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1. Introduction. The Nash equilibria of two-person, zero-sum sequential games are the solutions to

min
x∈�

max
y∈�

�y�Ax� =max
y∈�

min
x∈�

�y�Ax�� (1)

where � and � are polytopes defining the players’ strategies and A is the payoff matrix (Koller et al. [11];
Romanovskii [19]; von Stengel [21, 22]). When the minimizer plays a strategy x ∈� and the maximizer plays
y ∈ �, the expected utility to the maximizer is �y�Ax�, and since the game is zero sum, the minimizer’s
expected utility is �y�−Ax�. Problem (1) can be expressed as a linear program, but the resulting formulations are
prohibitively large for most interesting games. For instance, the payoff matrix A in (1) for limit Texas Hold’em
poker has dimension 1014 × 1014 and contains more than 1018 nonzero entries. Problems of this magnitude
are far beyond the capabilities of state-of-the-art general-purpose linear programming solvers. Even solving a
substantially smaller game with a 106 × 106 payoff matrix containing 50 million nonzeros with conventional
linear programming solvers is computationally demanding both in terms of time and memory (Gilpin and
Sandholm [5]).
We present a novel algorithmic approach for finding approximate solutions to (1). To this end, we define

polytopes called treeplexes and concentrate on solving (1) when � and � are polytopes of this type. Treeplexes
generalize simplexes and include as a special case the strategy sets of sequential games. Our approach follows
a current trend of applying first-order algorithms to nonsmooth optimization problems (Juditsky et al. [10]; Lan
et al. [12]; Nemirovski [13]; Nesterov [16, 17]). A key feature of these algorithms is their low computational
cost per iteration, which makes them particularly attractive for large problems. We adapt Nesterov’s [16, 17]
smoothing techniques for approximating (1). In particular, we develop first-order algorithms that take ��1/��
iterations to compute x ∈� and y ∈� such that

0≤max
v∈�

�v�Ax�−min
u∈�

�y�Au� ≤ �� (2)

Such a pair of strategies is called an �-equilibrium.
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The simplicity and the low computational cost per iteration of our algorithm enables the computation of near
equilibria for enormous sequential games. An implementation based on our approach has been successful in
obtaining �-equilibria for sequential games where the payoff matrix A is of size 108 × 108 and contains more
than 1012 entries (§6). These games are abstracted poker games with 108 information sets and 1012 leaves in
the game tree. This problem size (as measured by the number of leaves) is more than four orders of magnitude
larger than what can be handled by solving the linear programming formulation via conventional solvers, such as
interior-point methods (IPM) (Gilpin and Sandholm [4, 5]). Our implementation is a key component of several
successful poker-playing computer programs for full-scale Heads-Up Texas Hold’em poker (Gilpin et al. [6, 7]).
The paper is organized as follows. Section 2 summarizes Nesterov’s [16, 17] smoothing technique as it applies

to problem (1). We highlight that technique’s crucial ingredient, a pair of suitable prox-functions for the sets
� and �. Section 3 presents our main idea, a template for constructing suitable prox-functions for treeplexes.
Section 4 considers the special case of uniform treeplexes. For these treeplexes, we provide explicit bounds
on the number of iterations needed for finding an �-equilibrium. Sections 5 and 6 present some computational
experience with an implementation based on our approach. Finally, §7 summarizes the main conclusions and
discusses ideas for future work.

2. Smoothing techniques. Problem (1) can be stated as

min
x∈�

f �x�=max
y∈�


�y�� (3)

where
f �x�=max

y∈�
�y�Ax� and 
�y�=min

x∈�
�y�Ax��

The functions f and 
 are respectively convex and concave nonsmooth functions. The left-hand side of (3) is a
standard convex minimization problem of the form

h̄ �=min�h�x�� x ∈��� (4)

First-order methods for solving (4) are algorithms for which a search direction at each iteration is obtained
using only the first-order information of h such as its gradient or subgradient. When h is smooth with Lipschitz
gradient, there is a first-order algorithm for finding a point x ∈ � such that h�x� ≤ h̄ + � after ��1/

√
��

iterations (Nesterov [14]). When h is nonsmooth, subgradient algorithms can be applied, but they have a worst-
case complexity of ��1/�2� iterations (Goffin [8]). However, that pessimistic result is based on treating h as a
black-box where the value and subgradient are accessed via an oracle. For nonsmooth functions with a suitable
max structure, Nesterov [16, 17] devised first-order algorithms requiring only ��1/�� iterations by applying a
clever smoothing technique. In this paper, we adapt that smoothing technique for solving problem (1).
The key component of Nesterov’s [16, 17] smoothing technique is a pair of prox-functions for the sets �

and �. These prox-functions are used to construct smooth approximations f� ≈ f and 
� ≈ 
. To obtain
approximate solutions to (3), gradient-based algorithms can then be applied to f� and 
�.
Definition 2.1. Assume Q ⊆ �n is a convex compact set. A function d� Q → � is a prox-function if it

satisfies the following properties:
(i) d is strongly convex in Q, i.e., there exists � > 0 such that for all x�y ∈Q� and � ∈ �0�1�

d��x+ �1−��y�≤ �d�x�+ �1−��d�y�− 1
2���1−���x− y�2� (5)

The largest value of the constant � that satisfies (5) for a particular norm � ·� is the strong convexity modulus of
d with respect to � · �. Note that the specific value of the strong convexity modulus � depends on its associated
norm � · �.
(ii) min�d�x�� x ∈Q�= 0.
When d� Q → � is differentiable, (5) can be equivalently stated in either of the following two forms

(Nesterov [15]):

d�y�≥ d�x�+��d�x��y− x�+ 1
2��x− y�2 for all x�y ∈Q� (6)

��d�x�−�d�y��x− y� ≥ ��x− y�2 for all x�y ∈Q� (7)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Hoda et al.: Smoothing Techniques for Computing Nash Equilibria
496 Mathematics of Operations Research 35(2), pp. 494–512, © 2010 INFORMS

Assume d� and d� are prox-functions for the sets � and �, respectively. Then for any given � > 0, the
smooth approximations f� ≈ f and 
� ≈
 are

f��x� �=max��y�Ax�−�d��y�� y ∈��� 
��y� �=min��y�Ax�+�d��x�� x ∈���

The following result of Nesterov [16, 17] provides the theoretical foundation of our first-order algorithms
for solving (1). Let D� �= max�d��x�� x ∈ ��� and let �� denote the strong convexity modulus of d� .
Let D� and �� be defined likewise for � and d� . The operator norm of A used below is defined as
�A� �=max��y�Ax�� �x���y� ≤ 1�, where the norms �x�, �y� are those associated with �� and �� .

Theorem 2.2 (Nesterov [16, 17]). There is a procedure based on the above smoothing technique that after
N iterations generates a pair of points �xN �yN � ∈� ×� such that

0≤ f �xN �−
�yN �≤ 4�A�
N + 1

√
D�D�

����

� (8)

Furthermore, each iteration of the procedure performs some elementary operations, three matrix-vector multi-
plications by A, and requires the exact solution of three subproblems of the form

max
x∈�

��g�x�−d��x�� or max
y∈�

��g�y�−d��y��� (9)

In §5, we will present an explicit algorithm as stated in Theorem 2.2. Before that, we first provide a method
for solving the subproblems in (9) as these are critical steps in the algorithm. These subproblems can be phrased
in terms of the conjugate of the functions d� and d� (Hirriart-Urruty and Lemaréchal [9]). The conjugate of
d� Q →� is the function d∗� �n →� defined by

d∗�s� �=max��s�x�−d�x�� x ∈Q��

If d is strongly convex and Q is compact, then the conjugate d∗ is Lipschitz continuous, differentiable every-
where, and

�d∗�s�= argmax��s�x�−d�x�� x ∈Q��

(For a detailed discussion, see Hirriart-Urruty and Lemaréchal [9].)
For an algorithm based on Theorem 2.2 to be practical, the subproblems (9) must be solvable quickly because

their solution is required three times at each iteration of the algorithm. In other words, the conjugates d∗
� and

d∗
� and their gradients �d∗

� and �d∗
� should be easily computable. This motivates the following definition.

Definition 2.3. Assume Q ⊆ �n is a compact convex set. We say that d� Q → � is a nice prox-function
for Q if it satisfies the following three conditions:

(i) d is continuous and strongly convex in Q, and differentiable in the relative interior of Q.
(ii) The conjugate d∗ satisfies d∗�0�= 0.
(iii) The conjugate function d∗ and its gradient �d∗ are easily computable.
Example 1. For the k-dimensional simplex �k, the entropy function d�x� = ln k +∑k

i=1 xi ln xi� and the
Euclidean distance function d�x� = 1

2

∑k
i=1�xi − 1/k�2 are nice prox-functions. Indeed, for the entropy prox-

function, the gradient of the conjugate �d∗�s� is given by the closed-form expression

�id
∗�s�= esi∑k

j=1 esj
� i = 1� $ $ $ � k�

Furthermore, as discussed in Juditsky et al. [10] and Nesterov [16], the entropy function has strong convexity
modulus equal to one for the L1-norm �x� �=∑k

j=1 �xj �.
For the Euclidean prox-function, the gradient of the conjugate �d∗�s� is given by the expression

�id
∗�s�= �si −&�+� i = 1� $ $ $ � k�

where & ∈� is such that
∑k

j=1�sj −&�+ = 1. This value of & can be found in ��k ln k� steps via a binary search
in the sorted components of s. Furthermore, from (7), it follows that the Euclidean prox-function has strong

convexity modulus equal to one for the Euclidean norm �x� �=
√∑k

j=1 x2
j .
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3. Treeplexes. This section presents the essential elements of our approach. We define the class of treeplex
polytopes and provide a generic technique for constructing nice prox-functions for treeplexes, using as building
blocks any family of nice prox-functions for simplexes. This allows us to create practical first-order algorithms
based on Theorem 2.2 for solving the saddle-point problem (1) over treeplexes � and �.
A treeplex can be seen as a tree whose nodes are simplexes. The tree structure endows the treeplex with a

certain kind of sequential characteristic. In particular, treeplexes include the types of polytopes that arise in the
computation of Nash equilibria of sequential games. The latter is an immediate consequence of the sequence
form formulation of Nash equilibria for sequential games, as detailed in Koller et al. [11], Romanovskii [19],
and von Stengel [21, 22].
Definition 3.1. The class of treeplexes is recursively defined as follows:
(i) Basic sets: Every standard simplex �m �= �x ∈ �0�1�m�

∑m
j=1 xj = 1� is a treeplex.

(ii) Cartesian product: If Q1� $ $ $ �Qk are treeplexes, then Q1 × · · ·×Qk is a treeplex.
(iii) Branching: If P ⊆ �0�1�p and Q ⊆ �0�1�q are treeplexes and i ∈ �1� $ $ $ � p�, then

P i Q �= ��x�y� ∈�p+q� x ∈ P� y ∈ xi ·Q�

is a treeplex.
The Branching operation in Definition 3.1 has the following sequential interpretation: the vector x is the set

of “current stage” decision variables, and the vector y is the set of “next stage” decision variables following
the i-th current decision variable xi. Notice that a treeplex can be written in the form �x≥ 0� Ex= e� for some
matrix E with entries in �−1�0�1� and vector e with entries in �0�1�, see von Stengel [21, 22].
In the sequel, we will often need to compare the norm of a vector �x�y� ∈�p+q with those of x ∈�p, y ∈�q .

This requires a certain compatibility of the norms in the spaces �p, �q� and �p+q . Henceforth we shall make
the following mild norm-embedding assumption:

�x� = ��x�0��� �y� = ��0�y��� (10)

We now present our general procedure for constructing nice prox-functions for treeplexes. The construction
relies on the following dilation operation from convex analysis (Hirriart-Urruty and Lemaréchal [9]). Given a
compact set K ⊆�d and a function -� K →�, define the set �K ⊆�d+1 as

�K �= ��x�y� ∈�d+1� x ∈ �0�1�� y ∈ x ·K��

and define the function �-� �K →� as

�-�x�y�=



x ·-�y/x� if x > 0�

0 if x = 0�

Proposition 3.2. If K is compact and - is continuous in K, then �- is continuous in �K. Also, if �x�y� ∈ �K
is such that x > 0 and �-�y/x� exists, then � �-�x�y� exists and

�x
�-�x�y�=-�y/x�−��-�y/x��y/x��

�y
�-�x�y�= �-�y/x��

(11)

Proof. The continuity follows via a straightforward limiting argument: Assume �xi�yi�, �x�y� ∈ �K, and
�xi�yi�→ �x�y�. If x > 0, then yi/xi y/x ∈K and yi/xi → y/x. Since - is continuous, we get

�-�xi�yi�=-�yi/xi�→-�y/x�= �-�x�y��

On the other hand, if x = 0, then xi → 0. Consequently,

� �-�xi�yi�� = �xi-�yi/xi�� ≤ xi max�-�z�� z ∈K�→ 0= �-�x�y��

Finally, the identities in (11) follow by applying the chain rule. �

Assume we are given a family of nice prox-functions dm for �m, m ∈ �+. Using this family, we recursively
construct functions for treeplexes as follows:

(i) Basic sets: For Q =�m, let dQ �= dm.
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(ii) Cartesian product: If Q1� $ $ $ �Qk are treeplexes and Q =Q1 × · · ·×Qk, let

dQ�x1� $ $ $ �xk� �=
k∑

i=1
dQi

�xi��

where dQ1
� $ $ $ � dQk

are nice prox-functions for their respective treeplexes.
(iii) Branching: If P ⊆ �0�1�p and R⊆ �0�1�r are treeplexes, i ∈ �1� $ $ $ � p�, and Q = P i R, let

dQ�x�y� �= dP �x�+ d̄R�xi�y�� (12)

where dP and dR are nice prox-functions for P and R.

Theorem 3.3. The functions dQ defined above are nice prox-functions for each treeplex Q.

To prove Theorem 3.3, it suffices to show that the properties of nice prox-functions are preserved for the
Cartesian product and Branching steps. Since the Cartesian product step is straightforward, we concentrate on
the Branching step as stated in the following proposition.

Proposition 3.4. Assume P ⊆ �0�1�p and R ⊆ �0�1�r are treeplexes, i ∈ �1� $ $ $ � p�, and Q = P i R. Fur-
thermore, assume dP and dR are nice prox-functions for P and R, respectively, and

dQ�x�y� �= dP �x�+ d̄R�xi�y��

Then
(i) dQ is continuous and strongly convex in Q and differentiable in the relative interior of Q.
(ii) d∗

Q and �d∗
Q are computable via the following expressions:

d∗
Q�u�v�= d∗

P �ũ�� (13)

�d∗
Q�u�v�= ��d∗

P �ũ���id
∗
P �ũ� ·�d∗

R�v��� (14)

where

ũj =



uj if j �= i�

ui +d∗
R�v� if j = i�

Proof. (i) The continuity of dQ in Q and the differentiability in the relative interior of Q follow from (12)
and Proposition 3.2. Since dQ is continuous in Q, to prove its strong convexity, from (7) it suffices to show that
there exists � > 0 such that

��dQ�x�y�−�dQ�x̃� ỹ�� �x�y�− �x̃� ỹ�� ≥ ���x�y�− �x̃� ỹ��2 (15)

for all �x�y� and �x̃� ỹ� in the relative interior of Q.
Assume �x�y� and �x̃� ỹ� are in the relative interior of Q. Set z �= y/xi and z̃ �= ỹ/x̃i. From (12), Proposi-

tion 3.2, and some elementary calculations, we get

��dQ�x�y�−�dQ�x̃� ỹ�� �x�y�− �x̃� ỹ�� = ��dP �x�−�dP �x̃��x− x̃�
+ xi · �dR�z�−dR�z̃�+��dR�z̃�� z̃− z��
+ x̃i · �dR�z̃�−dR�z�+��dR�z�� z− z̃���

Therefore, since dP and dR are strongly convex, (6) yields

��dQ�x�y�−�dQ�x̃� ỹ�� �x�y�− �x̃� ỹ�� ≥ �P�x− x̃�2 + 1
2�Rxi�z− z̃�2 + 1

2�Rx̃i�z− z̃�2
= �P�x− x̃�2 +�Rx̂i�z− z̃�2� (16)

where x̂i = �xi + x̃i�/2 and �P ��R > 0 are the strong convexity parameters of dP and dR, respectively.
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Next, we bound the right-hand side of (15). Applying the triangle inequality and using the norm-embedding
assumption (10), we get

��x�y�− �x̃� ỹ�� ≤ �x− x̃�+�xiz− x̃iz̃�
= �x− x̃�+� 1

2 �xi + x̃i��z− z̃�+ 1
2 �xi − x̃i��z+ z̃��

≤ �x− x̃�+ x̂i�z− z̃�+ 1
2 �xi − x̃i��z+ z̃�� (17)

Since R is compact, the value M �=max��z�� z ∈R� is finite. Therefore, from (17), we get

��x�y�− �x̃� ỹ�� ≤ �1+M��x− x̃�+ x̂i�z− z̃��
Now, by the Cauchy-Schwarz inequality,

��x�y�− �x̃� ỹ��2 ≤
(

�1+M�2
1

�P

+ x̂i

�R

)
��P�x− x̃�2 +�Rx̂i�z− z̃�2��

Since x� x̃ ∈ P ⊆ �0�1�p, we get

��x�y�− �x̃� ỹ��2 ≤
(

�1+M�2
1

�P

+ 1
�R

)
��P�x− x̃�2 +�Rx̂i�z− z̃�2�� (18)

From (16) and (18), it follows that (15) holds for

� = 1
�1+M�2/�P + 1/�R

> 0�

(ii) For a given vector �u�v� ∈�p+r , we have

d∗
Q�u�v� = sup���u�v�� �x�y��−dQ�x�y�� �x�y� ∈Q�

= sup��u�x�+ �v�y�−dP �x�− d̄R�xi�y�� x ∈ P� y ∈ xi ·R�

= sup��u�x�−dP �x�+ xi · ��v� z�−dR�z��� x ∈ P� z ∈R� xi > 0�

= sup��u�x�−dP �x�+ xi ·d∗
R�z�� x ∈ P�

= sup��ũ�x�−dP �x�� x ∈ P�

= d∗
P �ũ�� (19)

The third and fourth steps above hold by the continuity of d̄R and dP . Hence (13) is proven. To prove (14),
observe that the maximizer in the second to last step in (19) is x̄= �d∗

P �ũ�. Next, consider two cases depending
on the value of x̄i. If x̄i > 0, then the maximizer in the third step in (19) is z̄= �d∗

R�ṽ�, and, consequently, the
maximizer in the first step in (19) is �x̄� x̄i · z̄�. If x̄i = 0, then the maximizer in the first step in (19) is �x̄�0�.
In either case, the maximizer in the first step in (19) is �d∗

Q�u�v�= �x̄� x̄i · z̄�= ��d∗
P �ũ���id

∗
P �ũ� ·�d∗

R�v��. �

Remark 3.5. We can generalize the above construction and results to weighted versions of the prox-
functions. More precisely, in the Branching step, we can define dQ�x�y� �= wP dP �x� + wRd̄R�xi�y� for some
constants wP �wR > 0. We will elaborate on this idea to obtain prox-functions yielding better complexity guar-
antees for uniform treeplexes.

4. Uniform treeplexes. In this section, we derive complexity results for first-order smoothing algorithms
for problem (1) in the special case when � and � are uniform treeplexes. This special case of (1) covers the
formulation of Nash equilibrium for instances of many interesting games. Indeed, as will be discussed in §6,
uniform treeplexes naturally arise in multiround sequential games such as poker.
Definition 4.1. Assume that a treeplex Q ⊆ �0�1�q , an index set I = �i1� $ $ $ � ib� ⊆ �1� $ $ $ � q�, and a

positive integer k are given. Define Qr , r = 1�2� $ $ $ � as follows:
(i) Q1 �=Q× · · ·×Q (k times).
(ii) Qr+1 �= �Qr × · · ·× �Qr (k times), where

�Qr �=Q I Qr �= ��x�y1� $ $ $ �yb�� x ∈Q� yj ∈ xij
·Qr� j = 1� $ $ $ � b��

We will refer to Qr as the r-th uniform treeplex generated by Q� I� k and will sometimes write it as ��Q� I� k� r�.
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Remark 4.2. Notice that the operation I is the same as the operation i applied b times. More precisely,

Q I Qr =Q i1 Qr i2 · · · ib Qr �

Given a nice prox-function dQ for Q and constants wr > 0, r = 1�2� $ $ $ , consider the following weighted
version of our previous construction of prox-functions for treeplexes:

(i) For Q1 =Q× · · ·×Q (k times), let

dQ1
�x1� $ $ $ �xk� �=

k∑
j=1

dQ�xj �

(ii) For Qr+1 = �Qr × · · ·× �Qr (k times), let

dQr+1�u
1� $ $ $ �uk� �=

k∑
j=1

d �Qr
�uj ��

where d �Qr
is defined as

d �Qr
�x�y1� $ $ $ �yb� �=wr ·dQ�x�+

b∑
j=1

d̄Qr
�xij

�y��

We now present an explicit iteration complexity bound for a first-order smoothing algorithm for the saddle-
point problem (1), when � and � are uniform treeplexes. As in Theorem 2.2, the norm of A, �A� is the induced
operator norm of A, where the underlying norms are those associated with �Q and �Q̃. In particular, the result
below holds for any choice of norms.

Theorem 4.3. Suppose A, � , �, d� , and d� satisfy the following conditions:
(i) � = ��Q� I� k� r�⊆�m and � = ��Q̃� Ĩ � k̃� r̃�⊆�n.
(ii) The prox-functions d� �d� are constructed as above with weights wj = �kM�2�bk�j� j = 1� $ $ $ � r − 1

and w̃j = �k̃ �M�2�b̃k̃�j , j = 1� $ $ $ � r̃ − 1, respectively, where b = �I �, b̃ = �Ĩ �, M �= max��u�� u ∈ Q�, �M �=
max��u�� u ∈ Q̃�.
Then after N iterations the procedure from Theorem 2.2 yields �x�y� ∈� ×� such that

0≤ f �x�−
�y�=max
v∈�

�v�Ax�−min
u∈�

�y�Au� ≤ 4�A�G
N + 1

√
DQDQ̃

�Q�Q̃

� (20)

where G=mn�kMr��k̃ �Mr̃�.

The crux of the proof of Theorem 4.3 is Lemma 4.4, which bounds the ratio of the maximum value to the
strong convexity modulus for the prox-functions for uniform treeplexes. This ratio can be seen as a measure of
the prox-function’s quality. Lemma 4.4 provides an estimate of this ratio for the prox-functions dQr

constructed
above, provided the weights wr are chosen judiciously.

Lemma 4.4. Assume Q and Qr , r = 1�2� $ $ $ � are as in Definition 4.1. Let � , �r , D, Dr , and M be defined
as follows:

� �= strong convexity modulus of dQ� �r �= strong convexity modulus of dQr
�

D �=max�dQ�z�� z ∈Q�� Dr �=max�dQr
�z�� z ∈Qr��

M �=max��z�� z ∈Q�� Mr �=max��z�� z ∈Qr��

(i) The strong convexity moduli �r of dQr
, r = 1�2� $ $ $ , satisfy

�r+1 ≥
1

k�1+Mr�
2/�wr��+ bk/�r

� (21)

(ii) If wr = �kM�2�bk�r , r = 1�2� $ $ $ , then

Dr

�r

≤ b2r−2k2r+2r2M2 D

�
� (22)
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Proof. (i) Let ��r be the strong convexity modulus of d �Qr
. From the construction of dQr

, it follows that
�r+1 ≥ ��r/k� Hence it suffices to bound ��r � Proceeding as in the proof of Proposition 3.4(i), it follows that for
all w= �x�y1� $ $ $ �yb� and �w= �x̃� ỹ1� $ $ $ � ỹb� in the relative interior of �Qr , we have

��d �Qr
�w�−�d �Qr

��w��w− �w� ≥wr��x− x̃�2 +�r

b∑
j=1

x̂ij
�zj − z̃j�2 (23)

and

�w− �w� ≤ �1+Mr��x− x̃�+
b∑

j=1
x̂ij

�zj − z̃j�� (24)

where zj = yj/xij
and z̃j = ỹj/x̃ij

for j = 1� $ $ $ � b. Applying the Cauchy-Schwarz inequality to (24), we get

�w− �w�2 ≤
(

�1+Mr�
2

wr�
+

∑b
j=1 x̂ij

�r

)(
wr��x− x̃�2 +�r

b∑
j=1

x̂ij
�zj − z̃j�2

)

≤
(

�1+Mr�
2

wr�
+ b

�r

)(
wr��x− x̃�2 +�r

b∑
j=1

x̂ij
�zj − z̃j�2

)
� (25)

From (23), (25), and the continuity of d �Qr
, we obtain

��r ≥
1

�1+Mr�
2/�wr��+ b/�r

�

which yields (21) since �r+1 ≥ ��r/k.
(ii) Let Mr �=max��z�� z ∈Qr�. We have M1 ≤ kM and Mr+1 ≤ k�M + bMr�, so

1+Mr ≤ kM�bk�r � r = 1�2� $ $ $ �

Hence wr ≥ �1+Mr�
2/��bk�r�, and, consequently, (21) yields

1
�bk�r+1�r+1

≤ 1
b�

+ 1
�bk�r�r

�

Therefore, since �1 ≥ �/k, it follows that

1
�bk�r�r

≤ r

b�
� r = 1�2� $ $ $ � (26)

On the other hand, from the construction of Qr and dQr
, we have

D1 ≤ kD� Dr+1 ≤ k�wrD+ bDr�� r = 1�2� $ $ $ �

so

Dr ≤ kD

(
�bk�r−1 +

r−1∑
j=1

wj�bk�r−1−j

)
�

Thus

Dr ≤ kD

(
�bk�r−1 +

r−1∑
j=1

wj�bk�r−1−j

)

= kD

(
�bk�r−1 + �kM�2

r−1∑
j=1

�bk�j�bk�r−1−j

)

= kD�1+ �kM�2�r − 1���bk�r−1

≤ krD�kM�2�bk�r−1� (27)

Finally, (22) follows by putting together (26) and (27). �
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Proof of Theorem 4.3. Since � = ��Q� I� k� r�⊆�m, Lemma 4.4 yields

D�

��

≤ b2r−2k2r+2r2M2 DQ

�Q

�

In addition, a simple induction argument shows the dimension m of � = ��Q� I� k� r� satisfies m =
kq��bk�r − 1�/�bk− 1�. Therefore

D�

��

≤m2k2r2M2 DQ

�Q

� (28)

Similarly,
D�

��

≤ n2k̃2r̃2 �M2 DQ̃

�Q̃

� (29)

The iteration bound (20) now follows from (8), (28), and (29). �

For the special case when the norm in �q and each �qr is the Euclidean norm, we can sharpen the bound in
Lemma 4.4, and thus also the bound in Theorem 4.3.

Lemma 4.5. Assume b, M , D, Dr , � , and �r are as in Lemma 4.4, and the norm in �q and each �qr is the
Euclidean norm. If wr = kM2kr , r = 1�2� $ $ $ � then

Dr

�r

≤ b2r−2kr+1r2M2 D

�
� (30)

Proof. For the Euclidean norm, we have �r+1 = ��r , where ��r is the strong convexity modulus of d �Qr
. Next,

we proceed to bound ��r as in the proof of Lemma 4.4. For all w= �x�y1� $ $ $ �yb� and �w= �x̃� ỹ1� $ $ $ � ỹb� in
the relative interior of �Qr , the inequality (23) holds. Next, instead of (24), we can use

�w− �w�2 = �x− x̃�2 +
b∑

j=1
�xij

zj − x̃ij
z̃j�2

≤ �x− x̃�2 +
b∑

j=1
��xij

− x̃ij
�Mr + x̂ij

�zj − z̃j��2�

Hence, by the Cauchy-Schwarz inequality, we get

�w− �w�2 ≤ �x− x̃�2 +
(

M2
r

wr�
+ b

�r

)(
wr��x− x̃�2 +�r

b∑
j=1

x̂ij
�zj − z̃j�2

)

≤
(

�1+M2
r �

wr�
+ b

�r

)(
wr��x− x̃�2 +�r

b∑
j=1

x̂ij
�zj − z̃j�2

)
� (31)

Thus the bound in Lemma 4.4 can be sharpened to

�r+1 = ��r ≥
1

�1+M2
r �/�wr��+ b/�r

� (32)

Furthermore, in this case, M2
1 = kM2 and M2

r+1 ≤ k�M2 + bM2
r �, which implies

1+M2
r ≤ kM2�bk�r �

Hence wr ≥ �1+M2
r �/br , and, consequently, (32) yields

1
br+1�r+1

≤ 1
b�

+ 1
br�r

�

Therefore, since �1 = � , it follows that

1

br�r

≤ r

b�
� r = 1�2� $ $ $ � (33)
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On the other hand, since D1 = kD and Dr+1 ≤ k�wrD+ bDr�, it follows that

Dr ≤ kD

(
�bk�r−1 +

r−1∑
j=1

wj�bk�r−1−j

)

= kD

(
�bk�r−1 + kM2

r−1∑
j=1

kj�bk�r−1−j

)

≤ kD�1+ kM2�r − 1���bk�r−1

≤ k2rDM2�bk�r−1� (34)

Finally, (30) follows by putting together (33) and (34). �

5. Implementation. In this section, we describe an implementation to solve (1) based on Nesterov’s [16]
excessive gap technique (EGT) and the prox-functions constructed in this paper. We present Nesterov’s [16]
algorithm specialized for problem (1). We also give a complexity analysis of each iteration of this algorithm
when applied to games with uniform treeplexes, and describe two heuristics that were incorporated in our
implementation.

5.1. Nesterov’s [16] EGT. Assume d� and d� are nice prox-functions for � and �, respectively. For �� ,
�� > 0, consider the pair of problems:

f��
�x� �=max��y�Ax�−��d��y�� y ∈��� 
��

�y� �=min��y�Ax�+��dQ�x�� x ∈���

Algorithm 3 below, because of Nesterov [16, §5], generates iterates �xk�yk��k
� ��k

�� with �k
� , �k

� decreasing to
zero and such that the following excessive gap condition is satisfied at each iteration:

f��
�x�≤
��

�y�� (35)

Notice that f �x� ≥ 
�y� for all x ∈ � , y ∈�. Thus if �x�y��� ���� satisfy the excessive gap condition (35)
and x ∈� , y ∈�� then

0≤
�y�− f �x�≤��D� +��D� � (36)

(See Nesterov [16, Lemma 3.1].)
Consequently, if the iterates �xk�yk��k

� ��k
�� satisfy (35), then f �xk�≈
�yk� when �k

� and �k
� are small.

The building blocks of our Algorithm 3 are the procedures initial and shrink defined next.
By Lemma 5.1 of Nesterov [16], the following procedure initial finds a starting point ��0

� ��0
��x0�y0� that

satisfies the excessive gap condition (35).

Algorithm 1 (initial�A�d� �d��)

(i) �0
� �=�0

� �= �A�√
����

(ii) x̂ �= �d∗
��0�

(iii) y0 �= �d∗
�

(
1

�0
�

Ax̂
)

(iv) x0 �= �d∗
�

(
�d��x̂�+ 1

�0
�

ATy0
)

(v) Return ��0
� ��0

��x0�y0�

The following procedure shrink enables us to reduce �� and �� , while maintaining (35).

Algorithm 2 (shrink�A��� ���� 5�x�y�d� �d��)

(i) x̆ �= �d∗
�

(
− 1

��

ATy
)

(ii) x̂ �= �1− 5�x+ 5 x̆

(iii) ŷ �= �d∗
�

(
1

��

Ax̂
)

(iv) x̃ �= �d∗
�

(
�d��x̆�− 5

�1− 5���

ATŷ
)
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(v) y+ �= �1− 5�y+ 5 ŷ
(vi) x+ �= �1− 5�x+ 5 x̃
(vii) �+

� �= �1− 5���

(viii) Return ��+
� �x+�y+�

By Theorem 5.2 of Nesterov [16], if the input ��� ����x�y� to shrink satisfies (35), then so does
��+

� ����x+�y+�, as long as 5 satisfies 52/�1− 5�≤��������/�A�2.
We are now ready to describe Nesterov’s [16] EGT specialized to (1).

Algorithm 3 (EGT�A�d� �d��)
(i) ��0

� ��0
��x0�y0�= initial�A�d� �d��

(ii) For k = 0�1� $ $ $ ,

(a) 5 �= 2
k+ 3

(b) If k is even, // shrink ��

i. ��k+1
� �xk+1�yk+1� �= shrink�A��k

� ��k
�� 5�xk�yk� d� �d��

ii. �k+1
� �=�k

�

(c) If k is odd, // shrink ��

i. ��k+1
� �yk+1�xk+1� �= shrink�−AT��k

���k
� � 5�yk�xk� d��d��

ii. �k+1
� �=�k

�

By Nesterov [16, Theorem 5.2], the iterates generated by procedure EGT satisfy (35). In addition, by Nesterov
[16, Theorem 6.3], after N iterations, Algorithm EGT yields points xN ∈Q� and yN ∈Q� with

0≤max
y∈Q�

�AxN �y�− min
x∈Q�

�Ax�yN � ≤ 4�A�
N

√
D�D�

����

� (37)

5.2. Complexity of each EGT iteration. We next give a complexity bound on the number of arithmetic
operations performed in each EGT iteration. We provide our estimate in terms of the size of the game tree in the
extensive form representation of the sequential game. The extensive form is a full description of the game given
by a tree whose nodes correspond to the possible states of the game, branches that correspond to players’ moves,
payoffs at the tree’s leaves, and information sets. For a detailed exposition on the extensive form representation,
see, e.g., Osborne and Rubinstein [18].
We shall refer to the number of leaves in the game tree as the size of the game tree. We show next that for

games with uniform treeplexes, the total number of basic arithmetic operations in each EGT iteration is linear
in the size of the game tree. To that end, notice that aside from negligible updates, two consecutive iterations in
the EGT algorithm require the following operations:

(i) three matrix-vector products of the form Ax and three of the form ATy for some x and y,
(ii) one calculation of the form �d��x� and one of the form �d��y� for some x and y,
(iii) three calculations of the form �d∗

��u� and three of the form �d∗
��v� for some u and v.

Hence it suffices to show that each of these operations requires a number of basic arithmetic operations that is
linear in the size of the game tree.
Let flops��expression�� denote the number of arithmetic operations needed in the calculation of �expression�.

We next estimate this number for each of the calculations in (i), (ii), and (iii) above.
For (i), if the payoff matrix A is represented in explicit sparse form, then flops�Ax� and flops�ATy� are

less than or equal to twice the number of nonzero entries in A, because each of these calculations requires one
scalar multiplication and at most one addition for each nonzero in A. Since the number of nonzero entries in
A is bounded by the number of leaves in the game tree (von Stengel [21, 22]), it follows that flops�Ax� and
flops�ATy� are linear in the size of the game tree.
For the calculations in (ii), assume � = ��Q� I� k� r� ⊆�m and � = ��Q̃� Ĩ � k̃� r̃� ⊆�n. The construction of

the uniform treeplex ��Q� I� k� r� and a straightforward induction argument shows that for generic x ∈� , z ∈Q,

flops��d��x��= �bk�r − 1
bk− 1

· k · flops��dQ�z��+m≤m · �flops��dQ�z��+ 1��

Likewise, for generic y ∈�, w ∈ Q̃,

flops��d��y��≤ n · �flops��dQ̃�w��+ 1��
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Since both m and n are smaller than the size of the game tree (von Stengel [21, 22]), it follows that
flops��d��x�� and flops��d��y�� are sublinear in the size of the game tree.
Finally, for the calculations in (iii), again assume � = ��Q� I� k� r� ⊆ �m and � = ��Q̃� Ĩ � k̃� r̃� ⊆ �n. An

inductive argument similar to those in §4 shows that for generic u ∈�m, s ∈�q

flops��d∗
��u��≤m · �flops��d∗

Q�s��+ 1��

and for generic v ∈�n, t ∈�q̃

flops��d∗
��v��≤ n · �flops��d∗

Q̃
�t��+ 1��

Thus both flops��d∗
��u�� and flops��d∗

��v�� are sublinear in the size of the game tree.
Consequently, the overall number of arithmetic operations in each iteration of the EGT algorithm is bounded

by a small factor of the size of the game tree. Furthermore, the matrix-vector multiplications Ax and ATy
dominate the total number of arithmetic operations.

5.3. Heuristics. Algorithm EGT has worst-case iteration-complexity ��1/�� and already scales to problems
much larger than is possible to solve using state-of-the-art linear programming solvers (as we demonstrate in
the experiments later in this paper). In this section, we introduce two heuristics for further improving the speed
of the algorithm, while retaining the guaranteed worst-case iteration-complexity ��1/��. The heuristics attempt
to decrease �� and �� faster than prescribed by the EGT algorithm, while maintaining the excessive gap
condition (35). This leads to overall faster convergence in practice, as our experiments will show.

5.3.1. Heuristic 1: Aggressive � reduction. The first heuristic is based on the following observation:
although the value 5 = 2/�k+ 3� computed in step 2(a) of Algorithm EGT guarantees the excessive gap condi-
tion (35), this is potentially an overly conservative value. Instead, we can use an adaptive procedure to choose
a larger value of 5 . Since we now can no longer guarantee the excessive gap condition (35) a priori, we are
required to do a posterior verification, which occasionally necessitates an adjustment in the parameter 5 . To
check (35), we need to compute the values of f��

and 
��
. Observe that


��
�y�=−��d∗

�

(
− 1

��

ATy
)

and

f��
�x�=��d∗

�

(
1

��

Ax
)

�

Therefore, both f��
and 
��

are easily computable since d� �d� are nice prox-functions by construction.
To incorporate Heuristic 1 in Algorithm EGT, we extend the procedure shrink as follows.

Algorithm 4 (decrease�A��� ���� 5�x�y�d� �d��)
(i) ��+

� �x+�y+� �= shrink�A��� ���� 5�x�y�d� �d��

(ii) While −�+
�d∗

�

(
− 1

�+
�

ATy+
)

< ��d∗
�

(
1

��

Ax+
)
, // 5 is too big

(a) 5 �= 5/2
(b) ��+

� �x+�y+� �= shrink�A��� ���� 5�x�y�d� �d��
(iii) Return ��+

� �x+�y+� 5�

By Theorem 4.1 of Nesterov [16], when the input ��� ����x�y� to decrease satisfies (35), the procedure
decrease will halt.

5.3.2. Heuristic 2: Balancing and reduction of �� and �� . Our second heuristic is motivated by the
observation that after several calls to the decrease procedure, one of �� and �� may be much smaller than the
other. This imbalance is undesirable because the larger one contributes the most to the worst-case bound given
by (36). Hence after a certain number of iterations, we perform a balancing step to bring these values closer
together. The balancing consists of repeatedly shrinking the larger one of �� and �� .
We also observed that after such balancing, the values of �� and �� can sometimes be further reduced without

violating the excessive gap condition (35). We thus include a final reduction step in the balancing heuristic.
This balancing and reduction heuristic is incorporated via the following procedure. (We chose the parameter

values 0�9 and 1�5 based on some initial experimentation.)
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Algorithm 5 (balance�A��� ���� 5�x�y�d� �d��)

(i) While �� > 1�5�� , // shrink ��

��� �x�y� 5� �= decrease�A��� ���� 5�x�y�d� �d��
(ii) While �� > 1�5�� , // shrink ��

����y�x� 5� �= decrease�−AT������ � 5�y�x�d��d��

(iii) While 0�9��d∗
�

(
1

0�9��

Ax
)
≤−0�9��d∗

�

(
− 1
0�9��

ATy
)
,

// decrease �� and �� if possible
(a) �� �= 0�9��

(b) �� �= 0�9��

(iv) Return ��� ����x�y� 5�

We are now ready to describe the variant of EGT with Heuristics 1 and 2.

Algorithm 6 (EGT-2)

(i) ��0
� ��0

��x0�y0�= initial�A�d� �d��
(ii) 5 �= 0�5
(iii) For k = 0�1� $ $ $ ,
(a) If k is even, // shrink ��

i. ��k+1
� �xk+1�yk+1� 5� �= decrease�A��k

� ��k
�� 5�xk�yk� d� �d��

ii. �k+1
� =�k

�

(b) If k is odd, // shrink ��

i. ��k+1
� �yk+1�xk+1� 5� �= decrease�−AT��k

���k
� � 5�yk�xk� d��d��

ii. �k+1
� =�k

�

(c) If k�mod �100= 0, // balance and reduce
��k

� ��k
��xk�yk� 5� �= balance�A��k

� ��k
�� 5�xk�yk� d� �d��

6. Computational results. We implemented Algorithm EGT-2 in C++ and ran the computational experiments
on an IBM eServer p5 570 with 128 GBs of RAM and four 1.65 GHz processors. We next report some
computational experiments as well as an interesting application to the design of poker-playing programs.

6.1. Experimental setup. We tested the algorithm on five abstractions of poker games ranging from rela-
tively small to very large. An abstraction of a game is a smaller game that captures some of the main features
of the original game (Billings et al. [2]; Gilpin and Sandholm [4, 5]; Shi and Littman [20]). The approach of
abstracting a game and then solving for the equilibrium of the abstracted game is a practical way of constructing
good strategies for the original game (Billings et al. [2], Gilpin and Sandholm [4, 5]; Gilpin et al. [6, 7]), and
is the state-of-the-art approach to generating poker-playing programs.
We chose these problems because we wanted to evaluate the algorithms on real-world instances, rather than

on randomly generated games (which may not reflect any realistic setting). Table 1 provides the sizes of the
test instances. The first three instances, 10k, 160k, and RI, are abstractions of Rhode Island Hold’em poker
(Shi and Littman [20]) computed using the GameShrink automated abstraction algorithm (Gilpin and Sandholm
[5]). The first two instances are lossy (nonequilibrium preserving) abstractions, while the RI instance is a lossless
abstraction. The Texas and GS4 instances are lossy abstractions of limit Texas Hold’em poker (Gilpin [3], Gilpin
et al. [6]).
Table 2 provides the average time per EGT iteration of our implementation for each of the test problems both

with and without the heuristics.

Table 1. Problem sizes (when formulated as a linear program) for the
instances used in our experiments.

Name Rows Columns Nonzero entries

10k 14�590 14�590 536�502
160k 226�074 226�074 9�238�993
RI 1�237�238 1�237�238 50�428�638
Texas 18�536�842 18�536�852 61�498�656�400
GS4 299�477�082 299�477�102 4�105�365�178�571
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Table 2. Average CPU time per EGT iteration for the instances used in
our experiments.

EGT with heuristics EGT without heuristics
Name (time in secs) (time in secs)

10k 0�10 0�10
160k 1�28 1�20
RI 7�65 6�53
Texas 2,400 1,420
GS4 42,400 28,000

Because of the enormous size of the GS4 instance, we do not include it in the experiments that compare
better and worse techniques within our algorithm. Instead, we use the four smaller instances to find a good
configuration of the algorithm, and we use that configuration to tackle the GS4 instance. We then report on
how well the resulting strategies on the GS4 instance did in the Association for the Advancement of Artificial
Intelligence AAAI-08 Computer Poker Competition.
Previously, the most effective algorithms for solving sequential games of imperfect information were based on

IPMs applied to the linear programming formulation of the problem (Billings et al. [2], Gilpin and Sandholm [5]).
It seems desirable to test our algorithm against state-of-the-art implementations of such methods. However, this is
not particularly relevant in the context of the problems we are solving. For example, solving the relatively small
game of Rhode Island Hold’em poker required 25 GB RAM using CPLEX’s IPM. The instance GS4 is more
than 200 times larger. Simply representing such a problem in the explicit representation required by CPLEX and
other interior-point solvers would require more than 80,000 GB RAM. The memory needed for the necessary
data structures, such as storing the Cholesky factorization, would increase this further. Such a requirement is far
beyond the capability of current hardware. Thus, it is not even possible to compare the runtime performance of
our algorithm with linear programming approaches.

6.2. Experimental comparison of prox-functions. Our first experiment compared the relative performance
of the prox-functions induced by the entropy and Euclidean prox-functions described in Example 1 earlier in
this paper. Figure 1 shows the results. (Heuristics 1 and 2, described above, and the memory-saving technique
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Figure 1. Comparison of the entropy and Euclidean prox-functions.
Note. The value axis is the gap � (Equation (2)).
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Figure 2. Experimental evaluation of Heuristic 1.
Note. The value axis is the gap � (Equation (2)).

described later, were enabled in this experiment.) In all of the figures, the units of the vertical axis are the
number of chips in the corresponding poker games.
The entropy prox-function outperformed the Euclidean prox-function on all four instances. Therefore, in the

remaining experiments, we exclusively use the entropy prox-function.

6.3. Experimental comparison of the heuristics. Figure 2 demonstrates the impact of applying Heuristic 1:
Aggressive � reduction. (For this experiment, Heuristic 2 was not used. The memory-saving technique, also
described later, was used.) On all four instances, Heuristic 1 reduced the gap significantly. On the larger instances,
this reduction was an order of magnitude.
Figure 3 demonstrates the impact of applying Heuristic 2: Balancing and reduction of �� and �� . Because

Heuristic 2 is somewhat expensive to apply, we experimented with how often the algorithm should run it. (We did
this by varying the constant in line 3(c) of Algorithm EGT-2. For example, when the figure states “10 iterations,”
that means that the heuristic is run once every 10 iterations. In this experiment, Heuristic 1 was turned off,
but the memory-saving technique, described later, was used.) Figure 3 shows that it is always effective to use
Heuristic 2, although the frequency at which it should be applied varies depending on the instance.

6.4. Application to Texas Hold’em poker. Poker is a game involving elements of chance, imperfect infor-
mation, and counterspeculation. Game-theoretic optimal strategies are far from straightforward, often necessi-
tating such tactics as bluffing and slow playing. For these reasons, and others, poker has been identified as an
important challenge problem for the field of artificial intelligence (Billings et al. [1]). Just as the development
of a computer program capable of beating the world’s best human chess player was once seen as an important
milestone, the development of a poker-playing program capable of beating the best humans is now seen as an
equally important milestone.
The prox-function construction described in §3 has been instrumental in the development of some recent

programs for playing Texas Hold’em poker. An important difference between different variants of Texas Hold’em
is the betting structure. Two common betting structures are limit, in which players may bet a fixed amount, and
no-limit, in which players may bet any number of their chips. Our equilibrium-finding algorithm computed the
strategies for both GS3 (Gilpin et al. [6]) and Tartanian (Gilpin et al. [7]), two programs that play limit and
no-limit Texas Hold’em, respectively.
In 2008, the AAAI held the third annual Computer Poker Competition, where computer programs submitted

by teams worldwide compete against each other. GS4-Beta (a subsequent version of GS3) placed first (out of
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Figure 3. Heuristic 2 applied at different intervals.
Note. The value axis is the gap � (Equation (2)).

nine) in the Limit Bankroll competition and Tartanian placed third (out of four) in the no-limit competition.
(Tartanian actually had the highest winning rate in the competition, but because of the winner determination
rule for the competition, it only got third place.) This is particularly impressive given the small amount of
poker-specific knowledge that was incorporated into those programs. They instead depend on an equilibrium
analysis conducted by our algorithm (which, in turn, relies on our prox-function construction) for determining
their strategies. As the developers of GS3 and Tartanian point out, it is currently not feasible to solve their
models using off-the-shelf linear programming solvers.
The approach used for constructing the above players is based on algorithmically creating lossy abstractions of

the original game (Gilpin [3]; Gilpin et al. [6, 7]). These abstractions are smaller sequential games that attempt
to preserve the strategic properties of the original game. The abstracted game is then solved for an �-equilibrium
using the algorithm discussed in this paper. The larger the abstracted game (i.e., the finer the abstraction), the
better the quality of the strategies generally is. The approach of automated abstraction followed by equilibrium
finding was first used in Texas Hold’em in Gilpin and Sandholm [4], and is nowadays used by basically all of
the competitive poker-playing programs.
For the limit competition, our implementation of the EGT algorithm solved an abstracted game whose payoff

matrix was 108 × 108. For the no-limit competition, our algorithm solved a game with payoff matrix of size
107 × 107. The uniform treeplexes introduced in §4 provide a perfect framework for modeling limit Texas
Hold’em poker. For this game, the treeplex Q� for the first player is a uniform treeplex. The “basic” treeplex
Q ⊆ �0�1�14 has the linear description Q = �x ∈ �0�1�14� Ex= e�, where

E �=




1 1 1

−1 1 1 1

−1 1 1 1

−1 1 1 1

−1 1 1




� e �=




1

0

0

0

0




�

The 14 columns of E represent the possible sequence of actions that the first player can take during each betting
round of the game. Each row in E encodes a simplex over three actions: fold, call, and raise. (The last row
only allows fold and call.) The set I = �2�3�5�6�8�9�11�12�14� indexes the sequences that do not end with
a fold. Texas Hold’em is played in four rounds so r = 4. Finally, the value of k depends on the quality of the
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abstraction. The abstractions in Gilpin et al. [6] range from k = 6 to k = 40 (the k is actually different in each
round). The treeplex Q� for the second player is also a uniform treeplex with similar characteristics.

6.5. Memory requirements. One particularly attractive feature of the EGT algorithm is the fact that the
only operation performed on the matrix A is a matrix-vector product. As a consequence, we can exploit the
problem structure to store only an implicit representation of the payoff matrix A. This implicit representation
relies on a certain type of decomposition that is present in poker games as well as in the more general class of
games with ordered signals (Gilpin [3], Gilpin and Sandholm [5]). For example, the betting sequences that can
occur in most poker games are independent of the cards that are dealt. We can decompose the payoff matrix
based on these two aspects.1

For ease of exposition, we explain the concise representation in the context of Rhode Island Hold’em
poker (Shi and Littman [20]), although the general technique applies much more broadly (and we use it in our
Texas Hold’em games as well). The payoff matrix A can be written as

A=




A1

A2

A3


 �

where
A1 = F1 ⊗B1�

A2 = F2 ⊗B2� and

A3 = F3 ⊗B3 + S ⊗W

(38)

for much smaller matrices Fi, Bi, S, and W . The matrices Fi correspond to sequences of moves in round i that
end with a fold, and S corresponds to the sequences in round 3 that end in a showdown. The matrices Bi encode
the betting structures in round i, while W encodes the win/lose/draw information determined by poker hand
ranks. The symbol ⊗ in (38) denotes the Kronecker product. Recall that the Kronecker product of two matrices,
B ∈�m×n and C ∈�p×q , is

B ⊗C =




b11C · · · b1nC

���
� � �

���

bm1C · · · bmnC


 ∈�mp×nq�

Given the above concise representation of A, computing x �→ Ax and y �→ ATy is straightforward, and the
space required is sublinear in the size of the game tree. For example, in Rhode Island Hold’em, the dimensions
of the F1 and F2 matrices are 10× 10 and 70× 70, respectively. The dimension of the F3 and S matrices are
490 × 490. The dimensions of B1, B2, and B3 are 13 × 13, 205 × 205, and 1�774 × 1�774, respectively. By
contrast, the matrix A is 883�741× 883�741. Furthermore, the matrices Fi, Bi, S, and W are themselves sparse,
which allows us to use the compressed row storage data structure that only stores nonzero entries.
Table 3 clearly demonstrates the extremely low memory requirements of the EGT algorithms when using

our memory-saving technique. Most notably, on the GS4 instance, both of the CPLEX algorithms (simplex and
interior point) require more than 80,000 GB simply to represent the problem. In contrast, using the decomposed
payoff matrix representation, the EGT algorithms require only 43.96 GB. Furthermore, to solve the problem,
both the simplex and interior-point algorithms would require additional memory for their internal data structures.
Therefore the EGT family of algorithms with our memory-saving techniques is a significant improvement over
the state-of-the-art for large-scale problems.
The memory use for the CPLEX simplex algorithm reported in Table 3 is the memory used after 10 minutes

of execution (except for the Texas and GS4 instances, which could not run at all using either CPLEX algorithm).
This algorithm’s memory requirements grow and shrink during the execution, depending on its internal data
structures. Therefore the number reported is a lower bound on the maximum memory use during execution.
Although the results presented in Table 3 are for CPLEX, they apply to any algorithm that requires an explicit

representation of the constraint matrix of the linear program. Because the only matrix operation needed by our
algorithm is a matrix-vector product, we are able to use an implicit representation of the constraint matrix, as
discussed above.

1 The fact that possible betting sequences are independent of cards has also been exploited by automated abstraction algorithms, but in a
totally different way (Gilpin and Sandholm [5]).
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Table 3. Memory footprint in gigabytes of CPLEX IPM, CPLEX
simplex, and our EGT algorithms.

Name CPLEX IPM CPLEX simplex EGT

10k 0�082 GB >0�051 GB 0�012 GB
160k 2�250 GB >0�664 GB 0�035 GB
RI 25�200 GB >3�450 GB 0�150 GB
Texas >458 GB >458 GB 2�490 GB
GS4 >80�000 GB >80�000 GB 43�96 GB

6.6. Speedup from parallelizing the matrix-vector product. Beyond our time-saving heuristics discussed
earlier in this paper, we further reduce the time requirements of the matrix-vector product by parallelization. We
parallelize the operation by simply partitioning the work into n pieces when n CPUs are available. The speedup
we can achieve on parallel CPUs is demonstrated in Table 4. The instance used for this test is the Texas instance
described above. The matrix-vector product operation scales linearly in the number of CPUs, and the time to
perform one iteration of the algorithm scales nearly linearly, decreasing by a factor of 3.69 when using four
CPUs.

7. Conclusions and future research. We developed first-order algorithms to approximate Nash equilibria
of two-person zero-sum sequential games by applying Nesterov’s [16, 17] smoothing technique to the saddle-
point formulation (1) of the Nash equilibrium problem. The heart of our approach is a construction of nice
prox-functions for the treeplex polytopes in the saddle-point formulation.
We implemented an algorithm based on our prox-functions and Nesterov’s [16] EGT. We included two novel

heuristics that improve the algorithm’s speed of convergence considerably. Experiments show that the algorithm
based on the entropy-induced prox-function is faster than the algorithm based on the Euclidean-induced prox-
function. For poker games and similar games, we introduced a decomposed matrix representation that reduces
storage requirements drastically. Our techniques enable us to solve to near-equilibrium games that are more than
four orders of magnitude larger than the largest addressable previously. We also showed near-perfect speedup
from parallelization, which makes our algorithms particularly appropriate for modern multicore architectures.
In contrast to a direct first-order approach to solve the linear programming formulation of (1) such as that

proposed in Lan et al. [12], our approach automatically yields algorithms that generate feasible strategies x ∈� ,
y ∈� throughout execution. This is of crucial importance because points that violate the constraints defining the
treeplexes ���, even slightly, are typically meaningless strategies. In particular, unlike the iterates generated by
our algorithm, the iterates generated by an infeasible algorithm would typically not yield approximate equilibria.
Furthermore, the linear programming formulation of (1) increases the dimension of the problem substantially
since it requires a new variable for each constraint in the description of the treeplexes ���.
In addition to our first-order smoothing approach to problem (1), it is conceivable that specialized versions of

other algorithmic approaches may also lead to effective algorithms for solving the saddle-point problem (1). For
example, a specialized interior-point algorithm could use an appropriately designed iterative method to solve the
system of equations at each main iteration. No such approach has been successfully developed so far.
Another approach we plan to investigate is the use of stochastic sampling for approximating the objective

function. This has already been studied in the context of matrix games (Juditsky et al. [10]), although that
approach was based on a different optimization algorithm. For large-scale instances, it is quite expensive to
evaluate the matrix-vector product in the objective function (and in the gradient computations). Speeding up
these operations, in conjunction with strong convergence guarantees, could have a significant impact in practice.
These interesting alternative algorithmic approaches will be the subject of future research.

Table 4. Effect of parallelization for the Texas instance.

Matrix-vector product EGT iteration

CPUs Time (secs) Speedup Time (secs) Speedup

1 278 1�00x 1�420 1�00x
2 140 1�98x 730 1�94x
3 93 2�98x 490 2�89x
4 69 4�00x 384 3�69x
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Soon after we published our EGT-2 algorithm in a conference (WINE-07), an algorithm based on a totally
different paradigm (regret minimization at each information set of the game), but comparable performance, was
published in a conference (Zinkevich et al. [23]). It would be interesting to conduct direct scalability comparisons
of the two algorithms in the future. For one, we expect that our algorithm exhibits better parallelization; no
convergence guarantees have been proven for the other algorithm if it is used in parallel mode where regrets on
information sets are updated in parallel.
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