consider two approaches,
respectively. First, we show lower bounds in a special class of strategyproof,
budget-balanced, randomized mechanisms. Second, we provide a lower bound
of the optimal, strategyproof, budget-balanced, randomized mechanism for two
agents and two alternatives, using a discrete relaxation of the original problem
(in the spirit of automated mechanism design [6,32]). However, the problems of
finding a mechanism that matches this lower bound and extending the lower
bound to any number of agents and alternatives are left as future work.
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4.1 Generalized Sink Mechanisms

In the first approach, we consider a broad class of randomized, budget-balanced
mechanisms, which we coin generalized sink mechanisms. In this class, the prob-
ability of an agent i to become a sink is dependent on the valuation profile v € V|
and we consider mechanisms with only one sink, i.e., if the probability vector
returned by a generalized sink mechanism is g(v), then w.p. ¢;(v), agent i is
treated as the only sink agent.® Clearly, the naive randomized sink mechanism
belongs to this class. Once agent ¢ is picked as a sink, the alternative chosen
is the efficient one without agent i. All agents j # i are charged a Clarke tax
payment in the world without 4, and the surplus amount of money is transferred
to the sink agent i. Algorithm 1 shows the steps of a generic mechanism in this
class.

ALGORITHM 1. Generalized Sink Mechanisms, G

1: Input: a valuation profile v € V

2: A generic mechanism in this class is characterized by a probability
distribution over the agents N (which may depend on the valuation
profile), g : V. — AN

3: The mechanism randomly picks one agent ¢ in N with probability g;(v)

4: Treat agent ¢ as the sink

Clearly, not every mechanism in this class is strategyproof. The crucial aspect
is how the probabilities of choosing the sink are decided. If the probability g;(v)
depends on the valuation of agent i, that is, v;, then there is a chance for agent ¢
to misreport v; to have higher (or lower) probability of being a sink (being a sink
could be beneficial since she gets all the surplus). For example, the irrelevant
sink mechanism given in Algorithm 2 is not strategyproof.

ALGORITHM 2. Irrelevant Sink Mechanism (not strategyproof)

1: Input: a valuation profile v € V
2: for agent 7 in N do
3: Define: a*(v—;) = argmaxaea Y, v;(a)
if >0, vi(a"(v=i)) = 3254 vj(a) > M for all a € A\ {a"(v—;)} then
Call ¢ an irrelevant agent
if irrelevant agent is found then
Arbitrarily pick one of them as a sink with probability 1
else
Pick an agent i with probability 1 and treat as sink

In the full version of this paper [28], we provide an counterexample to strat-
egyproofness of this mechanism. However, a small modification of the previous
mechanism leads to a strategyproof generalized sink mechanism. This shows

5 One can think of a more general class of sink mechanisms where multiple agents
are treated as sink agents simultaneously. However, it is easy to see—by a similar
argument to that in the context of deterministic mechanisms—that using multiple
sinks cannot decrease inefficiency.
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that the class of generalized sink mechanisms is indeed richer than the constant
probability sink mechanisms. In the modified version, we pick a default sink with
a certain probability, which will be the sink if there exists no irrelevant agent
among the rest of the agents. The change here is that when an agent is picked as
a default sink, her valuation has no effect in deciding the sink. See Algorithm 3.

ALGORITHM 3. Modified Irrelevant Sink Mechanism (strategyproof)

1: Input: a valuation profile v € V

2: Pick agent i as a default sink with probability p;

3: for agent j in N\ {i} do

4:  if irrelevant agent(s) found within N \ {i} then
5: Arbitrarily pick one of them as a sink

6 Irrelevant agent is found

7: if no irrelevant agent is found within IV \ {i} then
8:  Treat agent 7 as sink

It is easy to verify that this mechanism is strategyproof. Interestingly, no
generalized sink mechanism can improve the expected sample inefficiency over
deterministic mechanisms if there are more alternatives than agents (m > n).

Theorem 3 (Generalized Sink for m > n). If m > n, every generalized sink
mechanism has expected sample inefficiency > %

The proof is critically dependent on m > n. However, we can hope for a smaller
inefficiency if the number of alternatives is small. We state this intuition formally
as follows.

Theorem 4 (Increasing Inefficiency with m). For every mechanism f and
for a fized number of agents n, the expected sample inefficiency is non-decreasing

inm, i.e., ) (f) > (f),Vmy >my"

Theorems 3 and 4 suggest that in order to minimize inefficiency, one must
have a small number of alternatives. So from now on, we consider the extreme
case with m = 2, where we investigate the advantages of randomization.

For two alternatives, the following theorem shows that the naive randomized
sink (NRS) mechanism reduces the inefficiency by a factor of two.

Theorem 5 (Naive Randomized Sink). For m = 2, the expected sample

inefficiency of the NRS mechanism is # f%] ~ ﬁ

Even though the modified irrelevant sink (MIS) mechanism (Algorithm 3) is
more sophisticated than NRS, it turns out that both of them have the same
inefficiency on every valuation profile. Both mechanisms choose a single agent
as a sink. The default sink for MIS is chosen uniformly at random, identical to
the choice of the sink for NRS. If there does not exist an irrelevant sink in the
rest of the agents, the inefficiency remains the same as that for the default sink,

7 We overload the notation for the expected sample inefficiency r, with r,, , to make
the number of alternatives explicit.
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which is identical to the inefficiency of NRS for that choice of sink. But even if
an irrelevant sink exists, by the construction of the irrelevant sink, the resulting
alternative is the efficient alternative for the agents except the default sink. This
outcome would have resulted even if the default sink were chosen as the sink.
Therefore, the inefficiencies in MIS and NRS mechanisms are the same. Hence,
we get the following theorem.

Theorem 6 (Modified Irrelevant Sink). For m = 2, the expected sample
inefficiency of the MIS mechanism (Algorithm 3) is at least # (%1 ~ i

4.2 TUnrestricted Randomized Mechanisms

We now move on to study optimal randomized mechanisms without restrict-
ing attention necessarily to generalized sink mechanisms. For a fixed number
of agents, minimizing the expected sample inefficiency is equivalent to minimiz-
ing the expected absolute inefficiency given by nrM(f). Finding a mechanism
that achieves the minimum absolute inefficiency can be posed as the following

optimization problem.

min sup [max vi(a) — Z vi(f(v))

fp wev |a€d fog iEN
st v (f(v,v-3)) — pi(vi,v_;)
> vi(f(vi,v—i)) — pi(vi, v_i), Yui,v;,v_3,Vi € N
Y falv)=1, Y eV,

acA

Zpi(v) =0, Vvev,
€N

fa(v) >0, Yv € V,a € A.

(4)

The objective function denotes Inefficiencies of randomized, strategyproof,

. . budget-balanced mechanisms, m=2,n=2, M =1.0
the absolute inefficiency. The first — T 71— T T T— 71—
set of inequalities in the con-

1.0

. 0.9t % = |ower bound for deterministic (THEORY)
straints denote the strategyproof- 0l .| — lower bound for deterministic (AMD)

. t h th t ' =+ lower bound for generalized sink (THEORY)
ness requ1remen7 where € erm 0.7} 4— lower bound for generalized sink (AMD)
’Ui(f(’U)) = v - f(’U) denotes the < ol o—o lower bound for optimal randomized (AMD)
expected valuation of agent ¢ due = ool ... RO SO NN WO LI |

. . =
to the randomized mechanism f. = |
The second and last set of inequali- 0l
ties ensure that the f,(v)’s are valid 0l
probability distributions, and the ol
third set of inequalities ensure that 7 4 T N S R N
. . 2 3 4 5 6 7 8 9 10 11 12 13
the budget 1S balanced. The Optl— Number of valuation levels, k

mization is over the social choice

functions f and the payments p, Fig.1. Lower bound for the discrete relax-
where the f variables are non- ation of the inefficiency minimization LP.
negative but the p variables are unrestricted. Clearly, this is a linear program
(LP), which has an uncountable number of constraints (because the equalities
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and inequalities have to be satisfied at all v € V, which are the profiles of
valuation functions mapping alternatives to an open interval). We address this
optimization problem using finite constrained optimization techniques by dis-
cretizing the valuation levels. We assume that each agent’s valuations are uni-
formly discretized with k levels in [— M /2, M /2], which makes the set of valuation
profiles V finite. The optimal value of such a discretized relaxation of the con-
straints provides a lower bound on the optimal value of the original problem.
This is because the discretized relaxation of the valuations only increases the
feasible set since some of the constraints are removed, that is, more f’s and p’s
satisfy the constraints, allowing a potentially lower value to be achieved for the
minimization objective.

We conducted a form of automated mechanism design [6,32] by solving this
LP using Gurobi [19] for increasing values of k. We apply the same optimization-
based approach for generalized sink and the deterministic cases as well, even
though for these cases we have theoretical bounds. The solid lines in Fig. 1 show
the optimization-based results (denoted as AMD) and the dotted lines show
the theoretical bounds. Note that for deterministic case, the theoretical and
optimization-based approaches overlap since the inefficiency is unity even with
two valuation levels. The convergence of the optimization-based approach for
generalized sink mechanism shows the efficacy of the approach and helps to
predict the convergence point for the optimal randomized mechanism. One can
see that the lower bound is greater than 0.2 for the optimal mechanism, but it
seems to converge to a value much lower than 0.5.

5 Experiments with Real Data

In this section we investigate the average and worst-sink performances of the the
naive randomized sink (NRS) (Definition 8) mechanism on real datasets of user
preferences. Going back to the example of movie selection by a group of friends
(Sect. 1), we consider several sizes of the group. A small group consists of tens of
friends, while if the decision involves screening a movie at a school auditorium,
the group size could easily be in the hundreds. This is why we consider group
sizes spanning from 10 to 210in steps of 50.

A similar situation occurs When a 10,]Expected sample inefficiency (Naive Random Sink)

+—+ Worst-case Bound, m =2

group of people decides which come- BB Movie Dota: Genre Drama
dian/musician to invite in a social gath- ] I Movie Data: Genre Comedy

ester Data
ering, where they need to pay the cost —
of bringing the performer. Keeping these
motivating situations in mind, we used
two datasets that closely represent the
scenarios discussed. We used the Movie-
Lens 20M dataset [20] and the Jester
dataset [12] to compare the average and  10° -8 LS B R
worst-case performances of NRS. The first Number of Agents,
dataset contains preferences for movies,

-
4
L

’\o\4

10°

Expected Sample Inefficiency

Fig. 2. Naive random sink mechanism
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while the second contains preferences for online jokes. The MovieLens 20M
dataset (m1-20m) describes users’ ratings between 1 and 5 stars from Movie-
Lens, a movie recommendation service. It contains 20,000,263 ratings across
27,278 movies. These data were created from the ratings of 138,493 users between
January 09, 1995 and March 31, 2015. For our experiment, we sampled the pref-
erences of a specific number of users (shown as agents on the x-axis of Figs. 2
and 3) 100 times uniformly at random from the whole set of users that rated a
particular genre of movies, and computed the sample inefficiency on this sampled
set and plotted it along with the standard deviation.

The Jester dataset (jester-data-1)
used in our experiment contains data from
24,983 users who have rated 36 or more
jokes, a matrix with dimensions 24983 X
100, and is obtained from Jester, an online
joke recommendation system.®

Figure 2 shows that the real preferences
of users yield much lower expected sam-
ple inefficiencies for the naive randomized
sink (NRS) mechanism than the theoret-  10° T
ical worst-case guarantee. The improve- Number of Agents,
ment ranges from roughly a factor of 5 (for
a group size of 10) to almost 100 (for a
group size of 210). This also indicates that
the rate of decay of the inefficiency with the size of the group is faster than the
theoretical guarantee. The bars in Figs. 2 and 3 show the average (w.r.t. the ran-
domly selected users) expected sample inefficiency (Eq. 3) and the inefficiency of
the worst sink of the NRS mechanism respectively with the standard deviations
around them.

By the arguments preceding Theorem 6 and since MIS (Algorithm 3) also
picks exactly one sink, it is easy to see that the average inefficiency and ineffi-
ciency of the worst sink of MIS will be same as NRS.

107 Sample inefficiency of the worst sink

4+—+ Worst-case Bound, m =2
@ Movie Data: Genre Drama
Bl Movie Data: Genre Comedy
[ Jester Data

e
I

107}

Sample Inefficiency (worst-case)

Fig. 3. Worst-sink behavior

6 Conclusions and Future Research

In this paper, we considered the classic question of the interplay between effi-
ciency and budget balance, properties that are incompatible with strategyproof-
ness due to the Green-Laffont impossibility result, in the general quasi-linear
setting. We proved the limits of possibility in the context of deterministic

8 In both datasets there are missing values because a user has typically not rated all
movies/jokes. Before our experiment, we filled the missing values with a random real-
ization of ratings drawn from the empirical distribution for that alternative (movie
or joke). The empirical distribution of an alternative is created from the histogram
of the available ratings of the users. We cleaned the dataset by keeping only those
alternatives that have at least 10 or more available ratings and filled the rest using
their empirical distributions.
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mechanisms for both efficiency and budget balance. For randomized mechanisms,
we identified a class of mechanisms that perform better than deterministic ones.
We used an optimization-based scheme to find the optimal randomized mecha-
nism. Experiments with real datasets showed that the values (rate of decay) of
inefficiency are significantly smaller (faster) than those of the theoretical worst
case. Future research includes studying the structure of the optimal randomized
mechanisms that achieve the (theoretical) improved efficiency. Future work also
includes investigating the rate of improvement of the optimal bound for a general
number of agents.
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